首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hereditary fructose intolerance (HFI) is a disease of carbohydrate metabolism that can result in hyperuricemia, hypoglycemia, liver and kidney failure, coma, and death. Currently, the only treatment for HFI is a strict fructose-free diet. HFI arises from aldolase B deficiency, and the most predominant HFI mutation is an alanine to proline substitution at position 149 (A149P). The resulting aldolase B with the A149P substitution (AP-aldolase) has activity that is <100-fold that of the wild type. The X-ray crystal structure of AP-aldolase at both 4 and 18 °C reveals disordered adjacent loops of the (α/β)(8) fold centered around the substitution, which leads to a dimeric structure as opposed to the wild-type tetramer. The effects of osmolytes were tested for restoration of structure and function. An initial screen of osmolytes (glycerol, sucrose, polyethylene glycol, 2,4-methylpentanediol, glutamic acid, arginine, glycine, proline, betaine, sarcosine, and trimethylamine N-oxide) reveals that glycine, along with similarly structured compounds, betaine and sarcosine, protects AP-aldolase structure and activity from thermal inactivation. The concentration and functional moieties required for thermal protection show a zwitterion requirement. The effects of osmolytes in restoring structure and function of AP-aldolase are described. Testing of zwitterionic osmolytes of increasing size and decreasing fractional polar surface area suggests that osmolyte-mediated AP-aldolase stabilization occurs neither primarily through excluded volume effects nor through transfer free energy effects. These data suggest that AP-aldolase is stabilized by binding to the native structure, and they provide a foundation for developing stabilizing compounds for potential therapeutics for HFI.  相似文献   

2.
Hereditary fructose intolerance (HFI) is a potentially lethal inborn error in metabolism caused by mutations in the aldolase B gene, which is critical for gluconeogenesis and fructose metabolism. The most common mutation, which accounts for 53% of HFI alleles identified worldwide, results in substitution of Pro for Ala at position 149. Structural and functional investigations of human aldolase B with the A149P substitution (AP-aldolase) have shown that the mutation leads to losses in thermal stability, quaternary structure, and activity. X-ray crystallography is used to reveal the structural basis of these perturbations. Crystals of AP-aldolase are grown at two temperatures (4 degrees C and 18 degrees C), and the structure solved to 3.0 angstroms resolution, using the wild-type structure as the phasing model. The structures reveal that the single residue substitution, A149P, causes molecular disorder around the site of mutation (residues 148-159), which is propagated to three adjacent beta-strand and loop regions (residues 110-129, 189-199, 235-242). Disorder in the 110-129-loop region, which comprises one subunit-subunit interface, provides an explanation for the disrupted quaternary structure and thermal instability. Greater structural perturbation, particularly at a Glu189-Arg148 salt bridge in the active-site architecture, is observed in the structure determined at 18 degrees C, which could explain the temperature-dependent loss in activity. The disorder revealed in these structures is far greater than that predicted by homology modeling and underscores the difficulties in predicting perturbations of protein structure and function by homology modeling alone. The AP-aldolase structure reveals the molecular basis of a hereditary disease and represents one of only a few structures known for mutant proteins at the root of the thousands of other inherited disorders.  相似文献   

3.
Hereditary fructose intolerance (HFI) is a recessively inherited disorder of carbohydrate metabolism caused by impaired function of human liver aldolase (B isoform). 25 enzyme-impairing mutations have been identified in the aldolase B gene. We have studied the HFI-related mutant recombinant proteins W147R, A149P, A174D, L256P, N334K and delta6ex6 in relation to aldolase B function and structure using kinetic assays and molecular graphics analysis. We found that these mutations affect aldolase B function by decreasing substrate affinity, maximal velocity and/or enzyme stability. Finally, the functional and structural analyses of the non-natural mutant Q354E provide insight into the catalytic role of Arg(303), whose natural mutants are associated to HFI.  相似文献   

4.
We report the construction of subunit interface mutants of rabbit muscle aldolase A with altered quaternary structure. A mutation has been described that causes nonspherocytic hemolytic anemia and produces a thermolabile aldolase (Kishi H et al., 1987, Proc Natl Acad Sci USA 84:8623-8627). The disease arises from substitution of Gly for Asp-128, a residue at the subunit interface of human aldolase A. To elucidate the role of this residue in the highly homologous rabbit aldolase A, site-directed mutagenesis is used to replace Asp-128 with Gly, Ala, Asn, Gln, or Val. Rabbit aldolase D128G purified from Escherichia coli is found to be similar to human D128G by kinetic analysis, CD, and thermal inactivation assays. All of the mutant rabbit aldolases are similar to the wild-type rabbit enzyme in secondary structure and kinetic properties. In contrast, whereas the wild-type enzyme is a tetramer, chemical crosslinking and gel filtration indicate that a new dimeric species exists for the mutants. In sedimentation velocity experiments, the mutant enzymes as mixtures of dimer and tetramer at 4 degrees C. Sedimentation at 20 degrees C shows that the mutant enzymes are > 99.5% dimeric and, in the presence of substrate, that the dimeric species is active. Differential scanning calorimetry demonstrates that Tm values of the mutant enzymes are decreased by 12 degrees C compared to wild-type enzyme. The results indicate that Asp-128 is important for interface stability and suggest that 1 role of the quaternary structure of aldolase is to provide thermostability.  相似文献   

5.
Hereditary fructose intolerance (HFI) is a potentially fatal autosomal recessive disease resulting from the catalytic deficiency of fructose 1-phosphate aldolase (aldolase B) in fructose-metabolizing tissues. The A149P mutation in exon 5 of the aldolase B gene, located on chromosome 9q21.3-q22.2, is widespread and the most common HFI mutation, accounting for 57% of HFI chromosomes. The possible origin of this mutation was studied by linkage to polymorphisms within the aldolase B gene. DNA fragments of the aldolase B gene containing the polymorphic marker loci from HFI patients homozygous for the A149P allele were amplified by PCR. Absolute linkage to a common PvuII RFLP allele was observed in 10 A149P homozygotes. In a more informative study, highly heterozygous polymorphisms were detected by direct sequence determination of a PCR-amplified aldolase B gene fragment. Two two-allele, single-base-pair polymorphisms, themselves in absolute linkage disequilibrium, in intron 8 (C at nucleotide 84 and A at nucleotide 105, or T at 84 and G at 105) of the aldolase B gene were identified. Mendelian segregation of these polymorphisms was confirmed in three families. Allele-specific oligonucleotide (ASO) hybridizations with probes for both sequence polymorphisms showed that 47% of 32 unrelated individuals were heterozygous at these loci; the calculated PIC value was .37. Finally, ASO hybridizations of PCR-amplified DNA from 15 HFI patients homozygous for the A149P allele with probes for these sequence polymorphisms revealed absolute linkage disequilibrium between the A149P mutation and the 84T/105G allele. These results are consistent with a single origin of the A149P allele and subsequent spread by genetic drift.  相似文献   

6.
N C Cross  D R Tolan  T M Cox 《Cell》1988,53(6):881-885
Hereditary fructose intolerance (HFI) is a human autosomal recessive disease caused by a deficiency of aldolase B that results in an inability to metabolize fructose and related sugars. We report here the first identification of a molecular lesion in the aldolase B gene of an affected individual whose defective protein has previously been characterized. The mutation is a G----C transversion in exon 5 that creates a new recognition site for the restriction enzyme Ahall and results in an amino acid substitution (Ala----Pro) at position 149 of the protein within a region critical for substrate binding. Utilizing this novel restriction site and the polymerase chain reaction, the patient was shown to be homozygous for the mutation. Three other HFI patients from pedigrees unrelated to this individual were found to have the same mutation: two were homozygous and one was heterozygous. We suggest that this genetic lesion is a prevailing cause of hereditary fructose intolerance.  相似文献   

7.
Hereditary fructose intolerance (HFI) is an inborn error of metabolism, inherited as an autosomal recessive disorder and caused by a decrease in the activity of fructose-1-phosphate aldolase (aldolase B) in affected individuals. Investigation of the molecular basis of HFI is reported here by the identification of two molecular lesions in the aldolase B gene of the HFI individual. Using polymerase chain reaction to specifically amplify exons at this locus and T7 polymerase for the sequence determination of these double-stranded fragments, we show the mutational heterogeneity of the proband. One allele, previously indicated by restriction analysis, was confirmed as A149P (Ala 149 to Pro in exon 5). The other allele was identified as a 4-bp deletion found in exon 4, a deletion which causes a frameshift at codon 118, resulting in a truncated protein of 132 amino acids. Segregation of these mutant alleles in the proband's family was shown by using allele-specific oligodeoxynucleotides to probe blots of amplified DNA. The techniques employed here represent a rapid and efficient method for detection of other mutations in families with this disease. In addition, the ability to detect mutant alleles by allele-specific hybridization offers a new method for definitive diagnosis, a method which avoids a fructose loading or liver-biopsy examination.  相似文献   

8.
Hereditary fructose intolerance (HFI) is a potentially fatal autosomal recessive disease of carbohydrate metabolism. HFI patients exhibit a deficiency of fructose 1-phosphate aldolase (aldolase B), the isozyme expressed in tissues that metabolize fructose. The eight protein-coding exons, including splicing signals, of the aldolase B gene from one HFI patient were amplified by PCR. Dot-blot hybridization of the amplified DNA with allele-specific oligonucleotide (ASO) probes revealed a previously described A149P mutation in one allele from the proband. The mutation in the other allele was identified by direct sequencing of the double-stranded PCR-amplified material from the proband. The nucleotide sequence of exon 9 revealed a 7-base deletion/1-base insertion (delta 7 + 1) at the 3' splice site of intron 8 in one allele. This mutation was confirmed by cloning PCR-amplified exon 9 of the proband and determining the sequence of each allele separately. ASO analysis of 18 family members confirmed the Mendelian inheritance of both mutant alleles. The implications of this unique splice-site mutation in HFI are discussed.  相似文献   

9.
Hereditary fructose intolerance (HFI) is an autosomal recessive condition caused by a deficiency of aldolase B. We have recently shown that three point mutations in this gene account for approximately 85% of HFI alleles in Europe and the United States and are thus of diagnostic importance. In this paper we define three new lesions in the aldolase B gene: two are large deletions, one of 1.65 kb and one of 1.4 kb; the third is a small deletion of 4 bp. We have determined the breakpoints of these deletions and have demonstrated that the presence of such lesions may complicate the genotyping of individuals for diagnosis of HFI.  相似文献   

10.
Pezza JA  Stopa JD  Brunyak EM  Allen KN  Tolan DR 《Biochemistry》2007,46(45):13010-13018
Conformational flexibility is emerging as a central theme in enzyme catalysis. Thus, identifying and characterizing enzyme dynamics are critical for understanding catalytic mechanisms. Herein, coupling analysis, which uses thermodynamic analysis to assess cooperativity and coupling between distal regions on an enzyme, is used to interrogate substrate specificity among fructose-1,6-(bis)phosphate aldolase (aldolase) isozymes. Aldolase exists as three isozymes, A, B, and C, distinguished by their unique substrate preferences despite the fact that the structures of the active sites of the three isozymes are nearly identical. While conformational flexibility has been observed in aldolase A, its function in the catalytic reaction of aldolase has not been demonstrated. To explore the role of conformational dynamics in substrate specificity, those residues associated with isozyme specificity (ISRs) were swapped and the resulting chimeras were subjected to steady-state kinetics. Thermodynamic analyses suggest cooperativity between a terminal surface patch (TSP) and a distal surface patch (DSP) of ISRs that are separated by >8.9 A. Notably, the coupling energy (DeltaGI) is anticorrelated with respect to the two substrates, fructose 1,6-bisphosphate and fructose 1-phosphate. The difference in coupling energy with respect to these two substrates accounts for approximately 70% of the energy difference for the ratio of kcat/Km for the two substrates between aldolase A and aldolase B. These nonadditive mutational effects between the TSP and DSP provide functional evidence that coupling interactions arising from conformational flexibility during catalysis are a major determinant of substrate specificity.  相似文献   

11.
The major cellulase secreted by the filamentous fungus Trichoderma reesei is cellobiohydrolase Cel7A. Its three-dimensional structure has been solved and various mutant enzymes produced. In order to study the potential use of T. reesei Cel7A in the alkaline pH range, the thermal stability of Cel7A was studied as a function of pH with the wild-type and two mutant enzymes using different spectroscopic methods. Tryptophan fluorescence and CD measurements of the wild-type enzyme show an optimal thermostability between pH 3.5-5.6 (Tm, 62 +/- 2 degrees C), at which the highest enzymatic activity is also observed, and a gradual decrease in the stability at more alkaline pH values. A soluble substrate, cellotetraose, was shown to stabilize the protein fold both at optimal and alkaline pH. In addition, unfolding of the Cel7A enzyme and the release of the substrate seem to coincide at both acidic and alkaline pH, demonstrated by a change in the fluorescence emission maximum. CD measurements were used to show that the five point mutations (E223S/A224H/L225V/T226A/D262G) that together result in a more alkaline pH optimum [Becker, D., Braet, C., Brumer, H., III, Claeyssens, M., Divne, C., Fagerstr?m, R.B., Harris, M., Jones, T.A., Kleywegt, G.J., Koivula, A., et al. (2001) Biochem. J.356, 19-30], destabilize the protein fold both at acidic and alkaline pH when compared with the wild-type enzyme. In addition, an interesting time-dependent fluorescence change, which was not observed by CD, was detected for the pH mutant. Our data show that in order to engineer more alkaline pH cellulases, a combination of mutations should be found, which both shift the pH optimum and at the same time improve the thermal stability at alkaline pH range.  相似文献   

12.
A truncated, 541-residue-long, Bacillus anthracis adenylate cyclase was expressed in Escherichia coli. The purified protein (CYA 62) exhibited catalytic and CaM-binding properties identical with those of the wild-type enzyme secreted by B. anthracis. The analysis of the secondary structure of the CYA 62 protein by Fourier transform infrared spectroscopy and circular dichroism revealed the dominance of beta-type structure. The protein shows a relatively low thermal stability with the midpoint denaturation temperature at 45 degrees C. A catalytically inactive variant of CYA 62 in which Gln substituted for Lys-346 (CYA 62 K346Q) was comparatively analyzed for its secondary structure and thermal stability, as well as ligand-binding properties with fluorescent derivatives of ATP and calmodulin. The K346Q variant of CYA 62 has a similar secondary structure and comparable calmodulin binding properties to those of the parent protein and exhibits only slightly reduced thermal stability (the apparent midpoint denaturation temperature is at 43 degrees C). Despite these similarities, the binding of 3'-anthraniloyl-2'-deoxy-ATP (a fluorescent ATP analogue) to the modified protein is severely impaired, from which we conclude that the prime function of Lys-346 in the wild-type enzyme from B. anthracis is to ensure tight binding of the nucleotide substrate to the active site.  相似文献   

13.
Fructose-1,6-(bis)phosphate aldolase is a ubiquitous enzyme that catalyzes the reversible aldol cleavage of fructose-1,6-(bis)phosphate and fructose 1-phosphate to dihydroxyacetone phosphate and either glyceral-dehyde-3-phosphate or glyceraldehyde, respectively. Vertebrate aldolases exist as three isozymes with different tissue distributions and kinetics: aldolase A (muscle and red blood cell), aldolase B (liver, kidney, and small intestine), and aldolase C (brain and neuronal tissue). The structures of human aldolases A and B are known and herein we report the first structure of the human aldolase C, solved by X-ray crystallography at 3.0 A resolution. Structural differences between the isozymes were expected to account for isozyme-specific activity. However, the structures of isozymes A, B, and C are the same in their overall fold and active site structure. The subtle changes observed in active site residues Arg42, Lys146, and Arg303 are insufficient to completely account for the tissue-specific isozymic differences. Consequently, the structural analysis has been extended to the isozyme-specific residues (ISRs), those residues conserved among paralogs. A complete analysis of the ISRs in the context of this structure demonstrates that in several cases an amino acid residue that is conserved among aldolase C orthologs prevents an interaction that occurs in paralogs. In addition, the structure confirms the clustering of ISRs into discrete patches on the surface and reveals the existence in aldolase C of a patch of electronegative residues localized near the C terminus. Together, these structural changes highlight the differences required for the tissue and kinetic specificity among aldolase isozymes.  相似文献   

14.
Rapamycin (RAPA) strongly inhibits lymphocyte activation and proliferation, but does not affect most of the activation-related gene expression at the mRNA level. In order to understand the mechanism of action of RAPA and to gain further insights in lymphocyte signalling which is impaired by RAPA, we screened for RAPA-sensitive genes using differential hybridization. The expression of human aldolase A gene was found to be inducible during T and B cell activation, and the induction was repressed by RAPA at both the mRNA and enzymatic levels. The other two important immunosuppressants, cyclosporin A and FK506, also inhibited the mitogen-induced upregulation. However, none of these three drugs inhibited the constitutive expression. There was no fluctuation of aldolase A expression during the cell cycle, and RAPA failed to block the first cell cycle after synchronization in Jurkat cells. However, the second cycle was hampered by RAPA, and this was correlated with the inhibition of aldolase A expression during this later stage. Since aldolase A is a key enzyme in glycolysis and lymphocytes mainly depend on glycolysis for energy supply, the data from this study suggest that aldolase A might be one of the downstream targets of RAPA. The inhibition of the enzyme upregulation might deprive the cells of additional supply of energy, and prevent the cells from entering an optimal status for proliferation. © 1996 Wiley-Liss, Inc.  相似文献   

15.
The diagnosis of hereditary fructose intolerance (HFI) presents a difficult challenge that often involves procedures of high risk to the patient. A relatively noninvasive method that involves molecular analysis of common alleles would offer a decided advantage. The molecular defects in the aldolase B gene were studied in 31 HFI subjects (23 pedigrees, 47 apparently independent alleles) from the United States and Canada. We screened for the three most common European alleles by direct hybridization of allele-specific oligodeoxyribonucleotides (ASOs) to portions of the aldolase B gene that were amplified by PCR. Fifty-five percent of mutant North American alleles were A149P (ala149----pro), the most common mutation in the European population. The other two alleles, A174D (ala174----asp) and N334K (asn334----lys), represent 11 and 2% of North American alleles, respectively. Nine patients, representing 32% of independent alleles studied, had an HFI allele that was not of this common missense class. This North American allele distribution is significantly different from that in Europe, where 13% of HFI alleles are not of this type. Preliminary screening of amplified DNA with this set of ASOs indicated that 80% of symptomatic HFI patients can be identified in the American population by this simple genetic test.  相似文献   

16.
Agrobacterium tumefaciens is a Gram‐negative bacterium and causative agent of Crown Gall disease that infects a variety of economically important plants. The annotated A. tumefaciens genome contains 10 putative dapA genes, which code for dihydrodipicolinate synthase (DHDPS). However, we have recently demonstrated that only one of these genes (dapA7) encodes a functional DHDPS. The function of the other nine putative dapA genes is yet to be determined. Here, we demonstrate using bioinformatics that the product of the dapA5 gene (DapA5) possesses all the catalytic residues canonical to 2‐keto‐3‐deoxygluconate (KDG) aldolase, which is a class I aldolase involved in glucose metabolism. We therefore expressed, purified, and characterized recombinant DapA5 using mass spectrometry, circular dichroism spectroscopy, analytical ultracentrifugation, and enzyme kinetics. The results show that DapA5 (1) adopts an α/β structure consistent with the TIM‐barrel fold of KDG aldolases, (2) possesses KDG aldolase enzyme activity, and (3) exists as a tight dimer in solution. This study shows for the first time that dapA5 from A. tumefaciens encodes a functional dimeric KDG aldolase.  相似文献   

17.
In order to elucidate the role of particular amino acid residues in the catalytic activity and conformational stability of human aldolases A and B [EC 4.1.2.13], the cDNAs encoding these isoenzyme were modified using oligonucleotide-directed, site-specific mutagenesis. The Cys-72 and/or Cys-338 of aldolase A were replaced by Ala and the COOH-terminal Tyr of aldolases A and B was replaced by Ser. The three mutant aldolases A thus prepared, A-C72A, A-C338A, and A-C72,338A, were indistinguishable from the wild-type enzyme with respect to general catalytic properties, while the replacement of Tyr-363 by Ser in aldolase A (A-Y363S) resulted in decreases of the Vmax of the fructose-1, 6-bisphosphate (FDP) cleavage reaction, activity ratio of FDP/fructose-1-phosphate (F1P), and the Km values for FDP and F1P. The wild-type and all the mutant aldolase A proteins exhibited similar thermal stabilities. In contrast, the mutant aldolase A proteins were more stable than the wild-type enzyme against tryptic and alpha-chymotryptic digestions. Based upon these results it is concluded that the strictly conserved Tyr-363 of human aldolase A is required for the catalytic function with FDP as the substrate, while neither Cys-72 nor Cys-338 directly takes part in the catalytic function although the two Cys residues may be involved in maintaining the correct spatial conformation of aldolase A. Replacement of Tyr-363 by Ser in human aldolase B lowered the Km value for FDP appreciably and also diminished the stability against elevated temperatures and tryptic digestion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The fructose-1,6-bis(phosphate) aldolase isologous tetramer tightly associates through two different subunit interfaces defined by its 222 symmetry. Both single- and double-interfacial mutant aldolases have a destabilized quaternary structure, but there is little effect on the catalytic activity. These enzymes are however thermolabile. This study demonstrates the temperature-dependent dissociation of the mutant enzymes and determines the dissociation free energies of both mutant and native aldolase. Subunit dissociation is measured by sedimentation equilibrium in the analytical ultracentrifuge. At 25 degrees C the tetramer-dimer dissociation constants for each single-mutant enzyme are similar, about 10(-6) M. For the double-mutant enzyme, sedimentation velocity experiments on sucrose density gradients support a tetramer-monomer equilibrium. Furthermore, sedimentation equilibrium experiments determined a dissociation constant of 10(-15) M3 for the double-mutant enzyme. By the same methods the upper limit for the dissociation constant of wild-type aldolase A is approximately 10(-28) M3, which indicates an extremely stable tetramer. The thermodynamic values describing monomer-tetramer and dimer-tetramer equilibria are analyzed with regard to possible cooperative interaction between the two subunit interfaces.  相似文献   

19.
Sequence alignment shows that residue Arg 284 (according to the numbering of the residues in formate dehydrogenase, FDH, from the methylotrophic bacterium Pseudomonas sp. 101) is conserved in NAD-dependent FDHs and D-specific 2-hydroxyacid dehydrogenases. Mutation of Arg 284 to glutamine and alanine results in a change of the catalytic, thermodynamic and spectral properties of FDH. In comparison to wild-type, the affinity of the mutants for the substrate (K(formate)m) or the transition state analogue (K(azide)i) decreases and correlates with the ability of the side chain of residue 284 to form H-bonds. In contrast, the affinity for the coenzyme (K(NAD)d or K(NAD)m) is either not affected or increases and correlates inversely with the partial positive charge of the side chain. The temperature dependence of circular dichroism (CD) spectra of the wild-type FDH and its Ala mutant has been studied over the 5-90 degrees C temperature range. Both proteins reveal regions of enhanced conformational mobility at the predenaturing temperatures (40-55 degrees C) associated with a change of enzyme kinetic parameters and a co-operative transition around 55-70 degrees C which is followed by the loss of enzyme activity. CD spectra of the wild-type and mutant proteins were deconvoluted and contributions from various types of secondary structure estimated. It is shown that the co-operative transition at 55-70 degrees C in the FDH protein globule is triggered by a loss of alpha-helical secondary structure. The results confirm the conclusion, from the crystal structures, that Arg 284 is directly involved in substrate binding. In addition this residue seems to exert a major structural role by supporting the catalytic conformation of the enzyme active centre.  相似文献   

20.
Fructose-1,6-bisphosphate aldolase from the thermophilic eubacteria, Thermus aquaticus YT-1, was cloned and sequenced. Nucleotide-sequence analysis revealed an open reading frame coding for a 33-kDa protein of 305 amino acids having amino acid sequence typical of thermophilic adaptation. Multiple sequence alignment classifies the enzyme as a class II B aldolase that shares similarity with aldolases from other extremophiles: Thermotoga maritima, Aquifex aeolicus, and Helicobacter pylori (49--54% identity, 76--81% homology). Taq FBP aldolase was overexpressed under tac promoter control in Escherichia coli and purified to homogeneity using heat treatment followed by two chromatographic steps. Yields of 40--50 mg of monodisperse protein were obtained per liter of culture. The quaternary structure is that of a homotetramer stabilized by an apparent 21-amino-acid insertion sequence. The recombinant protein is thermostable for at least 45 min at 80 degrees C with little residual activity below 60 degrees C. Kinetic characterization at 70 degrees C, the optimal growth temperature for T. aquaticus, indicates extreme negative subunit cooperativity (h = 0.32) with a limiting K(m) of 305 microM. The maximal specific activity (V(max)) is 46 U/mg at 70 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号