共查询到20条相似文献,搜索用时 0 毫秒
1.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine synthesis. Its activity is controlled by PACAP, acutely by phosphorylation at Ser40 and chronically by protein synthesis. Using bovine adrenal chromaffin cells we found that PACAP, acting via the continuous activation of PACAP 1 receptors, sustained the phosphorylation of TH at Ser40 and led to TH activation for up to 24 h in the absence of TH protein synthesis. The sustained phosphorylation of TH at Ser40 was not mediated by hierarchical phosphorylation of TH at either Ser19 or Ser31. PACAP caused sustained activation of PKA, but did not sustain activation of other protein kinases including ERK, p38 kinase, PKC, MAPKAPK2 and MSK1. The PKA inhibitor H89 substantially inhibited the acute and the sustained phosphorylation of TH mediated by PACAP. PACAP also inhibited the activity of PP2A and PP2C at 24 h. PACAP therefore sustained TH phosphorylation at Ser40 for 24 h by sustaining the activation of PKA and causing inactivation of Ser40 phosphatases. The PKA activator 8-CPT-6Phe-cAMP also caused sustained phosphorylation of TH at Ser40 that was inhibited by the PKA inhibitor H89. Using cyclic AMP agonist pairs we found that sustained phosphorylation of TH was due to both the RI and the RII isotypes of PKA. The sustained activation of TH that occurred as a result of TH phosphorylation at Ser40 could maintain the synthesis of catecholamines without the need for further stimulus of the adrenal cells or increased TH protein synthesis. 相似文献
2.
Site-directed mutagenesis of serine 40 of rat tyrosine hydroxylase. Effects of dopamine and cAMP-dependent phosphorylation on enzyme activity. 总被引:1,自引:0,他引:1
S C Daubner C Lauriano J W Haycock P F Fitzpatrick 《The Journal of biological chemistry》1992,267(18):12639-12646
Rat tyrosine hydroxylase expressed with a baculovirus expression system contains covalent phosphate and has kinetic parameters consistent with those expected of phosphorylated enzyme (Fitzpatrick, P. F., Chlumsky, L. J., Daubner, S. C., and O'Malley, K. L. (1990) J. Biol. Chem. 265, 2042-2047). The phosphorylation site was identified as serine 40, by purifying the enzyme from cells grown in the presence of [32P]phosphate. Replacement of serine 40 with alanine by site-directed mutagenesis prevented phosphorylation but had little effect on the steady-state kinetic parameters at pH 7. Both wild type and S40A tyrosine hydroxylase were expressed in Escherichia coli; the kinetic parameters of the enzymes purified from bacteria were nearly identical to those of the enzymes expressed with the baculovirus system, although the bacterially expressed enzyme contained no covalent phosphate. Treatment of this wild type enzyme with cAMP-dependent protein kinase decreased the KBH4 value about 2-fold but had no effect on the Vmax value at pH 7. Treatment with a stoichiometric amount of dopamine decreased the Vmax value 15-fold and increased the KBH4 value 2-3-fold. Phosphorylation of the dopamine-bound enzyme increased the Vmax value 10-fold and decreased the KBH4 value 2-fold. The kinetic parameters of the dopamine-bound recombinant enzyme were identical to those of enzyme purified from PC12 cells. In contrast, the S40A enzyme was converted to a less active form by treatment with dopamine but was not affected by phosphorylating conditions. These results are consistent with a model in which the major effect of phosphorylation of serine 40 is to relieve tyrosine hydroxylase from the inhibitory effects of catecholamines. 相似文献
3.
Tyrosine hydroxylase, a key enzyme in the biosynthesis of catecholamines, was previously shown to be phosphorylated on four distinct serine residues in PC12 cell cultures, each one being specific for the kinase system involved (McTigue, M., Cremins, J., and Halegoua, S. (1985) J. Biol. Chem. 260, 9047-9056). A cAMP- and Ca2+-independent protein kinase was found to be associated with tyrosine hydroxylase purified from rat pheochromocytoma tumor. The use of this activity and the availability of a large amount of purified tyrosine hydroxylase allowed identification of the site phosphorylated by this kinase activity. A peptide of 1.5 kDa (about 12 residues long), carrying the phosphorylation site, was released from 32P-labeled tyrosine hydroxylase by limited proteolysis with trypsin. This peptide was isolated from trypsinized tyrosine hydroxylase by sequential gel filtration and ion exchange chromatographies. Analysis by thin layer chromatography of an acid hydrolysate of the peptide revealed that it contained phosphoserine. The sequence determination of the peptide showed that it corresponded to the residues 38-45 in the tyrosine hydroxylase primary structure (Arg-Gln-Ser(P)-Leu-Ile-Glu-Asp-Ala). Thus, the associated kinase phosphorylated Ser-40, one of the phosphorylation sites for the cAMP-dependent protein kinase also found in rat pheochromocytoma tumors. These results are compared to those recently appearing in a report by Campbell et al. (Campbell, D. G., Hardie, D. G., and Vulliet, P. R. (1986) J. Biol. Chem. 261, 10489-10492). 相似文献
4.
Phosphorylation of Ser40 in the regulatory domain of tyrosine hydroxylase activates the enzyme by increasing the rate of dissociation of inhibitory catecholamines [Ramsey, A. J., and Fitzpatrick, P. F. (1998) Biochemistry 37, 8980-8986]. To probe the structural basis for this effect and to ascertain the ability of other amino acids to functionally replace serine and serine phosphate, the effects of replacement of Ser40 with other amino acids were determined. Only minor changes in the Vmax value and the Km values for tyrosine and tetrahydropterin were seen upon replacement of Ser40 with alanine, valine, threonine, aspartate, or glutamate, in line with the minor effects of phosphorylation on steady-state kinetic parameters. More significant effects were seen on the binding of dopamine and dihydroxyphenylalanine. The affinity of the S40T enzyme for either catecholamine was very similar to that of the wild-type enzyme, while the S40E enzyme was similar to the phosphorylated enzyme. The S40D enzyme had an affinity for DOPA comparable to the phosphorylated enzyme but a higher affinity for dopamine than the latter. With both catecholamines, the S40V and S40A enzymes showed intermediate levels of activation. The results suggest that the serine hydroxyl contributes to the stabilization of the catecholamine-inhibited enzyme. In addition, the S40E enzyme will be useful in further studies of the effects of multiple phosphorylation on tyrosine hydroxylase, while the alanine enzyme does not provide an accurate mimic of the unphosphorylated enzyme. 相似文献
5.
Bobrovskaya L Gilligan C Bolster EK Flaherty JJ Dickson PW Dunkley PR 《Journal of neurochemistry》2007,100(2):479-489
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine synthesis. Its activity is known to be controlled acutely (minutes) by phosphorylation and chronically (days) by protein synthesis. Using bovine adrenal chromaffin cells we found that nicotine, acting via nicotinic receptors, sustained the phosphorylation of TH at Ser40 for up to 48 h. Nicotine also induced sustained activation of TH, which for the first 24 h was completely independent of TH protein synthesis, and the phosphorylation of TH at Ser31. Imipramine did not inhibit the acute phosphorylation of TH at Ser40 or TH activation induced by nicotine, but did inhibit the sustained responses to nicotine seen at 24 h. The protein kinase(s) responsible for TH phosphorylation at Ser40 switched from being protein kinase C (PKC) independent in the acute phase to PKC dependent in the sustained phase. Sustained phosphorylation and activation of TH were also observed with histamine and angiotensin II. Sustained phosphorylation of TH at Ser40 provides a novel mechanism for increasing TH activity and this leads to increased catecholamine synthesis. Sustained phosphorylation of TH may be a selective target for drugs or pathology in neurons that contain TH and synthesize dopamine, noradrenaline or adrenaline. 相似文献
6.
Toska K Kleppe R Armstrong CG Morrice NA Cohen P Haavik J 《Journal of neurochemistry》2002,83(4):775-783
Recombinant human tyrosine hydroxylase (hTH1) was found to be phosphorylated by mitogen and stress-activated protein kinase 1 (MSK1) at Ser40 and by p38 regulated/activated kinase (PRAK) on Ser19. Phosphorylation by MSK1 induced an increase in Vmax and a decrease in Km for 6-(R)-5,6,7,8-tetrahydrobiopterin (BH4), while these kinetic parameters were unaffected as a result of phosphorylation by PRAK. Phosphorylation of both Ser40 and Ser19 induced a high-affinity binding of 14-3-3 proteins, but only the interaction of 14-3-3 with Ser19 increased the hTH1 activity. The 14-3-3 proteins also inhibited the rate of dephosphorylation of Ser19 and Ser40 by 82 and 36%, respectively. The phosphorylation of hTH1 on Ser19 caused a threefold increase in the rate of phosphorylation of Ser40. These studies provide new insights into the possible roles of stress-activated protein kinases in the regulation of catecholamine biosynthesis. 相似文献
7.
Activation of tyrosine hydroxylase by intermittent hypoxia: involvement of serine phosphorylation. 总被引:5,自引:0,他引:5
Ganesh K Kumar Dong-Kyu Kim Myeong-Seon Lee Remya Ramachandran Nanduri R Prabhakar 《Journal of applied physiology》2003,95(2):536-544
Regulation of tyrosine hydroxylase (TH) by intermittent hypoxia (IH) was investigated in rat pheochromocytoma 12 (PC-12) cells by exposing them to alternating cycles of hypoxia (1% O2, 15 s) and normoxia (21% O2, 3 min) for up to 60 cycles; controls were exposed to normoxia for a similar duration. IH exposure increased dopamine content and TH activity by approximately 42 and approximately 56%, respectively. Immunoblot analysis revealed that comparable levels of TH protein were expressed in normoxic and IH cells. Removal of TH-bound catecholamines and in vitro phosphorylation of TH in cell-free extracts by the catalytic subunit of protein kinase A (PKA) increased TH activity in normoxic but not in IH cells, suggesting possible induction of TH phosphorylation and removal of endogenous inhibition of TH by IH. To assess the role of serine phosphorylation in IH-induced TH activation, TH immunoprecipitates and extracts derived from normoxic and IH cells were probed with anti-phosphoserine and anti-phospho-TH (Ser-40) antibody, respectively. Compared with normoxic cells, total serine and Ser-40-specific phosphorylation of TH were increased in IH cells. IH-induced activation of TH and the increase in total serine and Ser-40-specific phosphorylation of TH were inhibited by Ca2+/calmodulin-dependent protein kinase (CaMK) and PKA-specific inhibitors but not by inhibitors of the extracellular signal-regulated protein kinase pathway, suggesting that IH activates TH in PC-12 cells via phosphorylation of serine residues including Ser-40, in part, by CaMK and PKA. Our results also suggest that IH-induced phosphorylation of TH facilitates the removal of endogenous inhibition of TH, leading to increased synthesis of dopamine. 相似文献
8.
Gelain DP Moreira JC Bevilaqua LR Dickson PW Dunkley PR 《Journal of neurochemistry》2007,103(6):2369-2379
Tyrosine hydroxylase is the rate-limiting enzyme in the biosynthesis of the catecholamines. It has been reported that retinol (vitamin A) modulates tyrosine hydroxylase activity by increasing its expression through the activation of the nuclear retinoid receptors. In this study, we observed that retinol also leads to an acute activation of tyrosine hydroxylase in bovine adrenal chromaffin cells and this was shown to occur via two distinct non-genomic mechanisms. In the first mechanism, retinol induced an influx in extracellular calcium, activation of protein kinase C and serine40 phosphorylation, leading to tyrosine hydroxylase activation within 15 min. This effect then declined over time. The retinol-induced rise in intracellular calcium then led to a second slower mechanism; this involved an increase in reactive oxygen species, activation of extracellular signal-regulated kinase 1/2 and serine31 phosphorylation and the maintenance of tyrosine hydroxylase activation for up to 2 h. No effects were observed with retinoic acid. These results show that retinol activates tyrosine hydroxylase via two sequential non-genomic mechanisms, which have not previously been characterized. These mechanisms are likely to operate in vivo to facilitate the stress response, especially when vitamin supplements are taken or when retinol is used as a therapeutic agent. 相似文献
9.
10.
J Wu D Filer A J Friedhoff M Goldstein 《The Journal of biological chemistry》1992,267(36):25754-25758
We have investigated the role of serine 40 (Ser-40) in tyrosine hydroxylase (TH) catalysis of basal and activated enzymes by protein kinase A (PKA)-mediated phosphorylation. Wild type and mutant TH were transiently and stably expressed in AtT-20 cells, and the enzymatic activities of the recombinant enzymes were analyzed. The specific enzymatic activity of transiently expressed TH mutants Ser-40-->leucine or-->tyrosine (Leu-40m or Tyr-40m) was higher than that of the wild type enzyme or of other mutants in which Ser-8, -19, and -31 were replaced by leucine. The kinetic studies carried out with the stably expressed TH show that the Km for the cofactor 6-methyltetrahydropterine is lower and the Ki for dopamine is higher when the enzymatic hydroxylation is catalyzed by the Leu-40m or Tyr-40m than by the wild type enzyme. The kinetic parameters and the pH profile of the enzymatic hydroxylation catalyzed by the Leu-40m or Tyr-40m are similar to the enzyme activated by PKA-mediated phosphorylation. We suggest that Ser-40 in TH exerts an inhibitory influence on the enzymatic activity, and its replacement with another amino acid by site-directed mutagenesis or its modification by phosphorylation leads to a change in conformation with an increased enzymatic activity. The importance of Ser-40 in the activation of TH by PKA-mediated phosphorylation was investigated by comparing the activation of the wild type enzyme with that of Leu-40m or Tyr-40m. The findings that the enzymatic activity is increased by PKA-mediated phosphorylation of the wild type enzyme, but not of the Leu-40m or Tyr-40m, demonstrate that phosphorylation at Ser-40 is essential for activation of TH by PKA. The findings that addition of ATP plus cAMP to homogenates from transfected AtT-20 cells stimulates the recombinant wild type TH activity indicate that these cells contain endogenous cAMP-dependent protein kinase. 相似文献
11.
PTP-PEST: a protein tyrosine phosphatase regulated by serine phosphorylation. 总被引:9,自引:2,他引:9 下载免费PDF全文
The protein tyrosine phosphatase PTP-PEST is an 88 kDa cytosolic enzyme which is ubiquitously expressed in mammalian tissues. We have expressed PTP-PEST using recombinant baculovirus, and purified the protein essentially to homogeneity in order to investigate phosphorylation as a potential mechanism of regulation of the enzyme. PTP-PEST is phosphorylated in vitro by both cyclic AMP-dependent protein kinase (PKA) and protein kinase C (PKC) at two major sites, which we have identified as Ser39 and Ser435. PTP-PEST is also phosphorylated on both Ser39 and Ser435 following treatment of intact HeLa cells with TPA, forskolin or isobutyl methyl xanthine (IBMX). Phosphorylation of Ser39 in vitro decreases the activity of PTP-PEST by reducing its affinity for substrate. In addition, PTP-PEST immunoprecipitated from TPA-treated cells displayed significantly lower PTP activity than enzyme obtained from untreated cells. Our results suggest that both PKC and PKA are capable of phosphorylating, and therefore inhibiting, PTP-PEST in vivo, offering a mechanism whereby signal transduction pathways acting through either PKA or PKC may directly influence cellular processes involving reversible tyrosine phosphorylation. 相似文献
12.
Michael F. Salvatore Jack C. Waymire † John W. Haycock 《Journal of neurochemistry》2001,79(2):349-360
Depolarizing stimuli increase catecholamine (CA) biosynthesis, tyrosine hydroxylase (TH) activity, and TH phosphorylation at Ser19, Ser31, and Ser40 in a Ca(2+)-dependent manner. However, the identities of the protein kinases that phosphorylate TH under depolarizing conditions are not known. Furthermore, although increases in Ser31 or Ser40 phosphorylation increase TH activity in vitro, the relative influence of phosphorylation at these sites on CA biosynthesis under depolarizing conditions is not known. We investigated the participation of extracellular signal-regulated protein kinase (ERK) and cAMP-dependent protein kinase (PKA) in elevated K(+)-stimulated TH phosphorylation in PC12 cells using an ERK pathway inhibitor, PD98059, and PKA-deficient PC12 cells (A126-B1). In the same paradigm, we measured CA biosynthesis. TH phosphorylation stoichiometry (PS) was determined by quantitative blot-immunolabeling using site- and phosphorylation state-specific antibodies. Treatment with elevated K(+) (+ 58 mM) for 5 min increased TH PS at each site in a Ca(2+)-dependent manner. Pretreatment with PD98059 prevented elevated K(+)-stimulated increases in ERK phosphorylation and Ser31 PS. In A126-B1 cells, Ser40 PS was not significantly increased by forskolin, and elevated K(+)-stimulated Ser40 PS was three- to five-fold less than that in PC12 cells. In both cell lines, CA biosynthesis was increased 1.5-fold after treatment with elevated K(+) and was prevented by pretreatment with PD98059. These results suggest that ERK phosphorylates TH at Ser31 and that PKA phosphorylates TH at Ser40 under depolarizing conditions. They also suggest that the increases in CA biosynthesis under depolarizing conditions are associated with the ERK-mediated increases in Ser31 PS. 相似文献
13.
Phosphorylation of Ser40 in the regulatory domain of tyrosine hydroxylase activates the enzyme by increasing the rate constant for dissociation of inhibitory catecholamines from the active site by 3 orders of magnitude. To probe the changes in the structure of the N-terminal domain upon phosphorylation, individual phenylalanine residues at positions 14, 34, and 74 were replaced with tryptophan in a form of the protein in which the endogenous tryptophans had all been mutated to phenylalanine (W(3)F TyrH). The steady-state fluorescence anisotropy of F74W W(3)F TyrH was unaffected by phosphorylation, but the anisotropies of both F14W and F34W W(3)F TyrH increased significantly upon phosphorylation. The fluorescence of the single tryptophan residue at position 74 was less readily quenched by acrylamide than those at the other two positions; fluorescence increased the rate constant for quenching of the residues at positions 14 and 34 but did not affect that for the residue at position 74. Frequency domain analyses were consistent with phosphorylation having no effect on the amplitude of the rotational motion of the indole ring at position 74, resulting in a small increase in the rotational motion of the residue at position 14 and resulting in a larger increase in the rotational motion of the residue at position 34. These results are consistent with the local environment at position 74 being unaffected by phosphorylation, that at position 34 becoming much more flexible upon phosphorylation, and that at position 14 becoming slightly more flexible upon phosphorylation. The results support a model in which phosphorylation at Ser40 at the N-terminus of the regulatory domain causes a conformational change to a more open conformation in which the N-terminus of the protein no longer inhibits dissociation of a bound catecholamine from the active site. 相似文献
14.
15.
K Kiuchi K Kiuchi A Togari T Nagatsu 《Biochemical and biophysical research communications》1987,148(3):1460-1467
The effect of spermine on tyrosine hydroxylase (TH) activity purified from bovine adrenal medulla was examined before and after phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase (A-kinase). Before phosphorylation, spermine (less than 1 mM) inhibited the enzymatic activity, and negative cooperative effect of spermine on TH (Hill coefficient = 0.7) was observed from the kinetic analysis concerning 6-methyl-5,6,7,8-tetrahydropterin (6MPH4). Spermine interacted noncompetitively toward tyrosine and the Ki for spermine was calculated to be 68 microM. Phosphorylation abolished the ability of spermine to inhibit TH activity in a negative cooperative manner against the pterin cofactor, and also increased four-fold the Ki value against the substrate. These results suggest that spermine may inhibit TH activity by interacting with the pterin binding site of the enzyme molecule in a manner of negative cooperativity, and that this inhibition is reversed by the conformational change of regulatory domain of TH after phosphorylation by A-kinase. 相似文献
16.
T J Singh 《Biochemical and biophysical research communications》1990,171(1):75-83
A Mn2(+)-dependent serine/threonine protein kinase from rat liver membranes copurifies with the insulin receptor (IR) on wheat germ agglutinin (WGA)-sepharose. The kinase is present in a nonactivated form in membranes but can be activated 20-fold by phosphorylating the WGA-sepharose fraction with casein kinase-1 (CK-1), casein kinase-2 (CK-2), or casein kinase-3 (CK-3). The activated kinase can use IR beta-subunit, myelin basic protein, and histones as substrates. Activation of the kinase seems to proceed by two or more steps. Sodium vanadate and Mn2+ are required in reaction mixtures for activation to be observed, whereas the tyrosine kinase-specific substrate, poly (glu, tyr), completely inhibits activation. These observations suggest that, in addition to serine/threonine phosphorylation by one of the casein kinases, activation of the Mn2(+)-dependent protein kinase also requires tyrosine phosphorylation. Such phosphorylation may be catalyzed by the IR tyrosine kinase. 相似文献
17.
The multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca2+-dependent phosphorylation of tyrosine hydroxylase 总被引:5,自引:0,他引:5
Stimulation of rat pheochromocytoma PC12 cells with ionophore A23187, carbachol, or high K+ medium, agents which increase intracellular Ca2+, results in the phosphorylation and activation of tyrosine hydroxylase (Nose, P., Griffith, L. C., and Schulman, H. (1985) J. Cell Biol. 101, 1182-1190). We have identified three major protein kinases in PC12 cells and investigated their roles in the Ca2+-dependent phosphorylation of tyrosine hydroxylase and other cytosolic proteins. A set of PC12 proteins were phosphorylated in response to both elevation of intracellular Ca2+ and to protein kinase C (Ca2+/phospholipid-dependent protein kinase) activators. In addition, distinct sets of proteins responded to either one or the other stimulus. The three major regulatory kinases, the multifunctional Ca2+/calmodulin-dependent protein kinase, the cAMP-dependent protein kinase, and protein kinase C all phosphorylate tyrosine hydroxylase in vitro. Neither the agents which increase Ca2+ nor the agents which directly activate kinase C (12-O-tetradecanoylphorbol-13-acetate or 1-oleyl-2-acetylglycerol) increase cAMP or activate the cAMP-dependent protein kinase, thereby excluding this pathway as a mediator of these stimuli. The role of protein kinase C was assessed by long term treatment of PC12 cells with 12-O-tetradecanoylphorbol-13-acetate, which causes its "desensitization." In cells pretreated in this manner, agents which increase Ca2+ influx continue to stimulate tyrosine hydroxylase phosphorylation maximally, while protein kinase C activators are completely ineffective. Comparison of tryptic peptide maps of tyrosine hydroxylase phosphorylated by the three protein kinases in vitro with phosphopeptide maps generated from tyrosine hydroxylase phosphorylated in vivo indicates that phosphorylation by the Ca2+/calmodulin-dependent kinase most closely mirrors the in vivo phosphorylation pattern. These results indicate that the multifunctional Ca2+/calmodulin-dependent protein kinase mediates phosphorylation of tyrosine hydroxylase by hormonal and electrical stimuli which elevate intracellular Ca2+ in PC12 cells. 相似文献
18.
Mechanism of tyrosine hydroxylase activation by phosphorylation 总被引:2,自引:0,他引:2
It was found that the fluorescence of 1,N6-ethenoadenosine triphosphate (ε-ATP) bound to myosin subfragment-1 (S-1) is resistant to quenching by acrylamide, while free ε-ATP is effectively quenched. Thus in the presence of acrylamide the bound ε-ATP is still highly fluorescent, while free ε-ATP is much less fluorescent. The Stern-Volmer constants of bound and free ε-ATP are 6.83 and 57.86 M?1, respectively. Therefore it is easy to distinguish spectro-scopically the nucleotide-ligated S-1 from nucleotide-free S-1. Moreover acrylamide does not alter the S-1-Mg2+-ε-ATPase behavior. 相似文献
19.
J Liu Y Wu G Z Ma D Lu L Haataja N Heisterkamp J Groffen R B Arlinghaus 《Molecular and cellular biology》1996,16(3):998-1005
The first exon of the BCR gene encodes a new serine/threonine protein kinase. Abnormal fusion of the BCR and ABL genes, resulting from the formation of the Philadelphia chromosome (Ph), is the hallmark of Ph-positive leukemia. We have previously demonstrated that the Bcr protein is tyrosine phosphorylated within first-exon sequences by the Bcr-Abl oncoprotein. Here we report that in addition to tyrose 177 (Y-177), Y-360 and Y283 are phosphorylated in Bcr-Abl proteins in vitro. Moreover, Bcr tyrosine 360 is phosphorylated in vivo within both Bcr-Abl and Bcr. Bcr mutant Y177F had a greatly reduced ability to transphosphorylate casein and histone H1, whereas Bcr mutants Y177F and Y283F had wild-type activities. In contrast, the Y360F mutation had little effect on Bcr's autophosphorylation activity. Tyrosine-phosphorylated Bcr, phosphorylated in vitro by Bcr-Abl, was greatly inhibited in its serine/threonine kinase activity, impairing both auto- and transkinase activities of Bcr. Similarly, the isolation of Bcr from cells expressing Bcr-Abl under conditions that preserve phosphotyrosine residues also reduced Bcr's kinase activity. These results indicate that tyrosine 360 of Bcr is critical for the transphosphorylation activity of Bcr and that in Ph-positive leukemia, Bcr serine/threonine kinase activity is seriously impaired. 相似文献
20.
Direct phosphorylation of bovine adrenal tyrosine hydroxylase with an associated increase in enzyme activity by cyclic AMP-dependent protein kinase was demonstrated by gel filtration on Sephadex G-200. 相似文献