首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein antigens from 4-wk worms were metabolically radiolabelled with [3H]leucine or [35S]methionine. Three freeze-thaw cycles released a large proportion (50% to 60%) of the TCA-precipitable radioactivity from the worms. Immune serum from twice-infected Fischer rats (F-2x), which was shown to confer resistance in a passive immunization assay, and immune serum from twice-infected Wistar Furth rats (W-2x), which does not confer resistance, were used for analyzing antigens in this worm fraction. Antibodies in these antisera differed in their titers to the freeze-thaw released antigens (W-2x greater than F-2x) and in their relative affinities for these antigens (F-2x greater than W-2x). Gradient slab gel electrophoresis of immunoprecipitates of radiolabelled antigens under denaturing conditions revealed many components, which could be categorized into two main types: unique antigens, recognized only by F-2x antibodies, and nonunique antigens, recognized by both F-2x and W-2x antibodies. The potential relevance of these antigens in resistance was further examined by antibody absorption experiments in which 4-wk worms were used as an immunoabsorbent to remove 90% to 95% of the immunoprecipitating activity and 65% to 70% (p less than 0.005) of the capacity to confer resistance in a passive immunization assay. It was concluded that loss of both anti-schistosome activities was specific since antigen released by worms during absorption could account for only 16% of the reduction in antigen-binding capacity and the titer of antibodies directed against beta-galactosidase did not significantly change during absorption. Antigens recognized uniquely by F-2x antibodies are therefore candidates for immunization studies examining induction of resistance against Schistosoma mansoni.  相似文献   

2.
Levels of citrate in kidneys and livers of rats with normal glutathione levels increased 6.8 and 1.7-fold respectively 2 h after dosing with 1.5 mg of compound 1080 (= 95% sodium fluoroacetate) per kilogram body weight. In animals with liver glutathione levels 15% of normal, increases in plasma and liver citrate levels after dosing with fluoroacetate were significantly greater than those of control animals. Cysteamine and N-acetylcysteine, like glutathione, partially protected aconitate hydratase from fluorocitrate inhibition in rat liver preparations but were unable to replace glutathione as a substrate for the defluorination of fluoroacetate in vitro. N-Acetylcysteine did not diminish plasma citrate levels of glutathione-deficient rats dosed with fluoroacetate, while cysteamine inhibited the rate of in vivo defluorination in glutathione-deficient brush-tailed possums. It is suggested that non-physiological sulfhydryl compounds are ineffective antidotes to fluoroacetate intoxication in vivo. The in vivo defluorination patterns of four mammal species with differing sensitivities to fluoroacetate did not indicate a direct relationship between tolerance and rate of defluorination and it is also suggested that a high level of activity of the glutathione-S-transferase responsible for the defluorination of fluoroacetate is not the major mechanism for circumventing fluoroacetate toxicity in resistant mammals.  相似文献   

3.
Administration of bacterial endotoxin to rats exposed to greater than 95% O2 results in increased lung superoxide dismutase activity, decreased O2-induced lung damage, and a 3- to 4-fold improvement in survival rate (Frank, L., Yam, J., and Roberts, R. J. (1978) J. Clin. Invest, 61, 269-275). Antibodies to rat liver (Cu,Zn) superoxide dismutase were prepared and utilized to investigate the mechanism by which endotoxin treatment leads to increased lung superoxide dismutase activity. Assay of enzyme activity and of immunodetectable enzyme showed that the increased activity is due to an increase in the number of enzyme molecules rather than activation of existing enzyme. Compared to air controls, lung slices from rats exposed to greater than 95% O2 and treated with endotoxin have elevated rats of synthesis of (Cu,Zn)superoxide dismutase (51%) and of total protein (100%). Lung slices from untreated rats exposed to greater than 95% O2 have no such elevations. Endotoxin treatment thus appears to stimulate lung protein synthesis, leading to greater (Cu,Zn)superoxide dismutase activity due to an increased number of enzyme molecules.  相似文献   

4.
The liberation of free fluoride ion from fluoroacetate (FAc) proceeds as an enzyme-catalyzed dehalogenation reaction in the soluble fractions of several organs of the CFW Swiss mouse. Liver contained the highest FAc defluorinating activity. The enzyme activity in other organs decreased in the order kidney greater than lung greater than heart greater than testes. No activity was detected in the brain. Experiments were designed to characterize and identify the enzyme species responsible for FAc metabolism in liver. Enzyme activity was dependent on the concentration of glutathione (GSH) in the assay mixture, with maximal activity occurring above 5 mM. The dehalogenation of FAc had an apparent Km of 7.0 mM when measured in the presence of a saturating concentration of GSH. An increase in the pH of the assay mixture enhanced fluoride release in both phosphate and borate buffer. The defluorination activity was reduced to negligible levels when stored for 24 h at 4 degrees C. The addition of either GSH, dithiothreitol, or 2-mercaptoethanol increased stability, with the latter providing protection for greater than 150 h at a concentration of 15 mM. DEAE anion-exchange chromatography separated the defluorinating activity from 90% of the soluble GSH S-transferase activity measured with 1-chloro-2,4-dinitrobenzene. FAc defluorination activity did not bind to a GSH affinity column which selectively separates it from a group of anionic GSH S-transferases. The GSH-dependent enzyme which dehalogenates FAc has unique properties and can be separated from the liver GSH S-transferases previously described in the literature.  相似文献   

5.
Seizure-associated pulmonary edema and cerebral oxygenation in the rat   总被引:1,自引:0,他引:1  
Cerebral partial pressure of O2 (PO2), relative changes in the ratio of reduced/oxidized cytochrome aa3, blood flow, and the arteriovenous difference in O2 content were measured during seizures with and without pulmonary edema. Seizures were induced with bicuculline (0.2-1.2 mg/kg iv) in rats anesthetized with 70% N2O and paralyzed with curare. Briefer seizures were accompanied by increased cerebral PO2 and increased oxidation of cytochrome aa3. Lung water content and arterial O2 partial pressure (PaO2) remained normal. Longer duration seizures were also accompanied initially by increases in cerebral oxygenation. Within minutes, however, PaO2 fell from a mean of 118 to 51 mmHg, and lung water content increased from 76.2 to 83.6%. Cerebral PO2 fell but most often rose back to or above control levels, while cytochrome aa3 became markedly reduced. Simultaneously, cerebral blood flow increased more than 300% above preseizure values and O2 delivery increased more than O2 consumption. The reductive shift of cytochrome aa3 was greater than that produced by lowering PaO2 to equivalent values in seizure-free rats. The reductive shift of cytochrome aa3, despite increased O2 delivery, may be indicative of derangements in cerebral O2 diffusion or energy metabolism.  相似文献   

6.
This study was undertaken to determine the effects of increased substrate availability (glycogen + plasma fatty acids) by glucocorticoids on energy metabolism during exercise to exhaustion. Female rats received a single subcutaneous injection of cortisol acetate (CA) (100 mg.kg body wt-1) 21 h before treadmill running (30.8 m/min). At the start of exercise in the CA-treated rats, plasma fatty acids and liver glycogen were increased by 40%. Glycogen levels were also increased by CA treatment in slow-twitch soleus (61%), fast-twitch white vastus (38%), and fast-twitch red vastus lateralis (85%) muscles. Exercise time to exhaustion was increased by CA treatment (114 +/- 5 vs. 95 +/- 6 min, P less than 0.05). During the exercise, total glycogen depletion was greater in the CA-treated than in the control animals, whereas estimated relative rates of carbohydrate utilization (R = 0.90) were similar. However, while running the CA-treated group consumed 11% more O2 than the controls (P less than 0.05). These results show that a single injection of glucocorticoids is capable of improving endurance. Yet the increased O2 uptake during exercise may have minimized the impact of the initial increased availability of carbohydrates and fatty acids in prolonging exercise capacity. This decreased running economy by the CA-treated runners may be secondary to alterations in energy production or utilization.  相似文献   

7.
The heterocyclic amine, batracylin (BAT), is genotoxic and several lines of evidence suggest that acetylation is one step in the formation of a DNA-damaging product. The variation in susceptibility to BAT toxicity observed between rats and mice has also been linked to the acetylated product. BAT N-acetyltransferase (NAT) activity was determined in rat and mouse hepatic cytosols. Formation of acetylbatracylin (ABAT) was 6 times greater in F-344 hepatic samples compared to either mouse strain, while hepatic BAT NAT activities were similar in C57B1/6 and A/J mice. No deacetylation of ABAT was detected. In contrast, 2-aminofluorene NAT activity in C57B1/6 hepatic cytosol was twice that of the A/J strain and activities in both strains of mice were greater than in rat. Deacetylation of 2-acetylaminofluorene was detected in both species with enzyme activities in C57B1/6>A/J>F-344. Hepatocytes from the F-344 rats, the species most sensitive to BAT toxicity, were used to investigate the contribution of other biotransformation reactions to BAT cytotoxicity. Leakage of cellular lactate dehydrogenase was greater in hepatocytes from male rats than from females, increased on in vivo exposure to dexamethasone, and decreased in the presence of troleandomycin, suggesting that CYP3A-mediated biotransformation of BAT is involved in the formation of a cytotoxic product. When phenol red, a substrate for UDP-glucuronsyltransferase (UDPGT), was absent from the medium, BAT cytotoxicity was reduced. These data are consistent with a role for NAT, CYP, and UDPGT in the biotransformation of BAT. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Pentachlorophenol (PCP), a widely used biocide, induces liver tumors in mice but not in rats. Metabolic activation of PCP to chlorinated quinones and semiquinones in liver cytosol from Sprague-Dawley rats and B6C3F1 mice was investigated in vitro (1) with microsomes in the presence of either beta-nicotinamide adenine dinucleotide phosphate (NADPH) or cumene hydroperoxide (CHP), (2) with CHP in the absence of microsomes, and (3) with horseradish peroxidase (HRP) and H2O2. Mono-S- and multi-S-substituted adducts of tetrachloro-1,4-benzoquinone (Cl4-1,4-BQ) and Cl4-1,2-BQ and their corresponding semiquinones [i.e. tetrachloro-1,4-benzosemiquinone (Cl4-1,4-SQ) and tetrachloro-1,2-benzosemiquinone (Cl4-1,2-SQ)] were measured by gas chromatography-mass spectrometry (GC-MS). Qualitatively, the metabolites of PCP were the same in both rats and mice for all activation systems. Induction of PCP metabolism by either 3MC or PB-treated microsomes was observed in NADPH- but not in CHP-supported systems. In rats, the amount of induction was comparable with either 3MC or PB. 3MC was a stronger inducer than PB in mice and also induced a greater amount of metabolism than in rats. This suggests that induction of specific P450 isozymes may play a role in the toxicity of PCP to mice. Both HRP/H2O2 and CHP led to production of the full spectrum of chlorinated quinones and semiquinones, confirming the direct oxidation of PCP. CHP (with or without microsomes) converted PCP into much greater quantities of quinones and semiquinones than did microsomal P450/NADPH or HRP/H2O2 in both species. This implies that, under conditions of oxidative stress, endogenous lipid hydroperoxides may increase PCP metabolism sufficiently to enhance the toxicity and carcinogenicity of PCP.  相似文献   

9.
We developed a new method for isolating viable type II cells from fractionated and unfractionated lung cell suspensions by flow cytometry using acridine orange (AO). Fischer-344 rat lungs were dispersed into single-cell suspensions by a technique that yields a high number of cells (4-5 X 10(8) cells/lung, congruent to 85% viable), congruent to 11% of which are type II cells. Elutriated fractions from the lung cell preparation and parent, unfractionated cell suspensions were incubated with 1.0-0.02 micrograms/ml AO and analyzed by flow cytometry. Parameters analyzed included axial light loss (ALL) and red fluorescence (RF). Based on their unique RF, attributable to AO staining of type II cell lamellar bodies, and their ALL characteristics, type II pneumocytes were sorted from elutriated fractions to greater than 95% purity. Using the same approach, type II pneumocytes were sorted from unfractionated lung cell suspensions at greater than or equal to 85% purity. The viabilities of the type II alveolar epithelial cells isolated by this method range from 85% to 95%, and the ultrastructural features of the sorted cells were unaltered by AO labeling or sorting.  相似文献   

10.
This study examines the effects of male sex hormones on the vasoconstrictor response to electrical field stimulation (EFS), as well as neuronal NO modulation of this response. For this purpose, denuded superior mesenteric artery from orchidectomized and control male Sprague-Dawley rats was used. EFS induced similar frequency-dependent contractions in segments from both groups. The NO synthase (NOS) inhibitor N(omega)-nitro-L-arginine methyl ester strengthened EFS-elicited contractions more in arteries from orchidectomized than from control male rats. The expression of nNOS was more pronounced in segments from control than from orchidectomized animals. Basal and EFS-induced NO release was similar in segments from both groups. In noradrenaline (NA)-precontracted segments, sodium nitroprusside (SNP) induced a concentration-dependent relaxation, that was greater in segments from orchidectomized than control male rats. 8-Bromo-cGMP induced a similar concentration-dependent relaxation in NA-precontracted segments from either group, and the cGMP levels induced by SNP were also similar in the two groups. Superoxide dismutase (SOD), a superoxide anion scavenger, did not modify the relaxation in segments from control male rats. In contrast, SOD enhanced the relaxation induced by SNP in segments from orchidectomized rats, and the effect was reversed by preincubation with SOD plus catalase. The generation of superoxide anion and of peroxynitrite was greater in segments from orchidectomized than control rats. In NA-precontracted segments from control or orchidectomized rats, exogenous peroxynitrite and H(2)O(2) induced a concentration-dependent relaxation. These results suggest that EFS induces a similar nNOS-derived NO release in segments from orchidectomized and control male rats, despite the decrease in nNOS expression in orchidectomized rats. The NO metabolism is higher in segments from orchidectomized male rats due to the increases in anion superoxide generation and peroxynitrite formation. The vasodilator effects of the peroxynitrite and H(2)O(2)0 generated from the NO metabolism are what enhance the functional role of the nNOS-derived NO release in the orchidectomized rats.  相似文献   

11.
To examine the roles of 17beta-estradiol (E(2)) and progesterone (Prog) in lipid metabolism, skeletal muscle enzyme activities were studied in female Sprague-Dawley rats. Groups included sham-operated rats (C) and ovariectomized rats treated with placebo (O), E(2) (E), Prog (P), both hormones at physiological doses (P + E), or both hormones with a high dose of E(2) (P + HiE). Hormone (or vehicle only) delivery was via time-release pellets inserted at the time of surgery, 15 days before metabolic testing. Results demonstrated that carnitine palmitoyltransferase maximal activity was 19, 21, and 19% lower (P < 0.01) in O, P, and P + E rats, respectively, compared with C rats. Conversely, activity in E and P + HiE rats was 14 and 19% higher (P < 0.01) than in C. beta-Hydroxyacyl-CoA dehydrogenase (beta-HAD) maximal activity was 20% lower (P < 0.01) in O than in C rats; similarly, P and P + E rats were 18 and 19% lower, respectively (P < 0.01); however, treatment with E(2) returned beta-HAD activity to C levels. These results suggest that E(2) plays a role in lipid metabolism by increasing the maximal activity of key enzymes in the fat oxidative pathway of skeletal muscle.  相似文献   

12.
Treatment of rats with endotoxin, as late as 24 h after beginning exposure to greater than 95 O2 at 1 atm, increases survival at 72 h from 20-30% to greater than 95% (J. Clin. Invest. 65: 1104, 1980), whereas treatment with corticosteroids reduces survival (Toxicol. Appl. Pharmacol. 47: 367, 1979). Since endotoxin is mitogenic to some cells and glucocorticosteroids decrease DNA synthesis by lung cells, we asked 1) is endotoxin mitogenic to the lung, and, if so, 2) is the mitogenic effect required for endotoxin to produce tolerance to hyperoxia? We found endotoxin administered in vivo does have a mitogenic effect on the lung as indicated by an increased rate of DNA synthesis by lung slices; dexamethasone blocked this effect. However, although dexamethasone given alone markedly diminished survival in hyperoxia, dexamethasone did not impair the protection conferred to rats by endotoxin against the edemogenicity and lethality of hyperoxia. Furthermore, dexamethasone did not diminish the rise of antioxidant enzyme activity in the lungs of endotoxin-treated O2-exposed rats. We conclude endotoxin can produce tolerance to hyperoxia even when its mitogenic action on the lung is substantially diminished.  相似文献   

13.
Whole cells and cell-free extracts derived from Rhodococcus rhodochrous NCIMB 11216 were shown to hydrolyse both aliphatic and aromatic nitriles, when the organism had been grown on either propionitrile or benzonitrile as the source of carbon and nitrogen. Whole cell suspensions and cell-free extracts derived from bacteria grown on either substrate were able to biotransform R-(-),S-(+)-2-methylbutyronitrile. The S-(+) enantiomer was biotransformed more rapidly than the the R-(-) enantiomer. For whole cell biotransformations at 30°C, the maximum enantiomeric excess (ee) of the remaining R-(-)-2-methylbutyronitrile was 93% when 70% of the R-(-) enantiomer had been converted to the product, 2-methylbutyric acid. For the corresponding biotransformation at 4°C, there was an ee of 93% for the residual R-(-) enantiomer of the substrate when only 60% of it had been converted to product. For biotransformations by cell-free extracts at 30°C the 2-methylbutyric acid product had an ee of 17% for the S-(+) enantiomer at the time of optimal ee for the remaining R-(-) enantiomer of the substrate. In contrast, when the reaction was carried out by whole cells, the ee for the product acid was 0.36%. This was probably due to further, non-selective metabolism of the acid, which was especially significant at the beginning of the reaction. At both temperatures, the ee for the S-(+) enantiomer of 2-methylbutyric acid was at a maximum in the early stage of the biotransformation; for example, at 4°C the maximum detectable ee was 100% when the yield was 11%.Abbreviations EDTA Ethylenediaminetetraacetic acid - ee enantiomeric excess - FID flame ionisation detector - GC gas chromatography - 1HNMR H nuclear magnetic resonance - K m Michaelis constant - NCIMB National Collection of Industrial and Marine Bacteria - td doubling time - V max Maximum velocity  相似文献   

14.
We tested the hypothesis that the continuous breathing response to oxygen or oxygen plus umbilical cord occlusion, in the fetal sheep, could be modified by gestational age or labour. We studied 35 chronically instrumented fetal sheep on 84 occasions during late gestation (124 to 141 days), using our window model (Rigatto, 1984). After a resting cycle (1 low-voltage followed by 1 high-voltage electrocortical activity epoch), the fetal lung was distended via an endotracheal tube using mean airway pressure of about 30 cm H2O. Inspired nitrogen, and 100% O2 were given to the fetus during one cycle each. While on 100% O2 the umbilical cord was occluded using a balloon cuff. We found that: (1) the continuous breathing response to 100% O2 occurring in 8% of the experiments at a gestational age less than 130 days, in 25% from 130 to 134 days and in 45% at gestational ages greater than 134 days (P < 0.01); (2) at similar gestational age intervals the breathing responses to umbilical cord occlusion were 67%, 84%, and 100% (P < 0.01); and (3) in the presence of labour, 45% of the experiments responded to O2 with continuous breathing as compared to 23% in the absence of labour (P < 0.01). Cord occlusion did not affect these values. Because the highest PaO2 achieved increased significantly to 128 days but not thereafter it is unlikely that these results can be explained on the basis of an increase in PaO2 alone. We speculate that there is an age related maturation of the inhibition of breathing normally present in the fetus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We evaluated the effects of sustained perinatal inhibition of NO synthase (NOS) on hyperoxia induced lung injury in newborn rats. N(G)-nitro-Larginine-methyl-ester (L-NAME) or untreated water was administered to pregnant rats for the final 7 days of gestation and during lactation; followed by postnatal exposure to hyperoxia (>95% O(2)) or room air. The survival rate of L-NAME treated pups when placed in > 95% O(2) at birth was significantly lower than controls from day 4 (L-NAME, 87%; control pups, 100%, p < 0.05) to 14 (L-NAME, 0%; control pups, 53%, p < 0.05). Foetal pulmonary artery vasoconstriction was induced by L-NAME with a decrease in internal diameter from 0.88 +/- 0.03 mm to 0.64 +/- 0.01 mm in control vs. L-NAME groups (p < 0.05), respectively. We conclude that perinatal NOS inhibition results in pulmonary artery vasoconstriction and a decreased tolerance to hyperoxia induced lung injury in newborn rats.  相似文献   

16.
Artificial selection in rat has yielded high-capacity runners (HCR) and low-capacity runners (LCR) that differ in intrinsic (untrained) aerobic exercise ability and metabolic disease risk. To gain insight into how oxygen metabolism may have been affected by selection, we compared mitochondrial function, oxidative DNA damage (8-dihydroxy-guanosine; 8dOHG), and antioxidant enzyme activities in soleus muscle (Sol) and gastrocnemius muscle (Gas) of adult and aged LCR vs. HCR rats. In Sol of adult HCR rats, maximal ADP-stimulated respiration was 37% greater, whereas in Gas of adult HCR rats, there was a 23% greater complex IV-driven respiratory capacity and 54% greater leak as a fraction of electron transport capacity (suggesting looser mitochondrial coupling) vs. LCR rats. H(2)O(2) emission per gram of muscle was 24-26% greater for both muscles in adult HCR rats vs. LCR, although H(2)O(2) emission in Gas was 17% lower in HCR, after normalizing for citrate synthase activity (marker of mitochondrial content). Despite greater H(2)O(2) emission, 8dOHG levels were 62-78% lower in HCR rats due to 62-96% higher superoxide dismutase activity in both muscles and 47% higher catalase activity in Sol muscle in adult HCR rats, with no evidence for higher 8 oxoguanine glycosylase (OGG1; DNA repair enzyme) protein expression. We conclude that genetic segregation for high running capacity has generated a molecular network of cellular adaptations, facilitating a superior response to oxidative stress.  相似文献   

17.
Following exposure to 95% oxygen, clonogenic cell survival was assayed and qualitative morphologic changes were observed in a Chinese hamster fibroblast cell line (HA-1). The time in 95% O2 necessary to clonogenically inactivate 90% of the cells was inversely related to the cell density of the cultures at the beginning of hyperoxic exposure (from 1 to 6 X 10(4) cells/cm2). The O2-induced loss in clonogenicity and evidence of morphologic injury were shown to be significantly delayed (17-22 h) in an H2O2-resistant variant of the parental HA-1 cell line. After the delay in onset of clonogenic cell killing or morphologic injury, the process of injury proceeded in a similar fashion in both cell lines. The H2O2-resistant cell line demonstrated significantly greater catalase activity (20-fold), CuZn superoxide dismutase activity (2-fold), and Se-dependent glutathione peroxidase activity (1.5-fold). The greater activities of CuZn superoxide dismutase and catalase were accompanied by similarly greater quantities of immunoreactive protein as determined by immunoblotting. These data demonstrate that the cells adapted and/or selected for growth in a highly peroxidative environment also became refractory to O2-induced toxicity, which may be related to increased expression of antioxidant enzymes. However, the magnitude of this cross-resistance to O2 toxicity was less than the magnitude of the cellular resistance to the toxicity of exogenous H2O2, suggesting that in this system the toxicity of 95% oxygen is not identical to H2O2-mediated cytotoxicity.  相似文献   

18.
Influence of vitamin E on polyamine metabolism in ozone-exposed rat lungs   总被引:2,自引:0,他引:2  
The influence of vitamin E (E) on lung polyamine metabolism of rats exposed to ozone (O3) was examined. Rats fed diets wither E-deficient or supplemented with 1000 IU E/kg were exposed to 0.5 +/- 0.05 ppm O3 or filtered room air continuously for 5 days. They were then sacrificed and their lungs were analyzed for biochemical changes. Lung E content was strongly associated with the dietary level, and increased (36%, P less than 0.05) after O3 exposure only in E-supplemented rats. Lung polyamine metabolism was not affected in the air-control rats by E level, but increased after O3 exposure in both dietary groups. The activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase were elevated above air controls. However, the increases were significant only for E-deficient rats when compared to E-supplemented rats. After O3 exposure, putrescine increased significantly in both dietary groups; spermidine increased but was significantly higher only in the E-deficient group; and spermine remained unchanged in both dietary groups. Elevated E content of supplemented rat lungs after O3 exposure may represent its mobilization under oxidant stress. Increased polyamine metabolism of E-deficient rats suggests either a greater sensitivity to injury by O3 or a possible antioxidant function for polyamines compensating for E deficiency.  相似文献   

19.
The role of Cl- in photosynthetic O2 evolution has been investigated by measurement of the steady-state O2 rate and EPR of the electron donors responsible for the S2 multiline signal and Signal IIs upon Cl- depletion and substitution in Photosystem II membranes. Cl- removal has three effects upon the donor side of Photosystem II. (1) It abolishes O2 evolution reversibly, while decreasing the yield of the S2 multiline signal indicative of the manganese site of the O2-evolving complex in the S2 oxidation state. This decrease is brought about by (2) the reversible disconnection of the manganese complex from the reaction center; and by (3) deactivation of S1 centers having reduced primary acceptor QA to form SO centers having a reduced Signal IIs species. Reactivation of O2 evolution by anions confirms earlier work showing a requirement for a univalent anion of optimum charge density. The observed order of reactivation is Cl- greater than Br- approximately NO3- much greater than OH- approximately F-. Reactivation of the S2 multiline signal follows Cl- approximately Br- greater than NO3- approximately OH- greater than F-, in near correspondence with reactivation of O2-evolution rates. Cl- titrations of F- -inhibited samples reveal two binding sites for Cl- which differ in binding affinity by 11-fold. The higher-affinity site reactivates the S1----S2 light reaction, while the lower-affinity site reactivates the S3----S0 light reaction. The high affinity site is located within the O2-evolving complex at an undetermined site, while the lower-affinity site functions in coupling the reaction center photochemistry to the O2-evolving complex. The results are compared with Cl-/F- exchange equilibria for Mn3+ in solution. A model for the lower S-state transitions is presented in which specific oxidation state assignments are made for some of the donors and acceptors of Photosystem II.  相似文献   

20.
The stereospecifically labeled coenzymes [4R-2H]NADH, [4R-2H]NADPH and [4S-2H]NAD(P)H were synthesized enzymatically in high yield and high isotopic purity (greater than or equal to 95%) with 2HCOO2H/formate dehydrogenase, (CH3)2C2HOH/alchol dehydrogenase from Thermoanaerobium brockii and [1-2H]glucose/glucose dehydrogenase, respectively. This set of deuterated coenzymes was used to determine the stereospecificity of the previously unstudied 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli (NAD-dependent) and 12 alpha-hydroxysteroid dehydrogenase from Clostridium group P (NADP-dependent). H-NMR and EI-MS of the nicotinamide moiety after enzymatic oxidation of deuterated NAD(P)H with dehydrocholic acid as substrate showed that both dehydrogenases are B-sterospecific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号