首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of chemical modification on the pseudocholinesterase and aryl acylamidase activities of purified human serum pseudocholinesterase was examined in the absence and presence of butyrylcholine iodide, the substrate of pseudocholinesterase. Modification by 2-hydroxy-5-nitrobenzyl bromide, N-bromosuccinimide, diethylpyrocarbonate and trinitrobenzenesulfonic acid caused a parallel inactivation of both pseudocholinesterase and aryl acylamidase activities that could be prevented by butyrylcholine iodide. With phenylglyoxal and 2,4-pentanedione as modifiers there was a selective activation of pseudocholinesterase alone with no effect on aryl acylamidase. This activation could be prevented by butyrylcholine iodide. N-Ethylmaleimide and p-hydroxy-mercuribenzoate when used for modification did not have any effect on the enzyme activities. The results suggested essential tryptophan, lysine and histidine residues at a common catalytic site for pseudocholinesterase and aryl acylamidase and an arginine residue (or residues) exclusively for pseudocholinesterase. The use of N-acetylimidazole, tetranitromethane and acetic anhydride as modifiers indicated a biphasic change in both pseudocholinesterase and aryl acylamidase activities. At low concentrations of the modifiers a stimulation in activities and at high concentrations an inactivation was observed. Butyrylcholine iodide or propionylcholine chloride selectively protected the inactivation phase without affecting the activation phase. Protection by the substrates at the inactivation phase resulted in not only a reversal of the enzyme inactivation but also an activation. Spectral studies and hydroxylamine treatment showed that tyrosine residues were modified during the activation phase. The results suggested that the modified tyrosine residues responsible for the activation were not involved in the active site of pseudocholinesterase or aryl acylamidase and that they were more amenable for modification in comparison to the residues responsible for inactivation. Two reversible inhibitors of pseudocholinesterase, namely ethopropazine and imipramine, were used as protectors during modification. Unlike the substrate butyrylcholine iodide, these inhibitors could not protect against the inactivation resulting from modification by 2-hydroxy-5-nitrobenzyl bromide, N-bromosuccinimide and trinitrobenzenesulfonic acid. But they could protect against the activation of pseudocholinesterase and aryl acylamidase by low concentrations of N-acetylimidazole and acetic anhydride thereby suggesting that the binding site of these inhibitors involves the non-active-site tyrosine residues.  相似文献   

2.
Glyoxalase I ((R)-S-lactoylglutathione methylglyoxal-lyase (isomerizing), EC 4.4.1.5) from monkey intestinal mucosa was purified to homogeneity. The purified enzyme had a molecular weight of 48,000, composed of two apparently identical subunits. Active-site modification was carried out on the purified enzyme in presence and absence of S-hexylglutathione, a reversible competitive inhibitor of glyoxalase I. Modification by tetranitromethane and N-acetylimidazole caused inactivation of the enzyme. Inactivation by N-acetylimidazole was reversible with hydroxylamine treatment, suggesting the importance of tyrosine residues for the activity of the enzyme. The enzyme was inactivated by 2-hydroxy-5-nitrobenzyl bromide, N-bromosuccinimide, 2,4,6-trinitrobenzenesulphonic acid, pyridoxal phosphate and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, indicating the importance of tryptophan, lysine and glutamic acid/aspartic acid residues for the activity of the enzyme. The enzyme was inactivated by diethyl pyrocarbonate and the activity was not restored by hydroxylamine treatment, suggesting that histidine residues may not be important for activity. Modification by N-ethylmaleimide and p-hydroxymercuribenzoate did not affect its activity, indicating that sulphydryl groups may not be important for activity. These studies indicated that the amino acids present in the active site of glyoxalase I from intestinal mucosa which may be important for activity are tyrosine, tryptophan, lysine and glutamic acid/aspartic acid residues.  相似文献   

3.
The pH variation of the kinetic parameters was examined for the kinase activity of the bifunctional enzyme aspartokinase--homoserine dehydrogenase I isolated from Escherichia coli. The V/K profile for L-aspartic acid indicates the loss of activity upon protonation of a cationic acid type group with a pK value near neutrality. Incubation of the enzyme with diethyl pyrocarbonate at pH 6.0 results in a loss of enzymic activity. The reversal of this reaction by neutral hydroxylamine, the appearance of a peak at 242 nm for the inactivated enzyme, and the observation of a pK value of 7.0 obtained from variation of the inactivation rate with pH all suggest that enzyme inactivation occurs by modification of histidine residues. The substrate L-aspartic acid protects one residue against inactivation, which implies that this histidine may participate in substrate binding or catalysis. Activity loss was also observed at high pH due to the ionization of a neutral acid group with a pK value of 9.8. The reactions of AK-HSD I with N-acetylimidazole and tetranitromethane have been investigated to obtain information about the functional role of tyrosyl residues in the enzyme. The acylation of tyrosines leads to inactivation of the enzyme, which can then be fully reversed by treatment with hydroxylamine. Incubation of the enzyme with tetranitromethane at pH 9.5 also leads to rapid inactivation, and the substrates of the kinase reaction provide substantial protection against inactivation. However, three tyrosines are protected by substrates, implying a structural role for these amino acids.  相似文献   

4.
A series of chemical modification reactions has been carried out to identify functional constituents of the active site of human neutrophil collagenase. The enzyme is reversibly inhibited by the transition metal chelating agent 1,10-phenanthroline, and inhibition is fully reversed by zinc. Removal of weakly bound metal ions by gel filtration inactivates collagenase, and activity is fully restored on immediate readdition of calcium. The enzyme is unaffected by reagents that modify serine, cysteine, and arginine residues. However, reaction with the carboxyl reagents cyclohexylmorpholinocarbodiimide and Woodward's Reagent K lowers the activity of the enzyme substantially. Acetylimidazole inactivates the enzyme, but activity is completely restored on addition of hydroxylamine. The enzyme is also inactivated by tetranitromethane, indicating that it contains an essential tyrosine residue. Acylation of collagenase with diethyl pyrocarbonate, diketene, acetic anhydride, or trinitrobenzenesulfonate inactivates the enzyme, and activity is not restored on addition of hydroxylamine, indicating the presence of an essential lysine residue.  相似文献   

5.
The effect of chemical modification on milk clotting and proteolytic activities of aspartyl protease obtained from Rhizomucor miehei NRRL 3500 was examined in the absence and the presence of its specific inhibitor pepstatin A. The effect on the ratio of milk clotting activity (MC) to proteolytic activity (PA), an index of the quality of milk clotting proteases was also determined. Modification of the enzyme with trinitrobenzenesulfonic acid, diethylpyrocarbonate and phenylglyoxal produced an increase in the ratio of MC/PA, while modification with 2- hydroxy-5-nitrobenzyl bromide did not affect the ratio. Modification with N-acetylimidazole resulted in a marginal increase in MC/PA ratio. Protection using pepstatin A during modification with phenylglyoxal, N-acetylimidazole and 2-hydroxy-5-nitrobenzyl bromide, protected both MC and PA. In the case of modification by diethylpyrocarbonate, pepstatin A protected only MC. Pepstatin A did not protect both the activities on the modification of the enzyme by trinitrobenzene sulfonic acid. These observations indicate the presence of arginine, tyrosine and tryptophan at the catalytic site of the enzyme, for eliciting MC and PA of the enzyme. In general, modification of the positively charged residues increases the MC/PA ratio of the enzyme. In addition the modified lysine residues responsible for the inactivation of the enzyme were not involved in the active site of the enzyme. Thus the lysine residues might have a secondary role in enzyme catalysis. Further, histidine at the catalytic site was found to be exclusively involved in milk clotting activity. The enzyme with modified histidine residues were more susceptible to autocatalysis, indicating that histidine residues protect the enzyme against autolysis.  相似文献   

6.
The manganese-containing (MnSOD) and iron-containing (FeSOD) superoxide dismutases from Escherichia coli are extensively (greater than 95%) inactivated by treatment with phenylglyoxal. The relatively high concentrations of phenylglyoxal and high pH required for optimal inactivation suggest that inactivation may be due to modification of an arginine with a "normal" elevated pKa, i.e., one not in an active site cavity where the pKa is likely to be lowered because of lower solvent accessibility and decreased polarity of the local environment. Treatment of either enzyme with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, 2-hydroxy-5-nitrobenzyl bromide, m-chloroperoxybenzoate, or tetranitromethane causes no inactivation, while 2,4,6-trinitrobenzenesulfonate, N-acetylimidazole, or diethyl pyrocarbonate cause 55-75% inactivation of each enzyme. Failure of hydroxylamine to reverse inactivation by the latter two suggests that in each instance loss of activity is due to lysine modification. The previously reported inactivation of FeSOD by H2O2 was further investigated, and no evidence was found for an affinity mechanism, i.e., a reversible binding of peroxide that precedes inactivation.  相似文献   

7.
The effect of chemical modification on the acetylcholinesterase and the aryl acylamidase activities of purified acetylcholinesterase from electric eel and basal ganglia was investigated in the presence and absence of acetylcholine, the substrate of acetylcholinesterase, and 1,5-bis[4-(allyldimethylammonium)phenyl]pentan-3-one dibromide (BW284C51), a reversible competitive inhibitor of acetylcholinesterase. Trinitrobenzenesulfonic acid, pyridoxal phosphate, acetic anhydride, diethyl pyrocarbonate, and 2-hydroxy-5-nitrobenzyl bromide under specified conditions inactivated both acetylcholinesterase and aryl acylamidase in the absence of acetylcholine and BW284C51. Chemical modifications in the presence of acetylcholine and BW284C51 by all the above except diethyl pyrocarbonate selectively prevented the loss of acetylcholinesterase but not aryl acylamidase activity; modification by diethyl pyrocarbonate in the presence of acetylcholine and BW284C51 prevented the loss of both acetylcholinesterase and aryl acylamidase activities. Treatment with N-acetylimidazole resulted in the inactivation of acetylcholinesterase and the activation of aryl acylamidase. These changes in both the activities could be prevented by acetylcholine and BW284C51. Modification by phenylglyoxal, 2,4-pentanedione, or N-ethylmaleimide did not affect the enzyme activities. Indophenylacetate hydrolase activity followed a pattern similar to that of acetylcholinesterase in all the above modification studies. The results suggested essential lysine, tyrosine, tryptophan, and histidine residues for the active center of acetylcholinesterase and essential lysine, histidine, and tryptophan residues for the active center of aryl acylamidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The influence of some reagents modifying NH2-, SH-groups or imidazole moiety, on the prostaglandin endoperoxide synthetase activity was studied. Acetaldehyde, pyridoxal phosphate, dithiobis (nitrobenzoic) acid and iodoacetamide were found not to affect the enzyme activity. The activity was abolished as a result of the interaction with p-chloromercuribenzoic acid and diethyl pyrocarbonate. The hemin completely protected the apo-enzyme against the inactivation with diethyl pyrocarbonate. The assumption about the presence of imidazole moiety in the active site of the enzyme was made.  相似文献   

9.
The pH rate profile for the hydrolysis of diethyl-p-nitrophenyl phosphate catalyzed by the phosphotriesterase from Pseudomonas diminuta shows a requirement for the deprotonation of an ionizable group for full catalytic activity. This functional group has an apparent pKa of 6.1 +/- 0.1 at 25 degrees C, delta Hion of 7.9 kcal/mol, and delta Sion of -1.4 cal/K.mol. The enzyme is not inactivated in the presence of the chemical modification reagents dithiobis-(2-nitrobenzoate), methyl methane thiosulfonate, carbodiimide, pyridoxal, butanedione, or iodoacetic acid and thus cysteine, asparate, glutamate, lysine, and arginine do not appear to be critical for catalytic activity. However, the phosphotriesterase is inactivated completely with methylene blue, Rose Bengal, or diethyl pyrocarbonate. The enzyme is not inactivated by diethyl pyrocarbonate in the presence of bound substrate analogs, and inactivation with diethyl pyrocarbonate is reversible upon addition of neutralized hydroxylamine. The modification of a single histidine residue by diethyl pyrocarbonate, as shown by spectrophotometric analysis, is responsible for the loss of catalytic activity. The pKinact for diethyl pyrocarbonate modification is 6.1 +/- 0.1 at 25 degrees C. These results have been interpreted to suggest that a histidine residue at the active site of phosphotriesterase is facilitating the reaction by general base catalysis.  相似文献   

10.
The involvement of tyrosyl residues in the function of D-beta-hydroxybutyrate dehydrogenase, a lipid-requiring enzyme, has been investigated by using several tyrosyl modifying reagents, i.e., N-acetylimidazole, a hydrophilic reagent, and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and tetranitromethane, two hydrophobic reagents. Modification of the tyrosyl residues highly inactivates the derived enzyme: Treatment of the enzyme with 7-chloro-4-nitro[14C]benzo-2-oxa-1,3-diazole leads to an absorbance at 380 nm and to an incorporation of about 1 mol of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole per polypeptide chain for complete inactivation. Inactivation by N-acetylimidazole induces a decrease in absorbance at 280 nm which can be reversed by hydroxylamine treatment. On the other hand, the ligands of the active site, such as methylmalonate, a pseudosubstrate, and NAD+ (or NADH), do not protect the enzyme against inactivation. In contrast, the presence of phospholipids strongly protects the enzyme against hydrophobic reagents. Finally, previous modification of the enzyme with N-acetylimidazole does not affect the incorporation of 7-chloro-4-nitro[14C]benzo-2-oxa-1,3-diazole while modification with tetranitromethane does. These results indicate the existence of two classes of tyrosyl residues which are essential for enzymatic activity, and demonstrate their location outside of the active site. One of these residues appears to be located close to the enzyme-phospholipid interacting sites. These essential residues may also be essential for maintenance of the correct active conformation.  相似文献   

11.
J M Argüello  J H Kaplan 《Biochemistry》1990,29(24):5775-5782
Treatment of renal Na,K-ATPase with N-acetylimidazole (NAI) results in loss of Na,K-ATPase activity. The inactivation kinetics can be described by a model in which two classes of sites are acetylated by NAI. The class I sites are rapidly reacting, the acetylation is prevented by the presence of ATP (K0.5 congruent to 8 microM), and the inactivation is reversed by incubation with hydroxylamine. These data suggest that the class I sites are tyrosine residues at the ATP binding site. The second class of sites are more slowly reacting, not protected by ATP, nor reversed by hydroxylamine treatment. These are probably lysine residues elsewhere in the protein. The associated K-stimulated p-nitrophenylphosphatase activity is inactivated by acetylation of the class II sites only; thus the tyrosine residues associated with ATP binding to the catalytic center are not essential for phosphatase activity. Inactivated enzyme no longer has high-affinity ATP binding associated with the catalytic site, although low-affinity ATP effects (inhibition of phosphatase and deocclusion of Rb) are still present. The inactivated enzyme can still be phosphorylated by Pi, occlude Rb+ ions, and undergo the major conformational transitions between the E1 Na and E2 K forms of the enzyme. Thus acetylation of the Na,K-ATPase by NAI inhibits high-affinity ATP binding to the catalytic center and produces inactivation.  相似文献   

12.
Diphosphopyridine nucleotide-linked isocitrate dehydrogenase from bovine heart was inactivated at neutral pH by bromoacetate and diethyl pyrocarbonate and by photooxidation in the presence of methylene blue or rose bengal. Inactivation by diethyl pyrocarbonate was reversed by hydroxylamine. Loss of activity by photooxidation at pH 7.07 was accompanied by progressive destruction of histidine with time; loss of 83% of the enzyme activity was accompanied by modification of 1.1 histidyl residues per enzyme subunit. The pH-rate profiles of inactivation by photooxidation and by diethyl pyrocarbonate modification showed an inflection point around pH 6.6, in accord with the pKa for a histidyl residue of a protein. Partial protection against inactivation by photooxidation or diethyl pyrocarbonate was obtained with substrate (manganous isocitrate or magnesium isocitrate) or ADP; the combination of substrate and ADP was more effective than the components singly. As demonstrated by differential enzyme activity assays between pH 6.4 and pH 7.5 with and without 0.67 mm ADP, modification of the reactive histidyl residue of the enzyme caused a preferential loss of the positive modulation of activity by ADP. The latter was particularly apparent when substrate partially protected the enzyme against inactivation by rose bengal-induced photooxidation.  相似文献   

13.
A series of chemical modification reactions have been carried out with rabbit pulmonary angiotensin converting enzyme (dipeptidyl carboxypeptidase, EC 3.4.15.1) in order to identify amino acid residues essential for its catalytic activity. The enzyme is rapidly inactivated by nitration with tetranitromethane and by O-acetylation with N-acetylimidazole. Deacylation with hydroxylamine restores activity to the acetylated enzyme, while the inhibitor, β-phenylpropionyl-L-phenylalanine, protects against acetylimidazole inactivation. These results indicate the presence of functional tyrosyl residues at the active site of the enzyme. Reaction with butanedione decreases activity, an effect that is markedly enhanced by the presence of borate, indicating essential arginyl residues. In addition, activity is diminished by the carboxyl reagent, cyclohexylmorpholinoethyl carbodiimide. Thus, the three functional residues long known to be components of the active site of bovine carboxypeptidase A, tyrosyl, arginyl, and glutamyl, have counterparts in the angiotensin converting enzyme. The effects of pyridoxal phosphate and a number of other reagents demonstrate that the converting enzyme also contains an important lysyl residue.  相似文献   

14.
Treatment of human placental brush-border membrane vesicles with four tyrosine group-specific reagents, N-acetylimidazole, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), tetranitromethane and p-nitrobenzesulfonyl fluoride, inhibited NaCl gradient-driven taurine uptake in these vesicles without affecting the vesicle integrity. The relative potency of these reagents to inhibit the transporter was in the following order: tetranitromethane greater than NBD-Cl greater than p-nitrobenzenesulfonyl fluoride greater than N-acetylimidazole. The inhibition by N-acetylimidazole was reversible with hydroxylamine and the inhibition by NBD-Cl was reversible with 2-mercaptoethanol. Kinetic analysis of taurine uptake in control and in N-acetylimidazole-treated membrane vesicles revealed that the inhibition was primarily due to a reduction in the maximal velocity. There was no change in the affinity of the transporter for taurine in control and treated vesicles. The transporter could be protected from the N-acetylimidazole-induced inhibition by Na+. The dependence of taurine uptake rate on extravesicular Na+ concentration was sigmoidal and analysis of the data revealed that two Na+ ions were involved per transport of one taurine molecule. It is concluded that tyrosine residues are essential for optimal transport function of the human placental taurine transporter and that these critical tyrosine residues are located at or near the Na+-binding site of the transporter.  相似文献   

15.
The reaction of rabbit muscle creatine kinase with diethyl pyrocarbonate was studied. It was found that up to five of the sixteen histidine groups per enzyme subunit could be modified, and under the conditions employed, there was no evidence for formation of the disubstituted derivative of histidine. Evidence was obtained for small but significant amounts of modification of lysine and cysteine groups; tyrosine groups were not modified. Modification of the enzyme led to inactivation; this could be protected against by inclusion of substrates or, more effectively, by inclusion of the combination MgADP plus creatine plus nitrate, which is thought to produce a 'transition-stage-analogue' complex. Analysis of data on the rates of inactivation and the stoicheiometry of modification suggested that there was one essential histidine group per enzyme subunit, modification of which led to inactivation.  相似文献   

16.
Liquefying alpha-amylase from Bacillus amyloliquefaciens was inactivated by treatment with tetranitromethane and N-acetylimidazole. The loss of activity occurred with modification of five tyrosine residues. Preincubation of the enzyme with either the substrate or the competitive inhibitor at saturating levels provided complete protection against inactivation. However, the presence of substrate/inhibitor in the reaction mixture protected only two of the five modifiable tyrosine residues, suggesting the involvement of only two tyrosine residues at the active center. This was confirmed when hydroxylamine treatment of the acetylated enzyme fully restored the enzymatic activity. Both nitration and acetylation increased the apparent Km of the enzyme for soluble starch, which indicated that the tyrosine residues are involved in substrate binding. Reduction of nitrotyrosine residues to aminotyrosine residues failed to restore the enzymatic activity. So, the loss of activity on modification of tyrosine residues was ascribed to conformational perturbances and not simply to the changes in the ionic character of tyrosine residues.  相似文献   

17.
A specific chemical modification of histidyl residues in tyrosyl-tRNA synthetase by diethyl pyrocarbonate was performed. It is shown that five of sixteen histidyl residues can react with diethyl pyrocarbonate in the native conditions. Modification of two histidyl residues per dimer results in the inactivation of tyrosyl-tRNA synthetase in both steps of the tRNATyr aminoacylation. All substrates protect tyrosyl-tRNA synthetase against inactivation with diethyl pyrocarbonate, the most effective protector being combination of ATP and tyrosine. Histidyl residues of tyrosyl-tRNA synthetase are suggested to be involved in the catalytic mechanism of aminoacylation of tRNATyr.  相似文献   

18.
Diethyl pyrocarbonate inactivated D-xylose isomerases from Streptomyces violaceoruber, Streptomyces sp., Lactobacillus xylosus and Lactobacillus brevis with second-order rate constants of 422, 417, 99 and 92 M-1.min-1 respectively (at pH 6.0 and 25 degrees C). Activity was completely restored by the addition of neutral hydroxylamine, and total protection was afforded by the substrate analogue xylitol in the presence of either Mg2+ or Mn2+ according to the genus studied. The difference spectra of the modified enzymes revealed an absorption maximum at 237-242 nm, characteristic for N-ethoxycarbonylhistidine. In addition, the spectrum of ethoxycarbonylated D-xylose isomerase from L. xylosus showed absorption minima at both 280 and 230 nm, indicative for modification of tyrosine residues. Nitration with tetranitromethane followed by diethyl pyrocarbonate treatment eliminated the possibility that modification of tyrosine residues was responsible for inactivation, and resulted in modification of one non-essential tyrosine residue and six histidine residues. Inactivation of the other D-xylose isomerases with diethyl pyrocarbonate required the modification of one (L. brevis), two (Streptomyces sp.) and four (S. violaceoruber) histidine residues per monomer. Spectral analysis and maintenance of total enzyme activities further indicated that either xylitol Mg2+ (streptomycetes) or xylitol Mn2+ (lactobacilli) prevented the modification of one crucial histidine residue. The overall results thus provide evidence that a single active-site histidine residue is involved in the catalytic reaction mechanism of D-xylose isomerases.  相似文献   

19.
Essential carboxy groups in xylanase A.   总被引:10,自引:0,他引:10       下载免费PDF全文
An endo-1,4-beta-xylanase of Schizophyllum commune was purified to homogeneity through a modified procedure employing DEAE-Sepharose CL-6B and gel-filtration chromatography on Sephadex G-50. The role of carboxy groups in the catalytic mechanism was delineated through chemical modification studies. The water-soluble carbodi-imide 1-(4-azonia-4,4-dimethylpentyl)-3-ethylcarbodi-imide iodide (EAC) inactivated the xylanase rapidly and completely in a pseudo-first-order process. Other carbodi-imides and Woodward's Reagent K were less effective in decreasing enzymic activity. Significant protection of the enzyme against EAC inactivation was provided by a mixture of neutral xylo-oligomers. The pH-dependence of the EAC inactivation revealed the presence of a critical ionizable group with a pKa value of 6.6 in the active site of the xylanase. Treatment of the enzyme with diethyl pyrocarbonate resulted in modification of all three histidine residues in the enzyme with 100% retention of original enzymic activity. Titration of the enzyme with 5,5-dithiobis-(2-nitrobenzoic acid) and treatment with iodoacetimide and p-chloromercuribenzoate indicated the absence of free/reactive thiol groups. Reaction of the xylanase with tetranitromethane did not result in a significant activity loss as a result of modification of tyrosine residues.  相似文献   

20.
Uridine phosphorylase from Escherichia coli is inactivated by diethyl pyrocarbonate at pH 7.1 and 10 degrees C with a second-order rate constant of 840 M-1.min-1. The rate of inactivation increases with pH, suggesting participation of an amino acid residue with pK 6.6. Hydroxylamine added to the inactivated enzyme restores the activity. Three histidine residues per enzyme subunit are modified by diethyl pyrocarbonate. Kinetic and statistical analyses of the residual enzymic activity, as well as the number of modified histidine residues, indicate that, among the three modifiable residues, only one is essential for enzyme activity. The reactivity of this histidine residue exceeded 10-fold the reactivity of the other two residues. Uridine, though at high concentration, protects the enzyme against inactivation and the very reactive histidine residue against modification. Thus it may be concluded that uridine phosphorylase contains only one histidine residue in each of its six subunits that is essential for enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号