首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic properties of intact and digitonin-treated Na,K-ATPase from bovine brain were studied. The temperature dependence curve for the rate of ATP hydrolysis under optimal conditions (upsilon 0) in the Arrhenius plots shows a break at 19-20 degrees. The temperature dependence curves for Km' and Km" have breaks at the same temperatures, while the Arrhenius plot for V is linear. The value of the Hill coefficient (nH) for ATP at 37 degrees is variable depending on ATP concentration, i. e. it is less than 1 at ATP concentrations below 50 mkM and is increased up to 3.2 at higher concentrations of the substrate. At high ATP concentrations the value of nH depends on temperature, falling down to 2.1 at 23 degrees and then down to 1 within the temperature range of 21-19 degrees. A further decrease in temperature does not significantly affect the nH value. Digitonin irreversibly inhibits Na, K-ATPase. ATP hydrolysis is more sensitive to the effect of the detergent than is nNPP hydrolysis, i. e. after complete inhibition of the ATPase about 40% of the phosphatase activity are retained. Treatment of Na,K-ATPase by digitonin results in elimination of the breaks in the Arrhenius plots for upsilon 0, Km' and Km", whereas the temperature dependence plot of V remains linear. Simultaneously digitonin eliminates the positive cooperativity of the enzyme for ATP. It is assumed that Na, K-ATPase from bovine brain is an oligomer of the (alpha beta) 4 type. Digitonin changes the type of interaction between the protomers within the oligomeric complex by changing the lipid environment of the enzyme or the type of protein -- lipid interactions.  相似文献   

2.
The effect of insulin on the activity of Na, K-ATPase was studied in rat brain microsomes. Addition of insulin to the incubation medium in a dose of 0.18 U/ml coupled with strophanthine did not change the enzyme activity. The raising of the hormone dose to 0.36 U/ml was accompanied by inhibition of the enzyme activity. The incubation duration (10 and 30 min) did not influence the Na-pump. Preincubation of brain microsomes with insulin for 5 min significantly activated Na, K-ATPase. It has been thus demonstrated that insulin is capable of influencing the activity of Na, K-ATPase of rat brain microsomes in vitro. The effect obtained depends both on the dose of the hormone introduced into the incubation medium and the experimental conditions.  相似文献   

3.
Immobilisation stress (IMS) led to a 42% decrease in erythrocyte Na, K-ATPase activity in rats. Pre-treatment of the "stressed" erythrocytes with human serum albumin (HSA) and 1-day exposition of the HSA prior to the IMS led to stabilising of enzyme activity at the control level. Absence of inhibiting effect of non-protein supernatants of the blood plasma of stressed rats on enzyme activity of normal erythrocytes was shown in presence of the HSA both in vitro and in vivo. The mechanism of the HSA protective effect on the Na,K-ATPase activity of erythrocytes in the IMS, is discussed.  相似文献   

4.
The activities of Na, K- and Mg-dependent ATPases were measured in crude synaptosomal fractions isolated from the rat brain gray matter. Prolonged (6 h) exposure to emotional painful stress stimulated Na, K-ATPase activity by 40% without affecting that of Mg-ATPase. Preliminary injection of the free radical scavenger ionol presented Na, K-ATPase activation, thus suggesting the involvement of lipid peroxidation initiated in brain tissues under stress in acceleration of NA-pump function. However, model studies with lipid peroxidation induced in vitro by an ascorbate-dependent system in a membranous suspension demonstrated an opposite effect, i. e. fast inhibition of Na, K-ATPase. Possible reasons for the different effects of lipid peroxidation in vivo under stress and on Na, K-ATPase activity in vitro are discussed. It is concluded that activation of Na K-ATPase is a mechanism which is responsible for acceleration of reflex conditioning and for the maintenance of the conditioned reflexes in stress-exposed animals.  相似文献   

5.
6.
7.
The effect of profound hypothermia (acute or prolonged) on Km for ATP, Vm and strophanthine K affinity to Na,K-ATPase in the rat brain synaptosomal membranes was investigated. The temperature dependence of Na,K-ATPase activity in temperature range 5-40 degrees C was also studied. Hypothermia decreases Km and Vm, and increases affinity of strophanthine K to the enzyme. There are two linear sections in Arrhenius plots ofNa,K-ATPase activity. Hypothermia does not change position of the break point in Arrhenius plots. The mechanisms and biological significance of the changes revealed are discussed.  相似文献   

8.
9.
A study was made of the effect of ionizing radiation of 10.3 and 180.6 mC/kg on kinetic parameters of the processes of activation of Na,K-ATPase of rat brain cortex by Mg-ATP-substrate and Na+ and K+ ions. The obtained results prompt an assumption that a conformational rearrangement occurs under the effect of ionizing radiation which is not identical after relatively small and lethal radiation doses.  相似文献   

10.
The effect of drugs from the class of cardiac (methyldigoxin, verapamil, propranolol), antiepileptic (carbamazepine), sedative (diazepam) and antihistaminic (promethazine) drugs on Na,K-ATPase activity of plasma membranes was studied in rat brain synaptosomes. Methyldigoxin in a concentration of 0.1 mmol/l inhibits enzyme activity by 80 %. Verapamil, propranolol and promethazine in concentrations of 20, 20 and 2 mmol/l respectively, entirely inhibit the ATPase activity. Carbamazepine and diazepam in concentrations of 0.02-60 mmol/l have no effect on the activity of this enzyme. According to the drug concentrations that inhibit 50 % of enzyme activity (IC(50)), the potency can be listed in the following order: methyldigoxin promethazine verapamil ? propranolol. From the inhibition of commercially available purified Na,K-ATPase isolated from porcine cerebral cortex in the presence of chosen drugs, as well as from kinetic studies on synaptosomal plasma membranes, it may be concluded that the drugs inhibit enzyme activity, partly by acting directly on the enzyme proteins. Propranolol, verapamil and promethazine inhibitions acted in an uncompetitive manner. The results suggest that these three drugs may contribute to neurological dysfunctions and indicate the necessity to take into consideration the side effects of the investigated drugs during the treatment of various pathological conditions.  相似文献   

11.
A V Tkachenko 《Tsitologiia》1988,30(7):849-854
The absorption spectrum of visible light, characteristic of the free bilirubin being in the aqueous medium, with a single maximum at 440 nm and with the shoulder in the region of 410-420 nm is transformed into the spectrum with two maxima in the region of 460 and 500 nm, respectively, when the pigment is bound in vitro by the synaptosomal membrane. There are two types of sites for bilirubin binding in the membrane particles, differing in the values of constants of association (Ka = 0.6 . 10(5) and approximately 2.02 . 10(5) M-1, respectively) and in the values of the maximum binding of bilidiene (5.0 and 7.0 nmoles/mg of membrane proteins, respectively). The binding of bilirubin by the synaptosomal membrane leads to a decrease in the specific activity of the membrane Na+,K+-ATPase. The enzyme activity is further decreasing when suspension of the membrane particles is exposed to the blue light (lambda max = 450-460 nm) in the presence of bilirubin. The addition of the serum albumin into the incubation medium potentiates the inhibition effect of bilirubin, when the suspension of membrane particles is lighted in the presence of bilirubin. The alkalization of the medium up to pH 7.8 (from pH 7.2) removes this potentiation effect of the addition of serum albumin.  相似文献   

12.
L N Pisareva 《Tsitologiia》1991,33(11):26-31
A comparative estimation was made of modifications of Na,K-ATPase and Mg-ATPase parameters in the process of phylogenesis and as a result of sudden thermal selection. On the basis of our own and literary data a suggestion was put forward about the availability of quite different ways of thermal adaptation in ATP-hydrolyzing enzymes associated with different physiological functions.  相似文献   

13.
The mechanism of functioning of Na, K-ATPase system is considered, the peculiarities of hydrolysis in different substrates are described. The experimental results testify to the role of substrate structure in E2----E1-transition, Na+ transport, K(+)-dependent phosphatase activity and quaternary structure of enzyme. The regulatory role of molecular organization of Na, K-ATPase in ion transport is discussed.  相似文献   

14.
Employing detergent-free sucrose-density gradient fractionation method we isolated cholesterol-rich lighter membrane fractions containing ∼10% of protein, ∼30% of cholesterol in membranes of ventricular myocardium. Cholesterol-rich lighter membrane fractions contain >70% of Na, K-ATPase and caveolins 1 and 3 and <10% of β-actin. Treatment of hypothyroid rats with T3 increased the relative abundance of both α1 and β1 Na, K-ATPase subunits in total membranes by 4- to 5-fold (with no change in caveolin-3), and resulted in 1.9-fold increase in enzyme activity. T3-induced Na, K-ATPase subunits were preferentially distributed to the lighter fractions (#s 4, 5 and 6); and increased abundance of α1 and β1 were 34-70% and 43-68%, respectively. We conclude that the activity of Na, K-ATPase is not uniform in cardiac membranes, and while a significant amount of Na, K-ATPase is present in cardiac cholesterol-rich membrane fractions, the intrinsic activity is significantly less than the enzyme present in relatively cholesterol-poor membranes.  相似文献   

15.
Molecular genetic evidence indicates that there should be three different (Na+ + K+)-stimulated ATPase (Na,K-ATPase) alpha subunit isozymes in the brain where previously only two ("alpha" and "alpha(+)") were resolved as proteins. To detect and identify alpha 1, alpha 2, and alpha 3 isozymes, polypeptides made by cell-free translation (Schneider, J.W., Mercer, R.W., Gilmore-Hebert, M., Utset, M.F., Lai, C., Greene, A., and Benz, E.J., Jr. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 284-288) were analyzed by gel electrophoresis and proteolytic fingerprinting. Synthetic alpha 1 comigrated with tissue alpha 1, while alpha 2 and alpha 3 comigrated with the leading and trailing edges, respectively, of tissue "alpha(+)." Proteolytic fingerprints of newborn rat brain Na,K-ATPase labeled in vivo with L-[35S]methionine indicated the presence of alpha 1 and alpha 3, and a low level of alpha 2. Monoclonal antibodies were characterized by the electrophoretic mobility of their antigens and by their ability to recognize the Na,K-ATPases of kidney, brain, and skeletal muscle. The antibodies were used to assess isozyme expression in the brain. All three isozymes increased in abundance during development from the 18-day fetus to the adult. Small changes were seen in the relative level of expression of alpha 1 and alpha 3 at different developmental ages, while alpha 2 expression increased markedly between the neonate and adult. In adult brain, all three isozymes were found in all brain regions examined. We conclude that all three isozymes are expressed as proteins and that their expression and distribution must be under complex control. No single developmental age or macroscopic brain region provides an exclusive source of any of the isozymes.  相似文献   

16.
Temperature dependence of bovine brain NA,K-ATPase before and after the short-term treatment of enzyme preparations with phospholipases A, C and D is investigated. Arrhenius plots of the temperature dependence of the reaction rate catalysed by Na,K-ATPase are non-linear, they have an inflection at the region of about 20 degrees C. The treatment of the enzyme with phospholipase A makes the inflection more smooth, phospholipase D shifts the inflection by 4 degrees C to lower temperature and simultaneously activates Na,K-ATPase. Phospholipase C sharply changes the Arrhenius curve and makes it linear. The data obtained are discussed with respect to the role of phospholipids in the formation of membrane bilayer and in the regulation of Na,K-ATPase activity.  相似文献   

17.
L N Pisareva 《Tsitologiia》1976,18(11):1403-1405
The effect of guanidine, lisine, arginine, acetamide and urea on the activity of the preparations of Na, K-ATPase from guinea pig kidney was studied. It was established that the enzymatic activity of the preparations can be lowered by 50% by the following concentrations of the substances examined: guanidine--0.07 M, argine--0.12 M, lisine--0.30 M, acetamide--0.95 M, urea--1.05 M. There correlation among the inhibitory ability of these substances and their basis properties.  相似文献   

18.
Catecholamines stimulate Na,K-ATPase activity in the microsomal membranes of the brain and brown adipose tissue. This stimulation is apparent in the absence of soluble, cytosolic inhibitors and exhibits the same characteristics in both tissues: it occurs at high concentrations (10(-6)-10(-4) M) only; there is no difference in potency between isoprenaline, norepinephrine and epinephrine (EC50 = 1-2 X 10(-5) M); the D-stereoisomer of isoprenaline is equally as effective as the L-form; stimulation of Na,K-ATPase may also be achieved by the metal chelators EDTA, EGTA and desferal; the hydrophobic beta-blockers, propranolol and alprenolol, inhibit both the norepinephrine-stimulated and basal levels of enzyme activity at concentrations of 10(-5)-10(-3) M; phenoxybenzamine, an irreversible alpha-adrenergic blocker, inhibits basal Na,K-ATPase as well as norepinephrine-stimulated enzyme activity (EC50 = 2.5 X 10(-5) M). Because none of these observations can be related to the properties of the stereospecific adrenergic receptor (alpha or beta), it may be concluded that the catecholamine-Na,K-ATPase interaction is not mediated by the receptor. More probably, catecholamines may antagonize the Na,K-ATPase inhibition caused by some tightly membrane-bound metals (but not vanadium) via the ortho-catechol moiety of the catecholamine molecule. The stimulation of brown fat Na,K-ATPase by catecholamines does not have much relevance to the norepinephrine-stimulated thermogenesis in this tissue.  相似文献   

19.
The total time-controlled ischemia (up to 45 min) was studied for its effect on the Na,K-ATPase activity, content of nonesterified fatty acids (NEFA) and intensity of lipid peroxidation (LP) in sarcolemmal (SL) preparations and soluble fractions (SF) from the rat and guinea-pig left ventricles. A strong correlation between Na, K-ATPase inhibition and NEFA accumulation was revealed in the SF. On the contrary, changes in the NEFA content and LP level both in SL and SF did not correlate with a decrease in the enzymic activity. Pretreatment with albumin (0.5 mg/ml) induced equally small increase both in the control and in the ischemic SL preparations. It is suggested that the Na,K-ATPase activity during a short period of myocardial ischemia (up to 45 min) may be due to the NEFA accumulation in the cytosolic and/or extracellular space, but not in SL.  相似文献   

20.
Activating (0.3-3 microM) or inhibitory (0.03-0.3 mM) effects of dopamine (DA) in the absence of Ca2+, and its inhibitory effect in the presence of Ca2+ on Na,K-ATPase activity of synaptosomes from the caudate nucleus of the rat brain were confirmed. Na,K-ATPase was shown to be inhibited by 6 neuroleptics, with the degree of inhibition stronger in the presence of Ca2+. It was found that: 1) the biphasic or monophasic nature of DA action on Na,K-ATPase activity was preserved in the presence of neuroleptics, 2) DA enhances the inhibitory effects of neuroleptics on the enzyme, 3) the inhibitory effects of DA on Na,K-ATPase are enhanced by Ca2+ ions. The mechanisms of the modifying action of DA on synaptosomal Na,K-ATPase are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号