首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Klebsiella pneumoniae was engineered to produce 2-butanol from crude glycerol as a sole carbon source by expressing acetolactate synthase (ilvIH), keto-acid reducto-isomerase (ilvC) and dihydroxy-acid dehydratase (ilvD) from K. pneumoniae, and α-ketoisovalerate decarboxylase (kivd) and alcohol dehydrogenase (adhA) from Lactococcus lactis. Engineered K. pneumonia, ?ldhA/pBR-iBO (ilvIHilvC–ilvD–kivd–adhA), produced 2-butanol (160 mg l?1) from crude glycerol. To increase the yield of 2-butanol, we eliminated the 2,3-butanediol pathway from the recombinant strain by inactivating α-acetolactate decarboxylase (adc). This further engineering step improved the yield of 2-butanol from 160 to 320 mg l?1. This represents the first successful attempt to produce 2-butanol from crude glycerol.  相似文献   

2.
To improve production of ethanol from glycerol, the methylotrophic yeast Hansenula polymorpha was engineered to express the pdc and adhB genes encoding pyruvate decarboxylase and aldehyde dehydrogenase II from Zymomonas mobilis, respectively, under the control of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter. The ethanol yield was 3.3-fold higher (2.74 g l?1) in the engineered yeast compared with the parent strain (0.83 g l?1). Further engineering to stimulate glycerol utilization in the recombinant strain via expression of dhaD and dhaKLM genes from Klebsiella pneumoniae encoding glycerol dehydrogenase and dehydroxyacetone kinase, respectively, resulted in a 3.7-fold increase (3.1 g l?1) in ethanol yield.  相似文献   

3.
The impact of culture conditions and addition of antioxidants to media on microspore embryogenesis in rapeseed (Brassica napus cv. ‘PF704’) was investigated. Different concentrations of ascorbic acid (0, 5, 10, 20, 50, 100, and 200 mg l?1) and alpha (α)-tocopherol (0, 5, 10, 20, 50, 100, and 200 mg l?1) were evaluated along with two temperature pretreatments (18 d at 30°C; 2 d at 32.5°C followed by 16 d at 30°C). In addition, combinations of reduced glutathione (0, 10, 50, and 100 mg l?1) and ascorbic acid (5 and 10 mg l?1) were tested. Microspore embryogenesis was significantly enhanced using 10 mg l?1 ascorbic acid (334 embryos per Petri dish) compared with untreated cultures (184 embryos per Petri dish) at 30°C. α-Tocopherol (5 and 10 mg l?1) enhanced (312 and 314 embryos per Petri dish, respectively) microspore embryogenesis relative to untreated cultures (213 embryos per Petri dish) at 30°C, although there were no significant differences among cultures treated with 5–50 mg l?1 α-tocopherol. When 50 mg l?1 α-tocopherol was combined with 5 or 10 mg l?1 ascorbic acid, embryogenesis was significantly enhanced (308 and 328 embryos per Petri dish, respectively) relative to other ascorbic acid levels. Moreover, 10 mg l?1 of reduced glutathione and 5 mg l?l ascorbic acid enhanced microspore embryogenesis (335 embryos per Petri dish) compared to cultures without reduced glutathione (275 embryos per Petri dish). Microspore embryogenesis could be improved by adding ascorbic acid, α-tocopherol, and reduced glutathione when the appropriate combination and temperature pretreatment were selected.  相似文献   

4.

Objectives

To investigate the efficiency of a cofactor regeneration enzyme co-expressed with a glycerol dehydrogenase for the production of 1,3-dihydroxyacetone (DHA).

Results

In vitro biotransformation of glycerol was achieved with the cell-free extracts containing recombinant GlyDH (glycerol dehydrogenase from Escherichia coli), LDH (lactate dehydrogenase form Bacillus subtilis) or LpNox1 (NADH oxidase from Lactobacillus pentosus), giving DHA at 1.3 g l?1 (GlyDH/LDH) and 2.2 g l?1 (GlyDH/LpNox1) with total turnover number (TTN) of NAD+ recycling of 6039 and 11100, respectively. Whole cells of E. coli (GlyDH–LpNox1) co-expressing both GlyDH and LpNox1 were constructed and converted 10 g glycerol l?1 to DHA at 0.2–0.5 g l?1 in the presence of zero to 2 mM exogenous NAD+. The cell free extract of E. coli (GlyDH–LpNox) converted glycerol (2–50 g l?1) to DHA from 0.5 to 4.0 g l?1 (8–25 % conversion) without exogenous NAD+.

Conclusions

The disadvantage of the expensive consumption of NAD+ for the production of DHA has been overcome.
  相似文献   

5.
In this work eighteen red yeasts were screened for carotenoids production on glycerol containing medium. Strain C2.5t1 of Rhodotorula glutinis, that showed the highest productivity, was UV mutagenized. Mutant 400A15, that exhibited a 280 % increase in β–carotene production in respect to the parental strain, was selected. A central composite design was applied to 400A15 to optimize carotenoids and biomass productions. Regression analyses of the quadratic polynomial equations obtained (R2 = 0.87 and 0.94, for carotenoids and biomass, respectively) suggest that the models are reliable and significant (P < 0.0001) in the prediction of carotenoids and biomass productions on the basis of the concentrations of crude glycerol, yeast extract and peptone. Accordingly, total carotenoids production achieved (14.07 ± 1.45 mg l?1) under optimized growth conditions was not statistically different from the maximal predicted (14.64 ± 1.57 mg l?1) (P < 0.05), and it was about 100 % higher than that obtained under un-optimized conditions. Therefore mutant 400A15 may represent a biocatalyst of choice for the bioconversion of crude glycerol into value-added metabolites, and a tool for the valorization of this by-product of the biodiesel industry.  相似文献   

6.
Nostoc sp. BHU001, a planktonic cyanobacterium isolated from an agricultural pond in India, was examined for its toxicity. Mice, administered intraperitoneally with Nostoc sp. BHU001 crude extract (50 mg kg?1 body weight) died at 4.5 h. Examination of liver and spleen showed microcystin (MC)-like symptoms. Serum enzyme aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities increased by 1.6–1.8 and 2.6–3.0-folds, respectively at 50 and 100 mg crude extract kg?1 body weight. Thin layer chromatography of the crude extract produced five bands (N-1 to N-5). UV absorption maxima of band N-4 corresponded to that of standard microcystin-LR. Further analysis of the band N-4 by high-performance liquid chromatography gave a retention time (R t ) of 4.61 min similar to that of standard microcystin–LR (LR stands for lysine and arginine). Total MC content was quantified by enzyme-linked immunosorbent assay, and was 189.9 μg g?1 of crude extract, 9.8 μg l?1 of spent medium and 5.5 μg l?1 of pond water. Exposure of rice (Oryza sativa var. Sonam) seeds to the crude extract did not affect their germination, but inhibited the root and shoot growth of seedlings by 27.3 and 42.89 folds at 3 mg ml?1 crude extract, respectively.  相似文献   

7.
8.
Biomass and lipid productivities of Isochrysis galbana were optimized using nutrients of molasses (4, 8, 12 g l?1), glucose (4, 8, 12 g l?1), glycerol (4, 8, 12 g l?1) and yeast extract (2 g l?1). Combinations of carbon sources at different ratios were evaluated in which the alga was grown at three different light intensities (50, 100 and 150 μmol m?2 s?1) under the influence of three different photoperiod cycles (12/12, 18/6 and 24/0 h light/dark). A maximum cell density of 8.35 g l?1 with 32 % (w/w) lipid was achieved for mixotrophic growth at 100 μmol m?2 s?1 and 18/6 h light/dark with molasses/glucose (20:80 w/w). Mixotrophic cultivation using molasses, glucose and glycerol was thus effective for the cultivation of I. galbana.  相似文献   

9.
Coriandrum sativum L. is an annual herb belonging to the family Umbelliferae. It is used as a spice plant in Indian subcontinent and it has several medicinal applications as well. In this present article, an efficient plant regeneration protocol from protoplasts via somatic embryogenesis was established and is reported. This is the first ever protoplast isolation study in Indian local coriander in which plant regeneration was achieved. Hypocotyl-derived embryogenic callus was used as a source of protoplast. The embryogenic callus suspension was prepared by transferring tissues onto rotary-agitated liquid Murashige and Skoog, added with 1.0 mg l?1 2,4-Dichlorophenoxyacetic acid (2,4-D) and 1.0 mg l?1 KIN (6-furfurylaminopurine). The suspension was digested with enzymatic solutions and a combination of cellulase (2.0 %), pectinase (1.0 %), macerozyme (0.02 %) and driselase (0.50 %) induced maximum yield of protoplasts (34.25 × 105). In 1.0 mg l?1 2,4-D + 1.0 mg l?1 KIN containing medium, protoplasts divided well and formed maximum number of microcolonies (14.30/test tube). The protoplast callus (PC) biomass grew well in solid medium. The protoplast embryogenic callus was rich in protein, proline and sugar compared to non-embryogenic PC. The protoplast originated callus later differentiated into somatic embryos. The somatic embryo morphology, scanning electron microscopy and histology of embryo origin and development were investigated and discussed in details in this present communication. In 1.0 mg l?1 2,4-D + 0.5 mg l?1 BA (6-Benzyladenine), maximum number of embryos were formed on microcallus (26.6/callus mass). The embryo matured and germinated into plantlets at a low to moderate rate, highest (31.3 %) embryo germination was observed in 1.0 mg l?1 BA + 0.5 mg l?1 α-Naphthalene acetic acid added medium. The entire process of regeneration took about 4–5 months’ time for recovering plantlets from protoplasts.  相似文献   

10.
The effects of three periods of exposure (12, 24 and 48 h) to different levels of putrescine (0, 0.2, 0.5, 1.0, 2.0 and 5.0 mg l?1), as well as three incubation periods (24, 48 and 72 h) to different levels of cefotaxime and vancomycin (0, 50, 100, 200 and 500 mg l?1) on microspore embryogenesis of rapeseed cv. ‘Hyola 401’ were assessed. Microspore embryogenesis was enhanced about threefold compared with untreated culture following 48 h treatment with 0.2 mg l?1 putrescine. Putrescine treatment at 0.5 mg l?1 for 48 h effectively induced root formation and increased normal plantlet regeneration by 92 % when microspore-derived embryos (MDEs) were transferred to regeneration medium. The highest embryo yield (184.2 embryos Petri dish?1) was possible when induction medium was supplemented with 50 mg l?1 cefotaxime for 24 h and the highest normal regeneration was observed in cultures exposed to 50 and 100 mg l?1 at all durations tested. More abnormal MDEs (76 and 82 %) were observed when microspores treated with 200 and 500 mg l?1 cefotaxime many of which failed to regenerate normally and resulted in callusing. Vancomycin at 100 mg l?1 during the 48 h exposure increased the number of MDEs (181.6 embryos Petri dish?1) in contrast to untreated cultures (93.6 embryos Petri dish?1) but, normal plantlet regeneration decreased as vancomycin level increased and high callusing (84 and 90 %) was observed with 200 and 500 mg l?1 for 72 h. Microspore embryogenesis and plant regeneration could be improved by putrescine, cefotaxime and vancomycin when appropriate levels and durations of incubation were selected.  相似文献   

11.
Moringa oleifera is a highly valued medicinal plant. The present research reports callus cultures of M. oleifera Lam., established from seeds and nodal segments on Murashige and Skoog’s (MS) medium using different concentrations and combinations of auxins and cytokinins. Best induction of callus was observed at BAP:IBA (3 mg l?1 each). Shooting and rooting from callus in terms of morphogenesis were observed in MS media supplemented with BAP:KN (2:0.2 mg l?1) and IBA:NAA (3:0.5 mg l?1), respectively. Multiple shooting was observed at treatment dose of BAP:NAA:IAA (1:1:0.2 mg l?1). Regenerated shoots were rooted and mature plants were established, acclimatized, and thrived in greenhouse conditions. Over 95 % of plantlets survived after transplanting plantlets into trays with a mixture of sand and perlite (2:1) for 20 days. The regeneration protocol developed in this study provides a basis for germplasm conservation and for further investigation of bioactive constituents of this medicinal plant. Further qualitative and quantitative production of steroidal sapogenins (diosgenin and tigogenin) from various morphogenetic stages was studied using TLC, PTLC, IR spectra, HPLC and GC–MS analysis. Steroidal sapogenins were maximum in the callus associated with rooting. Various stages were further analyzed for their antioxidant potential.  相似文献   

12.
The present study concentrated on introducing a micropropagation protocol for a drought resistant genotype from Pyrus boissieriana, which is the second most naturally widespread pear species in Iran with proper physiological and medicinal properties. Proliferating microshoot cultures were obtained by placing nodal segments on MS medium supplemented with BAP and IBA or NAA. The highest number of shoots (27 shoots per explant) were obtained with 1.5 mg l?1 BAP and 0.05 mg l?1 IBA, but this combination did not produce shoots of desirable length (>1.7 cm). Combination of 1.75 mg l?1 BAP and 0.07 mg l?1 IBA was the best for the shoot multiplication in P. boissieriana with a sufficient number of shoot production (22.33 shoots per explant) and relatively more appropriate shoot length. The larger and greenish leaves were obtained when PG was added to the best multiplication treatment. Microshoot elongation was carried out in 1/2 and 1/4 MS medium containing 50–100 mg l?1 PG with different concentrations of IBA or NAA at intervals of 30–60 days. Significant increase in shoot length was detected after 45–60 days of culture in the presence of PG. The highest shoot length (8 cm) was recorded on 1/2 MS medium supplemented with 0.5 mg l?1 IBA and 100 mg l?1 PG. GA3 negatively affected number and length of shoots and generally caused generation of red leaves. The highest percentage of root induction (100%) and root length (9 cm) were obtained on 1/6 strength MS medium supplemented with 0.005 mg l?1 IBA. All plantlets were hardened when transferred to ex vitro conditions through a period of 25–30 days. The results suggest axillary shoot proliferation of P. boissieriana could successfully be employed for propagation of candidate drought resistant seedling.  相似文献   

13.
Lisianthus (Eustoma grandiflorum) is a cut or ornamental flower that is popular all over the world. This ornamental crop, however, lacks an effective weed control method due to its susceptibility to herbicide. In this study, transgenic plants of a lisianthus cultivar were produced using Agrobacterium-mediated delivery of the plasmid pCAMBIA3300, which carried the bialaphos resistance (bar) gene under driven by the CaMV 35S promoter. The transgenic calli were derived from wounded edges of the leaves grown on a shoot regeneration medium containing 100 mg l?1 cefotaxime and 2 mg l?1 glufosinate ammonium for 4 weeks. The callus that was detached from the wounded edge of the leaf was transferred to the shoot regeneration medium with 100 mg l?1 cefotaxime and 5 mg l?1 glufosinate ammonium for 4 weeks for shoot regeneration. The bar gene integration and expression in the transgenic plants were confirmed by Southern and Northern blot analyses, respectively. Subsequently, the transgenic lines were assessed in vitro and under greenhouse conditions for their resistance to the commercial herbicide Basta®, which contains glufosinate ammonium as the active component. Six transgenic lines showed high percentages (67–80%) of survival in vitro under the selection condition with glufosinate ammonium (up to 216 mg l?1). Under greenhouse conditions, the plants from these six lines remained healthy and exhibited a normal phenotype after spraying with glufosinate ammonium (up to 1,350 mg l?1). This is the first paper to provide a detailed survey of transgenic lisianthus expressing the bar gene and exhibiting herbicide-resistance under greenhouse conditions.  相似文献   

14.
Two efficient morphogenetic pathways for micropropagation of Bletilla striata (Thunb.) Reichb. f. have been established through the callus-mediated and direct formation of protocorm-like bodies (PLBs) from protocorms and shoot tips. Green calli were induced from the basal surface of protocorms and the cut-end of shoot tips on Vacin and Went (VW) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) or α-naphthalene acetic acid (NAA) after 3–5 weeks, with the highest frequency of explants forming callus (48.0 %) from protocorms at 1.0 mg l?1 2,4-D. The calli obtained from all plant growth regulator (PGR) treatments could proliferate and differentiate PLBs on the PGR-free medium. NAA and 2,4-D significantly enhanced the growth of callus. The fastest growth rate of callus was achieved at the combination of 1.0 mg l?1 2,4-D and 1.0 mg l?1 TDZ with 46.2-fold within 3 months. The regeneration of PLBs from callus was significantly improved by 6-benzyladenine (BA), and a mean number of 48.4 PLBs was produced from 100 mg calli at 1.0 mg l?1 BA within 3 months. BA and thidiazuron (TDZ) promoted the direct formation of PLBs from explants. The highest frequency of direct PLBs formation (76.0 %) and the highest mean number of PLBs per explant (30.2) were observed in protocorms cultured with 0.5 mg l?1 BA. Assessment of clonal fidelity by inter-simple sequence repeat (ISSR) markers revealed similarity ranges of 99.8–100.0 % between the regenerants and their mother plants and 99.5–100.0 % among the regenerants, which suggested the micropropagation protocols were genetically stable.  相似文献   

15.
The present study reports, for the first time, an efficient in vitro plant regeneration protocol for Digitalis ferruginea subsp. ferruginea L. (rusty foxglove). We have used different concentrations of gibberellic acid (GA3) on Murashige and Skoog (MS) medium to assess the germination frequency of seeds. High frequency of germination was achieved on MS medium with 1.0 mg l?1 GA3. 6-Benzylaminopurine (BAP) combined with α-naphtaleneacetic acid (NAA) or 2, 4-dichlorophenoxy acetic acid (2, 4-D) in the induction MS medium induced both somatic embryogensis and shoot organogenesis. The highest percentage of callus growth (85 %) was obtained when hypocotyl explants were cultured on MS medium containing 0.5 mg l?1 2, 4-D plus 1.0 mg l?1 BAP. The maximum mean number of somatic embryos (7.3 ± 1.3 embryos) or shoots (12.0 ± 1.1 shoots) per callus was obtained when medium contained 0.25 mg l?1 NAA plus 1.0 mg l?1 BAP or 0.5 mg l?1 NAA plus 2.0 mg l?1 BAP. The regenerated shoots easily rooted on MS medium. Higher amounts of lanatoside C [13.2 ± 0.5 mg 100 g?1 dry weight (dw)] and digoxin (2.93 ± 0.31 mg 100 g?1 dw) accumulation were obtained when shoots were obtained by indirect regeneration. We also investigated derivatives of cardenolides, i.e., digitoxigenin (730 ± 180 mg 100 g?1 dw), gitoxigenin (50 ± 20 mg 100 g?1 dw) and digoxigenin (490 ± 170 mg 100 g?1 dw) from natural samples.  相似文献   

16.
An Agrobacterium tumefaciens—mediated transformation system was developed for Eruca sativa (eruca). Hypocotyl explants were co-cultivated with bacterial cells carrying a plasmid harboring a uidA:nptII fusion gene along a phosphinothricin acetyl transferase (PAT) gene cassette, for a period of 2 days. These were grown on a high cytokinin/auxin medium containing 5.0 mg l?1 6-benzyladenine (BA), 1.0 mg l?1 indole-3-acetic acid (IAA), and 0.1 mg l?1 α-naphthaleneacetic acid (NAA). Explants were then transferred to a lower cytokinin/auxin medium containing 2.0 mg l?1 BA and 0.1 mg l?1 NAA along with 5.0 mg l?1 silver nitrate and 300 mg l?1 Timentin®. Upon transfer to a selection medium containing either 20 mg l?1 kanamycin or 2 mg l?1 L-phosphinothricin (L-ppt), shoot regenerants were observed. Expression of the transgenes in putative transformants was confirmed using a histochemical GUS assay. Presence of the PAT transgene in GUS-positive T0 plants was confirmed by Southern blot analysis. Moreover, spot tests of T1 seedlings were conducted using the L-ppt herbicide. A transformation frequency of 1.1% was obtained with more than 60% of transgenic lines containing single copies of the transgenes.  相似文献   

17.
The stress hormones abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) play an important role in the regulation of physiological processes and are often used in tissue culture to promote somatic embryogenesis and to enhance the quality of somatic embryos. Despite many studies on Brassica napus microspore culture, the effects of stress hormones (ABA, JA and SA) on microspore embryogenesis are not well explored. In this study, the effects of three incubation periods (6, 12 and 24 h) at different levels of ABA, JA and SA (0, 0.2, 0.5, 1.0, 2.0 and 5.0 mg l?1) on microspore embryogenesis of rapeseed (B. napus L.) cv. ‘Regent’ were investigated. ABA (0.5 mg l?1 for 12 h) enhanced microspore embryogenesis by about threefold compared with untreated cultures and increased normal plantlet regeneration by 68 %. ABA treatment also effectively reduced secondary embryo formation at all concentrations tested but enhanced callusing at high levels, for example 67 % at 1.0 mg l?1 for 24 h. Highest embryo yield (286.0 embryos Petri dish?1) was achieved using 1.0 mg l?1 JA for 24 h and highest normal plantlet regeneration (54 %) was observed in cultures exposed to 0.5 mg l?1 JA for 12 h. JA (5.0 mg l?1 for 24 h) also reduced the germination of microspore-derived embryos on regeneration medium by 21 %. SA at 0.2 and 0.5 mg l?1 for 6 h increased microspore embryogenesis (184.0 and 193.4 embryos Petri dish?1) relative to the control (136.2 embryos Petri dish?1). However, SA did not improve normal regeneration, secondary embryo formation or callusing. Microspore embryogenesis and plant regeneration could be improved by ABA, JA as well as SA when the appropriate level and duration of incubation were selected.  相似文献   

18.
Some lactic acid bacteria produce volatile phenols in culture medium but this activity has not been extensively studied in wine conditions. Red and white wines were mixed with MRS medium at different ratios to study the influence of wine on the metabolism of p-coumaric and ferulic acids by Lactobacillus plantarum. In MRS broth supplemented with these precursors at 10 mg l?1, only 4-ethylphenol was produced (1 mg l?1) while, in the presence of wine, 4-vinylphenol was also obtained. Both volatile phenols are produced in nearly equal amounts (1 mg l?1) or almost only 4-vinylphenol depending on the MRS:wine ratio. Thus, wine favours the accumulation of 4-vinylphenol. Ferulic acid was not or was weakly metabolized in the conditions studied.  相似文献   

19.
The possibility of using rapeseed oil as a carbon source for microbiological production of α-ketoglutaric acid (KGA) has been studied. Acid formation on the selective media has been tested in 26 strains of Yarrowia lipolytica yeast, and the strain Y. lipolytica VKM Y-2412 was selected as a prospective producer of KGA from rapeseed oil. KGA production by the selected strain was studied in dependence on thiamine concentration, medium pH, temperature, aeration, and concentration of oil. Under optimal conditions (thiamine concentration of 0.063 μg?g cells?1, pH?3.5, 30 °C, high dissolved oxygen concentration (pO2) of 50 % (of air saturation), and oil concentration in a range from 20 to 60 g?l?1), Y. lipolytica VKM Y-2412 produced up to 102.5 g?l?1 of KGA with the mass yield coefficient of 0.95 g?g?1 and the volumetric KGA productivity (Q KGA) of 0.8 g?l?1?h?1.  相似文献   

20.
Recombinant Escherichia coli, expressing the oleate hydratase gene of Stenotrophomonas maltophilia, was permeabilized by sequential treatments with 0.125 M NaCl and 2 mM EDTA. The optimal conditions for the production of 10-hydroxy-12,15(Z,Z)-octadecadienoic acid from α-linolenic acid by permeabilized cells were 35 °C and pH 7.0 with 0.1 % (v/v) Tween 40, 50 g permeabilized cells l?1, and 17.5 g α-linolenic acid l?1. Under these conditions, permeabilized cells produced 14.3 g 10-hydroxy-12,15(Z,Z)-octadecadienoic acid l?1 after 18 h, with a conversion yield of 82 % (g/g) and a volumetric productivity of 0.79 g l?1 h?1. These values were 17 and 168 % higher than those obtained by nonpermeabilized cells, respectively. The concentration, yield, and productivity of 10-hydroxy-12,15(Z,Z)-octadecadienoic acid obtained by permeabilized cells are the highest reported thus far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号