首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Three neolignan glycosides, including a new compound (7S,8R)-dihydro-3′-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1′-benzofuranpropanol-9-O-β-D-xylopyranoside ( 1 ), were isolated from the root of Nothopanax davidii. Their structures were determined by extensive spectroscopic analyses, particularly NMR, HR-ESI-MS, and ECD experiments, and the absolute configuration of 2 was first definitively determined. The anti-tumor activity was assessed on four tumor cells by MTT assay, the anti-inflammatory activity was determined by inhibition of NO production in LPS reduced RAW264.7 cells, and the interaction with iNOS was predicted by molecular docking. At the dose of 100 μM, the three neolignan glycosides showed no cytotoxic activity against HepG2, HCT116, HeLa and A549 human tumor cells, but significantly inhibited LPS induced NO generation in RAW264.7 cells with inhibition rates of 31.53 %, 23.95 %, and 20.79 %, respectively, showing weak anti-inflammatory activity, possibly due to their binding to key residues of iNOs involved in inhibitor binding.  相似文献   

3.
Further chemical modification of 2-iminopiperidines fused to cyclopropane rings was performed. Optically active isomers 2 and 13 were synthesized and their biological activity was evaluated. Compound 2 exhibited greater potency and more isoform selectivity than enantiomer 13 in the iNOS inhibition assay. One of the gem-chlorines on the fused cyclopropane moiety of 2 was eliminated to produce 3, which showed reduced potency for iNOS inhibition, as well as 4 with an increased potency. The isoform selectivity of 4 was also much higher than that of 3. This was also true for the corresponding methyl derivatives 6-9. The structure-activity relationship (SAR) study and computer aided docking study of the most optimized structure 4 with human iNOS will also be reported.  相似文献   

4.
5.
Nitric oxide (NO) production during endotoxemia is associated with decreased total CYP content, CYP 1A1/2, 2B1/2, 2C6, 2C11, 3A1, and 3A2 mRNA, protein expression or activity which is prevented by NO synthase (NOS) inhibitors in rats. This study was conducted to determine if endotoxin-induced hypotension caused by NO production is mediated by inhibition of renal CYP 4A protein expression and activity. In conscious male Sprague-Dawley rats, endotoxin (10 mg/kg, ip) reduced mean arterial pressure (MAP), increased serum and renal nitrite levels, and inducible NOS (iNOS), and decreased renal CYP 4A1/A3 protein and CYP 4A activity. The selective iNOS inhibitor 1,3-PBIT (10 mg/kg, ip; 1h after endotoxin) prevented endotoxin-induced decrease in MAP, renal CYP 4A1/A3 protein level and CYP 4A activity and increase in systemic and renal nitrite production. The selective constitutive NOS (cNOS) inhibitor N(G)-nitro-L-arginine (L-NNA; 20 mg/kg, ip; 1 h after endotoxin) partially attenuated endotoxin-induced decrease in MAP. The selective CYP 4A inhibitor, aminobenzotriazole (50 mg/kg, ip; 1 h after endotoxin) diminished CYP 4A1/A3 protein level and CYP 4A activity. Aminobenzotriazole did not alter the endotoxin-induced decrease in MAP, but it reversed the effect of 1,3-PBIT in preventing endotoxin-induced fall in MAP and CYP 4A activity. These data suggest that the endotoxemia-induced increase in NO production primarily via iNOS suppresses renal CYP 4A expression and activity, and inhibition of iNOS with 1,3-PBIT restores renal CYP 4A protein and activity and MAP presumably due to increased production of arachidonic acid metabolites derived from CYP 4A.  相似文献   

6.
Seventeen pungent oleoresin principles of ginger (Zingiber officinale, Roscoe) and synthetic analogues were evaluated for inhibition of cyclooxygenase-2 (COX-2) enzyme activity in the intact cell. These compounds exhibited a concentration and structure dependent inhibition of the enzyme, with IC(50) values in the range of 1-25 microM. Ginger constituents, [8]-paradol and [8]-shogaol, as well as two synthetic analogues, 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)decane and 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)dodecane, showed strong inhibitory effects on COX-2 enzyme activity. The SAR analysis of these phenolic compounds revealed three important structural features that affect COX-2 inhibition: (i) lipophilicity of the alkyl side chain, (ii) substitution pattern of hydroxy and carbonyl groups on the side chain, and (iii) substitution pattern of hydroxy and methoxy groups on the aromatic moiety.  相似文献   

7.
An epoxybenzoquinone, 4-hydroxyphenoxypropionic acid, and 2-hydroxy-3-phenyl-3-butenoic acid derivatives have been designed, synthesized, and evaluated for in vitro inhibition activity against 4-hydroxyphenylpyruvate dioxygenase (4-HPPD) from pig liver by the spectrophotometric enol-borate method. The biological data demonstrated that neither epoxybenzoquinone ester nor 2-hydroxy-3-phenyl-3-butenoic acid is an inhibitor of 4-HPPD. The most potent 4-HPPD inhibitor tested was 3-hydroxy-4-phenyl-2(5H)-furanone with an IC(50) value of 0.5 microM, which may serve as a lead compound for further design of more potent 4-HPPD inhibitors.  相似文献   

8.
9.
Several studies have already demonstrated that oxidized- LDL decreases nitric oxide (NO) generation by cytokine-stimulated macrophages. However, the mechanisms of such an inhibition have not been yet elucidated. NO generation by inducible nitric oxide synthase (iNOS) is dependent on the presence of cofactors for NO generation, tetrathydrobiopterin (BH4) among them. The NO generation by these cells is also regulated by some endogenous inhibitors, like TGF-beta. Therefore, the aim of our recent study was to investigate the influence of ox-LDL on the expression of iNOS and GTP cyclohydrolase I (GTP-CH I), the key enzyme involved in the BH4 synthesis as well as the ox-LDL effect on TGF-beta expression in rat macrophages stimulated with IFNgamma (250 U/ml) and LPS (500 ng/ml). Macrophages, activated in this way, express iNOS, GTP-CH I, and TGF-beta mRNA. This expression was inhibited when the macrophages were preincubated for 24 hours with ox-LDL (100 microg/ml). Quantitative PCR revealed about 10-fold inhibition of iNOS gene expression by ox-LDL. As a consequence of down-regulation of iNOS and GTP-CH I genes, almost 3-fold diminished generation of NO2- by rat macrophages was observed. An inhibition of the TGFbeta mRNA expression was also found. Our studies indicate that decreased NO generation by ox-LDL treated macrophages may be the result of the diminished expression of both iNOS and GTP-CH I genes. This effect may be mediated by the activity of certain endogenous inhibitors of gene expression, however, our studies exclude the TGF-beta as a candidate for this activity.  相似文献   

10.
Huang YC  Guh JH  Cheng ZJ  Chang YL  Hwang TL  Lin CN  Teng CM 《Life sciences》2001,68(21):2435-2447
In the present study we have examined the effect of DCDC (2',5'-dihydroxy-4-chloro-dihydrochalcone) on lipopolysaccharide (LPS)-induced responses in murine macrophage cell line RAW 264.7. Exposure of LPS-stimulated cells to DCDC inhibited the nitrite accumulation in culture medium. DCDC also concentration-dependently inhibited LPS-stimulated increase of iNOS expression; however, it had little effect on iNOS enzyme activity, suggesting that the inhibitory action to DCDC is mainly due to the inhibition on iNOS expression rather than iNOS enzyme activity. DCDC significantly inhibited LPS-evoked degradation of IkappaB-alpha and the nuclear translocation of NF-kappaB; it also exhibited the activity of scavenging the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). DCDC also inhibited cyclooxygenase-2 activity in RAW 264.7 cells with an IC50 of 3.0 microM; furthermore, it also significantly decreased LPS-induced mortality rate in mice. Taken together, we demonstrate that DCDC exhibits inhibitory effects on nitric oxide production through the inhibition of IkappaB-alpha degradation and NF-kappaB activation, and therefore the suppression of iNOS expression. DCDC also shows the antioxidant activity and COX-2 inhibitory action. Moreover, it improves survival in a murine model of endotoxaemia suggesting that DCDC may be potential in the therapy of septic shock.  相似文献   

11.
Using intestinal (Caco-2) monolayers, we reported that inducible nitric oxide synthase (iNOS) activation is key to oxidant-induced barrier disruption and that EGF protects against this injury. PKC-zeta was required for protection. We thus hypothesized that PKC-zeta activation and iNOS inactivation are key in EGF protection. Wild-type (WT) Caco-2 cells were exposed to H(2)O(2) (0.5 mM) +/- EGF or PKC modulators. Other cells were transfected to overexpress PKC-zeta or to inhibit it and then pretreated with EGF or a PKC activator (OAG) before oxidant. Relative to WT cells exposed to oxidant, pretreatment with EGF protected monolayers by 1) increasing PKC-zeta activity; 2) decreasing iNOS activity and protein, NO levels, oxidative stress, tubulin oxidation, and nitration); 3) increasing polymerized tubulin; 4) maintaining the cytoarchitecture of microtubules; and 5) enhancing barrier integrity. Relative to WT cells exposed to oxidant, transfected cells overexpressing PKC-zeta (+2.9-fold) were protected as indicated by decreases in all measures of iNOS-driven pathways and enhanced stability of microtubules and barrier function. Overexpression-induced inhibition of iNOS was OAG independent, but EGF potentiated this protection. Antisense inhibition of PKC-zeta (-95%) prevented all measures of EGF protection against iNOS upregulation. Thus EGF protects against oxidative disruption of the intestinal barrier by stabilizing the cytoskeleton in large part through the activation of PKC-zeta and downregulation of iNOS. Activation of PKC-zeta is by itself required for cellular protection against oxidative stress of iNOS. We have thus discovered novel biologic functions, suppression of the iNOS-driven reactions and cytoskeletal oxidation, among the atypical PKC isoforms.  相似文献   

12.
A series of oxadiazole derivatives containing 1,4-benzodioxan (4a-4s) have been first synthesized for their potential immunosuppressive activity. Among the compounds, compound 4i showed the most potent biological activity against RAW264.7 cells (inhibition=37.66±2.34% for NO overproduction and IC(50)=0.05μM for iNOS). Docking simulation was performed to position compound 4i into the iNOS structure active site to determine the probable binding model. RT-PCR experiment results demonstrated that some of these compounds possessed good immunosuppressive activity against iNOS, especially for compound 4i. Therefore, compound 4i with potent inhibitory activity may be a potential agent.  相似文献   

13.
14.
Ligands for peroxisome proliferator-activated receptor gamma (PPARgamma), such as 15-deoxy-12,14-PGJ2 (15d-PGJ2), have been proposed as a new class of anti-inflammatory compounds because 15d-PGJ2 was able to inhibit the induction of inflammatory response genes such as inducible NO synthase (iNOS) and TNF (TNF-alpha) in a PPAR-dependent manner in various cell types. In primary astrocytes, the anti-inflammatory effects (inhibition of TNF-alpha, IL-1beta, IL-6, and iNOS gene expression) of 15d-PGJ2 are observed to be independent of PPARgamma. Overexpression (wild-type and dominant-negative forms) of PPARgamma and its antagonist (GW9662) did not alter the 15d-PGJ2-induced inhibition of LPS/IFN-gamma-mediated iNOS and NF-kappaB activation. The 15d-PGJ2 inhibited the inflammatory response by inhibiting IkappaB kinase activity, which leads to the inhibition of degradation of IkappaB and nuclear translocation of p65, thereby regulating the NF-kappaB pathway. Moreover, 15d-PGJ2 also inhibited the LPS/IFN-gamma-induced PI3K-Akt pathway. The 15d-PGJ2 inhibited the recruitment of p300 by NF-kappaB (p65) and down-regulated the p300-mediated induction of iNOS and NF-kappaB luciferase reporter activity. Coexpression of constitutive active Akt and PI3K (p110) reversed the 15d-PGJ2-mediated inhibition of p300-induced iNOS and NF-kappaB luciferase activity. This study demonstrates that 15d-PGJ2 suppresses inflammatory response by inhibiting NF-kappaB signaling at multiple steps as well as by inhibiting the PI3K/Akt pathway independent of PPARgamma in primary astrocytes.  相似文献   

15.
Several natural flavonoids have been demonstrated to perform some beneficial biological activities, however, higher-effective concentrations and poor-absorptive efficacy in body of flavonoids blocked their practical applications. In the present study, we provided evidences to demonstrate that flavonoids rutin, quercetin, and its acetylated product quercetin pentaacetate were able to be used with nitric oxide synthase (NOS) inhibitors (N-nitro-L-arginine (NLA) or N-nitro-L-arginine methyl ester (L-NAME)) in treatment of lipopolysaccharide (LPS) induced nitric oxide (NO) and prostaglandin E2 (PGE2) productions, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expressions in a mouse macrophage cell line (RAW 264.7). The results showed that rutin, quercetin, and quercetin pentaacetate-inhibited LPS-induced NO production in a concentration-dependent manner without obvious cytotoxic effect on cells by MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide as an indicator. Decrease of NO production by flavonoids was consistent with the inhibition on LPS-induced iNOS gene expression by western blotting. However, these compounds were unable to block iNOS enzyme activity by direct and indirect measurement on iNOS enzyme activity. Quercetin pentaacetate showed the obvious inhibition on LPS-induced PGE2 production and COX-2 gene expression and the inhibition was not result of suppression on COX-2 enzyme activity. Previous study demonstrated that decrease of NO production by L-arginine analogs effectively stimulated LPS-induced iNOS gene expression, and proposed that stimulatory effects on iNOS protein by NOS inhibitors might be harmful in treating sepsis. In this study, NLA or L-NAME treatment stimulated significantly on LPS-induced iNOS (but not COX-2) protein in RAW 264.7 cells which was inhibited by these three compounds. Quercetin pentaacetate, but not quercetin and rutin, showed the strong inhibitory activity on PGE2 production and COX-2 protein expression in NLA/LPS or L-NAME/LPS co-treated RAW 264.7 cells. These results indicated that combinatorial treatment of L-arginine analogs and flavonoid derivates, such as quercetin pentaacetate, effectively inhibited LPS-induced NO and PGE2 productions, at the same time, inhibited enhanced expressions of iNOS and COX-2 genes.  相似文献   

16.
Contractile dysfunction of the respiratory muscles plays an important role in the genesis of respiratory failure during sepsis. Nitric oxide (NO), a free radical that is cytotoxic and negatively inotropic in the heart and skeletal muscle, is produced in large amounts during sepsis by a NO synthase inducible (iNOS) by LPS and/or cytokines. The aim of this study was to investigate whether iNOS was induced in the diaphragm of Escherichia coli endotoxemic rats and whether inhibition of iNOS induction or of NOS synthesis attenuated diaphragmatic contractile dysfunction. Rats were inoculated intravenously (IV) with 10 mg/kg of E. coli endotoxin (LPS animals) or saline (C animals). Six hours after LPS inoculation animals showed a significant increase in diaphragmatic NOS activity (L-citrulline production, P < 0.005). Inducible NOS protein was detected by Western-Blot in the diaphragms of LPS animals, while it was absent in C animals. LPS animals had a significant decrease in diaphragmatic force (P < 0.0001) measured in vitro. In LPS animals, inhibition of iNOS induction with dexamethasone (4 mg/kg IV 45 min before LPS) or inhibition of NOS activity with N(G)-methyl-L-arginine (8 mg/kg IV 90 min after LPS) prevented LPS-induced diaphragmatic contractile dysfunction. We conclude that increased NOS activity due to iNOS was involved in the genesis of diaphragmatic dysfunction observed in E. coli endotoxemic rats.  相似文献   

17.
The synthesis and selective biological screening of 7-hydroxy-4-methyl-2H-chromen-2-one (2), 7-hydroxy-4,5-dimethyl-2H-chromen-2-one (15) and some of their derivatives were carried out. Compound 13 was found to be most potent cytotoxic agent with LD50 = 126.69 microg/ml. In antibacterial assay the compounds showed a broad spectrum of activities. Compound 11 exhibited a very high degree of plant growth inhibition at three levels of concentration. Compound 4 showed very promising antifungal activity against Candida albicans. Compounds 12 and 13 demonstrated excellent antioxidant activity.  相似文献   

18.
The effect of low concentrations of 4-hydroxy-2-trans-pentenal, 4-hydroxy-2-trans-nonenal and 4-hydroxy-2-trans-tetradecenal (4-hydroxyalkenals produced during lipid peroxidation) was evaluated on the phagocytic activity of polymorphonuclear cells obtained from rat peritoneum. Our results show that the above compounds can influence, at different degrees, the endocytic powers, as measured "in vitro", of leukocytes through an inhibition that appears, to some extent, dose-related. Since lipoperoxidative processes can take place at the inflammed area, aldehydes originating from the peroxidative derangement of fatty acids may play a role in interfering with the cellular reactions at the inflammatory site.  相似文献   

19.

Objectives  

Natural products have played a significant role in drug discovery and development. Inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) have been suggested to connect with various inflammatory diseases. In this study, we explored the anti-inflammatory potential of aciculatin (8-((2R,4S,5S,6R)-tetrahydro-4,5-dihydroxy-6-methyl-2H-pyran-2-yl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one), one of main components of Chrysopogon aciculatis, by examining its effects on the expression and activity of iNOS and COX-2 in lipopolysaccharide (LPS)-activated macrophages.  相似文献   

20.
Over the past decade, multiphoton microscopy has progressed from a photonic novelty to a technique whose application is currently experiencing exponential growth in the biological sciences. A novel application of this technology with significant therapeutic potential is the control of drug activity by multiphoton photolysis of caged therapeutics. As an initial case study, the potent isoform selective inhibitor N-(3-(aminomethyl)benzyl) acetamidine (1400W) of inducible nitric oxide synthase (iNOS) has been conjugated to a caging molecule 6-bromo-7-hydroxy-4-hydroxyquinoline-2-ylmethyl acetyl ester (Bhc). Here we present the first report of a bulk therapeutic effect, inhibition of nitric oxide production, in mammalian cell culture by multiphoton photolysis of a caged drug, Bhc-1400W. Mouse macrophage RAW 264.7 cells induced with bacterial lipopolysaccharides to express iNOS were used to assess the therapeutic value of the conjugated inhibitor. Both 1400W and Bhc-1400W are stable in metabolically active cells and an optimal time interval for the photorelease of the inhibitor was determined. The ratios of the IC(50) values of Bhc-1400W over 1400W calculated in the presence of iNOS enzyme and in RAW 264.7 cell culture are 19 and 100, respectively, indicating that a broad therapeutic range exists in cell culture. Multiphoton uncaging protocols and therapeutic doses of inhibitors were not cytotoxic. Photocontrol of LPS induced nitric oxide production was achieved in mammalian cell culture using a single laser focal volume. This technology has the potential to control active drug concentrations in vivo, a lack of which is one of the main problems currently associated with systemic drug administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号