首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectrofluorometric techniques were used to quantify NADPH-hemoglobin interactions based on the quenching of NADPH fluorescence upon binding to hemoglobin. Fluorometric titrations were carried out with hemoglobin in varied states and with hemoglobins in which the beta-chain anion site is altered. At pH 6.5 in 0.05 M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, NADPH binds with high affinity, Kd = 1.03 microM, to deoxy human hemoglobin tetramers. Lower affinity binding of NADPH occurs as the beta-chain anion-binding site is discharged by increasing the pH. Moreover, the cofactor binds in a 1:1 ratio to deoxy tetramers, inositol hexaphosphate binds competitively, and binding is decreased in hemoglobins whose structural alterations result in decreased effects of 2,3-diphosphoglycerate. The cofactor binds to oxidized (met) hemoglobin with an estimated Kd of 33.3 microM but has little or no affinity for the oxy form. These results indicate that NADPH binds at the beta-chain anion-binding site and can be considered as a fluorescent analog of 2,3-diphosphoglycerate. Fluorescence measurements gave no indication of NADPH binding to deoxygenated ferrous or ferric myoglobin. Reductive processes within the erythrocyte, such as reduction of met hemoglobin and hemoglobin-catalyzed enzymatic reactions, may be affected by the significant binding of the reduced cofactor to both deoxygenated and oxidized hemoglobin. Cofactor-hemoglobin interactions predict a shift in redox potential as red cells become oxygenated, which may account for unexplained oxygen-linked shifts in red cell metabolism.  相似文献   

2.
Inactive NADP-malate dehydrogenase (disulfide form) from chloroplasts of Zea mays is activated by reduced thioredoxin while the active enzyme (dithiol form) is inactivated by incubation with oxidized thioredoxin. This reductive activation of NADP-malate dehydrogenase is inhibited by over 95% in the presence of NADP and the Kd for this interaction of NADP with the inactive enzyme is about 3 microM. Other substrates of the enzyme (malate, oxaloacetate, or NADPH) do not effect the rate of enzyme activation but NADPH can reverse the inhibitory effect of NADP. It appears that NADPH (Kd = 250 microM) and NADP (Kd = 3 microM) compete for the same site, presumably the coenzyme-binding site at the active centre. Apparently the enzyme . NADP binary complex cannot be reduced by thioredoxin whereas the enzyme . NADPH complex is reduced at the same rate as is the free enzyme. Similarly the oxidative inactivation of reduced NADP-malate dehydrogenase is inhibited by up to 85% by NADP and NADPH completely reverses this inhibition. The Kd values of the active-reduced enzyme for NADP and NADPH were both estimated to be 30 microM. From these data a model was constructed which predicts how changing NADPH/NADP levels in the chloroplast might change the steady-state level of NADP-malate dehydrogenase activity. The model indicates that at any fixed ratio of reduced to oxidized thioredoxin high proportions of active NADP-malate dehydrogenase and, hence, high rates of oxaloacetate reduction, can only occur with very high NADPH/NADP ratios.  相似文献   

3.
Cooperativity with glucose is a key feature of human glucokinase (GK), allowing its crucial role as a glucose sensor in hepatic and pancreatic cells. We studied the changes in enzyme intrinsic tryptophan fluorescence induced by binding of different ligands to this monomeric enzyme using stopped-flow and equilibrium binding methods. Glucose binding data under pre-steady state conditions suggest that the free enzyme in solution is in a preexisting equilibrium between at least two conformers (super-open and open) which differ in their affinity for glucose (Kd* = 0.17 +/- 0.02 mM and Kd = 73 +/- 18 mM). Increasing the glucose concentration changes the ratio of the two conformers, thus yielding an apparent Kd of 3 mM (different from a Km of 7-10 mM). The rates of conformational transitions of free and GK complexed with sugar are slow and during catalysis are most likely affected by ATP binding, phosphate transfer, and product release steps to allow the kcat to be 60 s-1. The ATP analogue PNP-AMP binds to free GK (super-open) and GK-glucose (open) complexes with comparable affinities (Kd = 0.23 +/- 0.02 and 0.19 +/- 0.08 mM, respectively). However, cooperativity with PNP-AMP observed under equilibrium binding conditions in the presence of glucose (Hill slope of 1.6) is indicative of further complex tightening to the closed conformation. Another physiological modulator (inhibitor), palmitoyl-CoA, binds to GK with similar characteristics, suggesting that conformational changes induced upon ligand binding are not restricted by an active site ligand. In conclusion, our data support control of GK activity and Km through the ratio of distinct conformers (super-open, open, and closed) through either substrate or other ligand binding and/or dissociation.  相似文献   

4.
5.
cGMP-dependent protein kinase binds 4 mol cGMP/mol enzyme to two different sites. Binding to site 1 (apparent Kd 17 nM) shows positive cooperativity and is inhibited by Mg . ATP, whereas binding to site 2 (apparent Kd 100-150 nM) is non-cooperative and not affected by Mg . ATP. Autophosphorylation of the enzyme abolishes the cooperative binding to site 1 and the inhibitory effect of Mg . ATP. The association (K1) and dissociation (K-1) rate constant for site 2 and K1 for site 1 are not affected significantly by Mg . ATP or autophosphorylation. The dissociation rate from site 1 measured in the presence of 1 mM unlabelled cGMP is decreased threefold and over tenfold by Mg . ATP and autophosphorylation, respectively. In contrast, the dissociation rate from site 1 measured after a 500-fold dilution of the enzyme-ligand complex is 100-fold faster than that determined in the presence of 1 mM cGMP and is only slightly influenced by Mg . ATP or autophosphorylation. Only Kd values calculated with the latter K-1 values are similar to the Kd values obtained by equilibrium binding. These results suggest that autophosphorylation of cGMP-dependent protein kinase affects mainly the binding characteristics of site 1.  相似文献   

6.
The effect of aurovertin on the binding parameters of ADP and ATP to native F1 from beef heart mitochondria in the presence of EDTA has been explored. Three exchangeable sites per F1 were titrated by ADP and ATP in the absence or presence of aurovertin. Curvilinear Scatchard plots for the binding of both ADP and ATP were obtained in the absence of aurovertin, indicating one high affinity site (Kd for ADP = 0.6-0.8 microM; Kd for ATP = 0.3-0.5 microM) and two lower affinity sites (Kd for ADP = 8-10 microM; Kd for ATP = 7-10 microM). With a saturating concentration of aurovertin capable of filling the three beta subunits of F1, the curvilinearity of the Scatchard plots was decreased for ATP binding and abolished for ADP binding, indicating homogeneity of ADP binding sites in the F1-aurovertin complex (Kd for ADP = 2 microM). When only the high affinity aurovertin site was occupied, maximal enhancement of the fluorescence of the F1-aurovertin complex was attained with 1 mol of ADP bound per mol of F1 and maximal quenching for 1 mol of ATP bound per mol of F1. When the F1-aurovertin complex was incubated with [3H]ADP followed by [14C]ATP, full fluorescence quenching was attained when ATP had displaced the previously bound ADP. In the case of the isolated beta subunit, both ADP and ATP enhanced the fluorescence of the beta subunit-aurovertin complex. The Kd values for ADP and ATP in the presence of EDTA were 0.6 mM and 3.7 mM, respectively; MgCl2 decreased the Kd values to 0.1 mM for both ADP and ATP. It is postulated that native F1 possesses three equivalent interacting nucleotide binding sites and exists in two conformations which are in equilibrium and recognize either ATP (T conformation) or ADP (D conformation). The negative interactions between the nucleotide binding sites of F1 are strongest in the D conformation. Upon addition of aurovertin, the site-site cooperativity between the beta subunits of F1 is decreased or even abolished.  相似文献   

7.
Carbamoyl phosphate synthethase I synthesizes carbamoyl phosphate from ammonia, HCO3- and two molecules of ATP, one of which, ATPA, yields Pi while the other, ATPB, yields the phosphoryl group of carbamoyl phosphate. Pulse-chase experiments with [gamma-32P]ATP without added HCO3- demonstrate separate binding sites for ATPA and ATPB. Bound ATPA dissociates readily from its site (t1/2 approximately 1--2 s) and the Kd is 0.2--0.7 mM. For the ATPB binding site the t1/2 for dissociation is 5--12 s and the Kd approximately 10 mM. Kd for ATPA seems to increase with enzyme concentration whereas Kd for ATPB does not change. HClO4 releases the ATP unchanged from the enzyme . ATPB and enzyme . ATPB . ATPA complexes. In the presence of HCO3-, ATP and N-acetylglutamate, an enzyme . ATPB . HCO3- . ATPA complex is formed. Its formation by the addition of HCO3- to the enzyme . ATPB . ATPA complex appears to involve an initial bimolecular addition reaction followed by an isomerization. Treatment with HClO4 releases Pi from ATPA but ATPB is released unchanged. Spontaneous hydrolysis of ATPA is responsible for the ATPase activity of the enzyme. Thus, a covalent bond may form between HCO3- and ATPA. However, ATPA can dissociate rapidly (t1/2 less than 10 s). The Kd for ATPA is approximately 0.2 mM. ATPB appears unable to dissociate from the enzyme . ATPB . HCO3- . ATPA complex since the t1/2 for dissociation of ATPB from the enzyme is lengthened about five times in the presence of 19 mM HCO3- and at 1 mM ATP. ATPA may also hydrolyse in this complex and be replaced by another molecule of ATP in the absence of exchange of ATPB. However, the ATPA binding site must be occupied to prevent ATPB release. ATPB may be bound in a pocket which becomes inaccessible to the solution when HCO3- and ATPA also bind. In contrast, HCO3- does not inhibit the binding of ATPB to the enzyme. Various intermediate steps in the formation of the enzyme . ATPb . HCO3- . ATPA complex are discussed. Additional evidence is presented that the ATPB binding site is only periodically accessible to ATP in solution and that ATPB in the steady-state reaction binds when the products leave. Since greater than 1.3 mol ATPB and greater than 1.8 mol ATPA bind/mol enzyme dimer, the enzyme monomer may be an active species.  相似文献   

8.
Ca2+ or Cd2+ binding and the conformational change induced by the metal binding in two frog bone Gla-proteins (BGP, termed BGP-1 and BGP-2) were studied by equilibrium dialysis and CD measurement. By CD measurement in the far-ultraviolet region, the alpha-helix content of both apoBGPs was found to be 8%. Binding of both Ca2+ and Cd2+ was accompanied with a change in the CD spectrum, and the alpha-helix content increased to 15 and 25% for BGP-1 and BGP-2, respectively. CD measurement in the near-ultraviolet region indicated that the environment of aromatic amino acid residues in the protein molecule was changed by metal binding. Equilibrium dialysis experiments indicated that each of these two protein binds specifically 2 mol of Ca2+, and nonspecifically an additional 3-4 mol of Ca2+ in 0.02 M Tris-HCl/0.15 M NaCl (pH 7.4), at 4 degrees C. According to the two separate binding sites model, BGP-1 has 1 high-affinity Ca2+ binding site (Kd1 = 0.17 mM) and 1 low-affinity site (Kd2 = 0.29 mM), and BGP-2 contains 1 high-affinity site (Kd1 = 0.14 mM) and 1 low-affinity site (Kd2 = 0.67 mM). In addition, 2 Cd2+ bound to a high-affinity binding site on BGP-1 with Kd1 of 10.4 microM, and 1 Cd2+ bound to a low-affinity binding site with Kd2 of 41.5 microM. On the other hand, BGP-2 had three classes of binding sites and 1 Cd2+ bound to each binding site with Kd1 = 3.6 microM, Kd2 = 16.3 microM, Kd3 = 51.7 microM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The reduction of yeast glutathione reductase by reduced nicotinamide hypoxanthine dinucleotide phosphate (NHxDPH) has been examined by stopped-flow kinetic methods. Like reduced glutathione or NADPH, this pyridine nucleotide generates the catalytically active two-electron reduced form of the enzyme. This reductive half-reaction with NHxDPH has only one detectable kinetic step which shows saturation kinetics (Kd = 76 microM), and has a limiting rate constant of 56 s-1. Comparison of stopped-flow and steady-state turnover data indicates that the reductive half-reaction is rate-limiting in the overall catalytic reaction. No evidence was found for a preequilibrium charge-transfer complex between NHxDPH and the active site FAD, like that seen when NADPH is the electron donor.  相似文献   

10.
Structural and conformational organization of chicken liver fatty acid synthetase has been probed using its fluorescent coenzyme, NADPH. Three NADPH binding sites per mole of the enzyme complex, of apparently identical dissociation constant (KD = 0.6 muM) can be titrated at temperatures above 12 degrees. These results are in disagreement with the earlier studies of Hsu and Wagner (Hsu, R. Y., and Wagner, B. J. (1970) Biochemistry, 9, 245-251) in which four such sites could be titrated. At 12 degrees, the composite sites split into two subsets: a pair of sites with a KD of 0.3 muM and a third site with a Kd of 1.1 muM. At lower temperatures (5 degrees or 2 degrees), the site with weak affinity disappears, leaving a pair of sites with a Kd of 0.5 muM. Similar observations were made when the enzyme was modified with phenylmethylsulfonyl fluoride, a specific and selective inhibitor of fatty acyl-CoA deacylase (s) of the pigeon liver enzyme complex (Kumar, S. (1975) J. Biol. Chem. 250, 5150-5158). Partial modification with phenylmethylsulfonyl fluoride elicits a NADPH binding response similar to the binding observed at 12 degrees, i.e. two sets of binding sites with nonidentical dissociation constants. Further modification corresponding to the complete loss of deacylase function results in a set of two apparently identical binding sites, and the third site is not available for titration. The modified enzyme retains the two reductase functions as measured by the model substrates, acetoacetyl-N-acetylcysteamine and crotonyl-CoA. Furthermore, the addition of acetyl- and malonyl-CoA (100 muM each) to the modified enzyme lowers the NADPH binding affinity by a factor of 3. Other observations show that the quantum yield, as measured by the ratio of fluorescence intensity of bound and free NADPH, changes with temperature and ionic strength. Lowering the temperature from 30 degrees to 2 degrees increases the enhancement ratio by 50%, whereas increase in ionic strength from 0.05 to 0.2 M potassium phosphate lowers it to 50% of the original level. Measurement of NADPH binding in the presence of NADP+, NADH, NAD+ and adenosine-2'-monophospho-5'-diphosphoribose demonstrates that NADP+ shows competitive behavior for NADPH sites (KD = 10.6 muM), whereas NADH and NAD+ show noncompetitive (KD (apparent) = nearly 600 muM) and rather complicated interactions implicating nonspecific conformational alteration of the enzyme complex. The behavior of adenosine 2'-monophospho-5'-diphosphoribose is intermediate between NADP+ and NADH. These data are discussed in terms of substrate-mediated conformational changes and the moles of each of the reductase enzymes per mole of the enzyme complex, the polarity of the NADPH binding region, and the probable structure of the nicotinamide moiety when bound to the enzyme.  相似文献   

11.
Interaction of soybean beta-amylase with glucose   总被引:1,自引:0,他引:1  
The interaction of soybean beta-amylase with glucose was investigated by inhibition kinetics studies and spectroscopic measurements. The inhibition type, inhibitor constant (Ki) and dissociation constant (Kd) of beta-amylase-glucose complex were dependent on pH. At pH 8.0, glucose behaved as a competitive inhibitor (Ki = 34 mM). Binding of glucose produced a characteristic difference spectrum and a change of circular dichroism (CD) at pH 8.1. By using difference absorbance at 292 nm and difference ellipticity at 290 nm, Kd values for beta-amylase-glucose complex were determined to be 45 and 46 mM, respectively. In contrast to pH 8.0, glucose behaved as a mixed-type inhibitor (Ki = 320 mM) at pH 5.4. The Kd values obtained from the difference spectrum were increased by lowering the pH from 8. The pH dependence of the Ki and Kd values suggested that one ionizable group of pK = 8.0, which is shifted to 6.9 by the binding of glucose, controls the binding affinity of glucose. The binding of glucose competed with the binding of cyclohexaamylose and maltose at pH 8.0. The modification of SH groups of the enzyme affected the binding of glucose but did not affect the binding of maltose or cyclohexaamylose at pH 8.0. It was concluded from these results that the binding site of glucose is different from that of maltose and cyclohexaamylose. Presumably, glucose may bind to the subsite 1 of soybean beta-amylase.  相似文献   

12.
Ferredoxin (flavodoxin)-NADP(H) reductases (FNRs) are ubiquitous flavoenzymes that deliver NADPH or low-potential one-electron donors (ferredoxin, flavodoxin, and adrenodoxin) to redox-based metabolisms in plastids, mitochondria, and bacteria. The FNRs from plants and most eubacteria constitute a unique family, the plant-type ferredoxin-NADP(H) reductases. Plastidic FNRs are quite efficient at sustaining the demands of the photosynthetic process. At variance, FNRs from organisms with heterotrophic metabolisms or anoxygenic photosynthesis display turnover numbers that are 20-100-fold lower than those of their plastidic and cyanobacterial counterparts. To gain insight into the FNR structural features that modulate enzyme catalytic efficiency, we constructed a recombinant FNR in which the carboxyl-terminal amino acid (Tyr308) is followed by an artificial metal binding site of nine amino acids, including four histidine residues. This added structure binds Zn2+ or Co2+ and, as a consequence, significantly reduces the catalytic efficiency of the enzyme by decreasing its kcat. The Km for NADPH and the Kd for NADP+ were increased 2 and 3 times, respectively, by the addition of the amino acid extension in the absence of Zn2+. Nevertheless, the structuring of the metal binding site did not change the Km for NADPH or the Kd for NADP+ of the FNR-tail enzyme. Our results provide experimental evidence which indicates that mobility of the carboxyl-terminal backbone region of the FNR, mainly Tyr308, is essential for obtaining an FNR enzyme with high catalytic efficiency.  相似文献   

13.
We have used 19F nuclear magnetic resonance spectroscopy to study the interaction of the inhibitory region of troponin (TnI) with apo- and calcium(II)-saturated turkey skeletal troponin C (TnC), using the synthetic TnI analogue N alpha-acetyl[19FPhe106]TnI(104-115)amide. Dissociation constants of Kd = (3.7 +/- 3.1) x 10(-5) M for the apo interaction and Kd = (4.8 +/- 1.8) x 10(-5) M for the calcium(II)-saturated interaction were obtained using a 1:1 binding model of peptide to protein. The 19F NMR chemical shifts for the F-phenylalanine of the bound peptide are different from the apo- and calcium-saturated protein, indicating a different environment for the bound peptide. The possibility of 2:1 binding of the peptide to Ca(II)-saturated TnC was tested by calculating the fit of the experimental titration data to a series of theoretical binding curves in which the dissociation constants for the two hypothetical binding sites were varied. We obtained the best fit for 0.056 mM less than or equal to Kd1 less than or equal to 0.071 mM and 0.5 mM less than or equal to Kd2 less than or equal to 2.0 mM. These results allow the possibility of a second peptide binding site on calcium(II)-saturated TnC with an affinity 10- to 20-fold weaker than that of the first site.  相似文献   

14.
Conyers GB  Wu G  Bessman MJ  Mildvan AS 《Biochemistry》2000,39(9):2347-2354
Recombinant IalA protein from Bartonella bacilliformis is a monomeric adenosine 5'-tetraphospho-5'-adenosine (Ap4A) pyrophosphatase of 170 amino acids that catalyzes the hydrolysis of Ap4A, Ap5A, and Ap6A by attack at the delta-phosphorus, with the departure of ATP as the leaving group [Cartwright et al. (1999) Biochem. Biophys. Res. Commun. 256, 474-479]. When various divalent cations were tested over a 300-fold concentration range, Mg2+, Mn2+, and Zn2+ ions were found to activate the enzyme, while Ca2+ did not. Sigmoidal activation curves were observed with Mn2+ and Mg2+ with Hill coefficients of 3.0 and 1.6 and K0.5 values of 0.9 and 5.3 mM, respectively. The substrate M2+ x Ap4A showed hyperbolic kinetics with Km values of 0.34 mM for both Mn2+ x Ap4A and Mg2+ x Ap4A. Direct Mn2+ binding studies by electron paramagnetic resonance (EPR) and by the enhancement of the longitudinal relaxation rate of water protons revealed two Mn2+ binding sites per molecule of Ap4A pyrophosphatase with dissociation constants of 1.1 mM, comparable to the kinetically determined K0.5 value of Mn2+. The enhancement factor of the longitudinal relaxation rate of water protons due to bound Mn2+ (epsilon b) decreased with increasing site occupancy from a value of 12.9 with one site occupied to 3.3 when both are occupied, indicating site-site interaction between the two enzyme-bound Mn2+ ions. Assuming the decrease in epsilon(b) to result from cross-relaxation between the two bound Mn2+ ions yields an estimated distance of 5.9 +/- 0.4 A between them. The substrate Ap4A binds one Mn2+ (Kd = 0.43 mM) with an epsilon b value of 2.6, consistent with the molecular weight of the Mn2+ x Ap4A complex. Mg2+ binding studies, in competition with Mn2+, reveal two Mg2+ binding sites on the enzyme with Kd values of 8.6 mM and one Mg2+ binding site on Ap4A with a Kd of 3.9 mM, values that are comparable to the K0.5 for Mg2+. Hence, with both Mn2+ and Mg2+, a total of three metal binding sites were found-two on the enzyme and one on the substrate-with dissociation constants comparable to the kinetically determined K0.5 values, suggesting a role in catalysis for three bound divalent cations. Ca2+ does not activate Ap4A pyrophosphatase but inhibits the Mn2+-activated enzyme competitively with a Ki = 1.9 +/- 1.3 mM. Ca2+ binding studies, in competition with Mn2+, revealed two sites on the enzyme with dissociation constants (4.3 +/- 1.3 mM) and one on Ap4A with a dissociation constant of 2.1 mM. These values are similar to its Ki suggesting that inhibition by Ca2+ results from the complete displacement of Mn2+ from the active site. Unlike the homologous MutT pyrophosphohydrolase, which requires only one enzyme-bound divalent cation in an E x M2+ x NTP x M2+ complex for catalytic activity, Ap4A pyrophosphatase requires two enzyme-bound divalent cations that function in an active E x (M2+)2 x Ap4A x M2+ complex.  相似文献   

15.
Thrombomodulin is an endothelial glycoprotein that serves as a cofactor for protein C activation. To examine the ligand specificity of human thrombomodulin, we performed equilibrium binding assays with human thrombin, thrombin S205A (wherein the active site serine is replaced by alanine), meizothrombin S205A, and human factor Xa. In competition binding assays with CV-1(18A) cells expressing cell surface recombinant human thrombomodulin, recombinant wild type thrombin and thrombin S205A inhibited 125I-diisopropyl fluorophosphate-thrombin binding with similar affinity (Kd = 6.4 +/- 0.5 and 5.3 +/- 0.3 nM, respectively). However, no binding inhibition was detected for meizothrombin S205A or human factor Xa (Kd greater than 500 nM). In direct binding assays, 125I-labeled plasma thrombin and thrombin S205A bound to thrombomodulin with Kd values of 4.0 +/- 1.9 and 6.9 +/- 1.2 nM, respectively. 125I-Labeled meizothrombin S205A and human factor Xa did not bind to thrombomodulin (Kd greater than 500 nM). We also compared the ability of thrombin and factor Xa to activate human recombinant protein C. The activation of recombinant protein C by thrombin was greatly enhanced in the presence of thrombomodulin, whereas no significant activation by factor Xa was detected with or without thrombomodulin. Similar results were obtained with thrombin and factor Xa when human umbilical vein endothelial cells were used as the source of thrombomodulin. These results suggest that human meizothrombin and factor Xa are unlikely to be important thrombomodulin-dependent protein C activators and that thrombin is the physiological ligand for human endothelial cell thrombomodulin.  相似文献   

16.
Inositol 1,4,5-trisphosphate (InsP3) is thought to play a primary role in intracellular Ca2+ mobilization during signal transduction in plant cells. Although InsP3-elicited Ca2+ release across the vacuolar membrane has been demonstrated in a variety of species, little is known of the properties of the putative InsP3 receptor. Using a 3H-InsP3 ligand-displacement assay with detergent-solubilized microsomes from the storage root of red beet, we determined that InsP3 binds specifically to a single class of high-affinity binding sites (dissociation constant [Kd] = 121 [plus or minus] 10 nM) with an estimated receptor density of 0.84 pmol/mg. Binding of InsP3 is selective, because other inositol phosphates exhibited only supramicromolar affinities for the binding site. Low molecular weight heparin was a potent competitive inhibitor of InsP3 binding (Kd = 301 [plus or minus] 72 nM). High concentrations of ATP also displaced 3H-InsP3 (Kd = 0.66 mM). Preincubation of microsomes with sulfhydryl reagents reduced InsP3-specific binding in an InsP3-protectable manner. Density gradient centrifugation of microsomes led to copurification of InsP3-specific binding with a fraction enriched in vacuolar membrane. Despite a probable difference in cellular location, the putative InsP3 receptor of red beet has characteristics that are very similar to those of animal InsP3 receptors. These studies provide direct evidence of InsP3-specific binding in plant tissue and strengthen the argument that InsP3-induced Ca2+ release is a component in plant cell signal transduction.  相似文献   

17.
Escherichia coli dihydrofolate reductase (DHFR) has several flexible loops surrounding the active site that play a functional role in substrate and cofactor binding and in catalysis. We have used heteronuclear NMR methods to probe the loop conformations in solution in complexes of DHFR formed during the catalytic cycle. To facilitate the NMR analysis, the enzyme was labeled selectively with [(15)N]alanine. The 13 alanine resonances provide a fingerprint of the protein structure and report on the active site loop conformations and binding of substrate, product, and cofactor. Spectra were recorded for binary and ternary complexes of wild-type DHFR bound to the substrate dihydrofolate (DHF), the product tetrahydrofolate (THF), the pseudosubstrate folate, reduced and oxidized NADPH cofactor, and the inactive cofactor analogue 5,6-dihydroNADPH. The data show that DHFR exists in solution in two dominant conformational states, with the active site loops adopting conformations that closely approximate the occluded or closed conformations identified in earlier X-ray crystallographic analyses. A minor population of a third conformer of unknown structure was observed for the apoenzyme and for the disordered binary complex with 5,6-dihydroNADPH. The reactive Michaelis complex, with both DHF and NADPH bound to the enzyme, could not be studied directly but was modeled by the ternary folate:NADP(+) and dihydrofolate:NADP(+) complexes. From the NMR data, we are able to characterize the active site loop conformation and the occupancy of the substrate and cofactor binding sites in all intermediates formed in the extended catalytic cycle. In the dominant kinetic pathway under steady-state conditions, only the holoenzyme (the binary NADPH complex) and the Michaelis complex adopt the closed loop conformation, and all product complexes are occluded. The catalytic cycle thus involves obligatory conformational transitions between the closed and occluded states. Parallel studies on the catalytically impaired G121V mutant DHFR show that formation of the closed state, in which the nicotinamide ring of the cofactor is inserted into the active site, is energetically disfavored. The G121V mutation, at a position distant from the active site, interferes with coupled loop movements and appears to impair catalysis by destabilizing the closed Michaelis complex and introducing an extra step into the kinetic pathway.  相似文献   

18.
Characterization of the cation-binding properties of porcine neurofilaments   总被引:5,自引:0,他引:5  
S Lefebvre  W E Mushynski 《Biochemistry》1988,27(22):8503-8508
In the presence of physiological levels of Na+ (10 mM), K+ (150 mM), and Mg2+ (2 mM), dephosphorylated neurofilaments contained two Ca2+ specific binding sites with Kd = 11 microM per unit consisting of eight low, three middle, and three high molecular subunits, as well as 46 sites with Kd = 620 microM. Only one class of 126 sites with Kd = 740 microM was detected per unit of untreated neurofilaments. A chymotryptic fraction enriched in the alpha-helical domains of neurofilament subunits contained one high-affinity Ca2+-binding site (Kd = 3.6 microM) per domain fragment of approximately 32 kDa. This site may correspond to a region in coil 2b of the alpha-helical domain, which resembles the I-II Ca2+-binding site in intestinal Ca2+-binding protein. Homopolymeric filaments composed of the low or middle molecular weight subunits contained low-affinity Ca2+-binding sites with Kd = 37 microM and 24 microM, respectively, while the Kd values for the low-affinity sites in heteropolymeric filaments were 8-10-fold higher. Competitive binding studies, using the chymotryptic fraction to assay the high-affinity Ca2+-binding sites and 22Na+ to monitor binding to the phosphate-containing low-affinity sites, yielded Kd values for Al3+ of 0.01 microM and 4 microM, respectively. This suggests that the accumulation of Al3+ in neurons may be due in part to its binding to neurofilaments.  相似文献   

19.
A Abbott  W J Ball 《Biochemistry》1992,31(45):11236-11243
Monoclonal antibody M7-PB-E9 binds the sheep kidney Na+,K(+)-ATPase alpha-subunit with high affinity (Kd = 3 nM) and inhibits enzyme turnover in competition with ATP, and, like ATP, in the presence of Mg2+, it stimulates the rate of ouabain binding [Ball, W. J. (1984) Biochemistry 23, 2275-2281]. In this study, covalent attachment of fluorescein 5'-isothiocyanate (FITC) at (or near) the enzyme's ATP binding site did not alter the antibody's affinity for alpha nor did bound antibody alter the anisotropy of (r = 0.36) or the solvent accessibility of iodide to bound FITC. Further, in its E1Na+ conformation (4 mM NaCl), the enzyme's affinity for the ATP congener eosin was unaltered by the bound antibody (Kd = 9 nM). In contrast, partial E2 conformations induced by KCl lowered eosin affinities (0.2 mM KCl, Kd = 28 nM; 0.4 mM, Kd = 86 nM), and M7-PB-E9 reduced these affinities further (Kd = 66 and 130 nM, respectively). By monitoring the fluorescence changes of the FITC-labeled enzyme, the antibody was found to assist several ligand-induced conformational transitions from E1 (E1Na+ or E1Tris) to E2 (E2K+, E2-P(i)Mg2+, or E2Mg2+.ouabain) states, and inhibit the E2K(+)-->E1Na+ transition. Antibody binding alone, however, did not appear to significantly alter enzyme conformation. The antibody therefore is not directed against the ATP site but binds to a region of alpha distinct from any ligand binding site and which plays an important role in the E1<-->E2 transitions.  相似文献   

20.
The chromium(III) complex of ATP, an MgATP complex analogue, inactivates (Na+ + K+)-ATPase by forming a stable chromo-phosphointermediate. The rate constant k2 of inactivation at 37 degrees C of the beta, gamma-bidentate of CrATP is enhanced by Na+ (K0.5 = 1.08 mM), imidazole (K0.5 = 15 mM) and Mg2+ (K0.5 = 0.7 mM). These cations did not affect the dissociation constant of the enzyme-chromium-ATP complex. The inactive chromophosphoenzyme is reactivated slowly by high concentrations of Na+ at 37 degrees C. The half-maximal effect on the reactivation was reached at 40 mM NaCl, when the maximally observable reactivation was studied. However, 126 mM NaCl was necessary to see the half-maximal effect on the apparent reactivation velocity constant. K+ ions hindered the reactivation with a Ki of 70 microM. Formation of the chromophosphoenzyme led to a reduction of the Rb+ binding sites and of the capacity to occlude Rb+. The beta, gamma-bidentate of chromium(III)ATP (Kd = 8 microM) had a higher than the alpha, beta, gamma-tridentate of chromium(III)ATP (Kd = 44 microM) or the cobalt tetramine complex of ATP (Kd = 500 microM). The beta, gamma-bidentate of the chromium(III) complex of adenosine 5'-[beta, gamma-methylene]triphosphate also inactivated (Na+ + K+)ATPase. Although CrATP could not support Na+, K+ exchange in everted vesicles prepared from human red blood cells, it supported the Na+-Na+ and Rb+-Rb+ exchange. It is concluded that CrATP opens up Na+ and K+ channels by forming a relatively stable modified enzyme-CrATP complex. This stable complex is also formed in the presence of the chromium complex of adenosine 5'-[beta, gamma-methylene]triphosphate. Because the beta, gamma-bidentate of chromium ATP is recognized better than the alpha, beta, gamma-tridentate, it is concluded that the triphosphate site recognizes MgATP with a straight polyphosphate chain and that the Mg2+ resides between the beta- and the gamma-phosphorus. The enhancement of inactivation by Mg2+ and Na+ may be caused by conformational changes at the triphosphate site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号