首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The presence and localization of a reversible hydrogenase in non-N2-fixing cells of the filamentous cyanobacterium Anabaena variabilis were investigated by in vitro activity measurements, native-PAGE/activity stain, SDS-PAGE/Western immunoblots, and immunogold localization. Reversible hydrogenase activity was induced approximately 100-fold by sparging the cell suspensions with a mixture of 99% argon and 1% CO2 for 20–26 h. Native-PAGE/activity stain demonstrated the presence of an in vitro functional enzyme with an apparent molecular mass of 118 kDa. Native-PAGE/Western immunoblots, using polyclonal antisera directed against purified hydrogenase from the purple sulphur bacterium Thiocapsa roseopersicina, detected two native proteins with molecular masses of 118 and 133 kDa, respectively. SDS-PAGE/Western immunoblots confirmed the presence of a single polypeptide with a molecular mass of approximately 40 kDa in both induced and non-induced cells. Immunocytolocalization experiments using ultrathin sections again demonstrated the presence of hydrogenase in both induced and non-induced cells. A higher specific labeling was associated with the thylakoid regions, which, using an image analyzer, was calculated to be approximately 4 x higher per cell area compared to in the centroplasm. It is suggested that anaerobic incubation induces higher reversible hydrogenase activity, regulated mainly at the level of activating (pre)existing form(s) of inactive enzyme(s)/protein(s), maybe in combination with synthesis of additional subunit(s).  相似文献   

2.
A photoactive photosystem I complex has been purified from the filamentous, nitrogen-fixing cyanobacterium Anabaena variabilis ATCC 29413. Cells were broken using glass beads, and the membrane fraction was solubilized with beta-dodecyl maltoside followed by two rounds of fast protein liquid chromatography on anion exchange columns. The polypeptide composition of the isolated complex was determined by sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis and N-terminal amino acid sequencing of the fractionated proteins. The purified complex consists of at least 11 proteins, identified as the PsaA, PsaB, PsaC, PsaD, PsaE, PsaF, PsaI, PsaJ, PsaK, PsaL, and PsaN proteins. The spectrum of the flash-induced absorbance change measured between 670 and 830 nm shows that the purified complex contains 99 +/- 11 chlorophyll a molecules per P700, the primary donor in photosystem I. The kinetics of the rereduction of oxidized P700 following an actinic flash indicate that forward electron transfer from P700 to the FA/FB iron-sulfur center acceptors is functional in the isolated complex.  相似文献   

3.
Heterocyst-forming filamentous cyanobacteria, such as Anabaena variabilis ATCC 29413, require molybdenum as a component of two essential cofactors for the enzymes nitrate reductase and nitrogenase. A. variabilis efficiently transported (99)Mo (molybdate) at concentrations less than 10(-9) M. Competition experiments with other oxyanions suggested that the molybdate-transport system of A. variabilis also transported tungstate but not vanadate or sulfate. Although tungstate was probably transported, tungsten did not function in place of molybdenum in the Mo-nitrogenase. Transport of (99)Mo required prior starvation of the cells for molybdate, suggesting that the Mo-transport system was repressed by molybdate. Starvation, which required several generations of growth for depletion of molybdate, was enhanced by growth under conditions that required synthesis of nitrate reductase or nitrogenase. These data provide evidence for a molybdate storage system in A. variabilis. NtcA, a regulatory protein that is essential for synthesis of nitrate reductase and nitrogenase, was not required for transport of molybdate. The closely related strain Anabaena sp. PCC 7120 transported (99)Mo in a very similar way to A. variabilis.  相似文献   

4.
Electronmicroscopical investigations of light activated akinetes in different phases before outgrowth of the germinating cell showed two alterations in the akinete envelope, obviously in connection with the germination process. After induction of germination the akinetes show formation of an expanding more or less electron dense layer between the outer cell wall layer (outer membrane, LIV) and the condensed part of the akinete coat (the transformed sheath of the vegetative cell). Between this new formed layer and the mentioned part of the akinete coat thick laminar layers are deposited which contain alternately electron dense and electron transparent strata. The expanding layer is assumed to be a mucous layer which acts as swelling body causing, after bursting of the layered shell, the expulsion of the germinating cell in the manner characteristic for Anabaena variabilis.  相似文献   

5.
6.
7.
A 25 kDa protein associated with Photosystem I (PS I) of the divinyl-chlorophyll a/b-containing oxychlorobacterium Prochlorococcus marinus SS120 (CCMP 1375) was isolated, and the amino acid sequences of the N-terminus and one internal peptide were determined. Polymerase chain reaction (PCR) with degenerate primers yielded a 92 bp fragment, which was used to isolate the complete gene from a genomic library. The corresponding gene was isolated from a library of Prochlorococcus sp. MED4 (CCMP 1378). In both Prochlorococcus strains, the gene encodes a protein of 199 amino acids. The gene products show a strong sequence similarity to the PS I subunit PsaL. The N-terminus contains a hydrophilic domain that has not been found in PsaL proteins from other organisms. In both strains, sequences encoding a protein similar to PsaI were found upstream of the psaL gene. Both genes are transcribed in the same direction.  相似文献   

8.
9.
The two reaction-centre proteins of the photosystem I (PSI) complex are encoded by two adjacent genes named psaA and psaB. We have performed targeted mutagenesis to insertionally inactivate each of these genes in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. The resulting mutant strains, termed psaA:: NmR and psaB:: NmR, were blue because of a high ratio of phycobilin to chlorophyll and were unable to grow in light. These mutant cells also lacked chemically reducible P700 (the reaction-centre chlorophylls of PSI) and as a consequence did not exhibit any PSI-mediated photochemical activity. However, their photosystem II (PSII) complexes were fully active. The loss of the PsaA and PsaB proteins and their associated chlorophyll molecules resulted in a five- to sevenfold decrease in the chlorophyll/PSII ratio in the mutant cells relative to the wild-type cells. Interestingly, the psaS:: NmR and not the psaA:: NmR mutant strain retained a small fluorescence peak (77K) at 721 nm originating from chlorophyll molecule(s) presumably bound to a small amount of the PsaA protein present in the psaB mutant. These results demonstrate that this organism is suitable for the manipulation of PSI reaction-centre proteins.  相似文献   

10.
Incubation in the dark of photoautotrophically grown N2-fixing heterocystous cyanobacteria leads to a loss of nitrogenase activity. Original levels of nitrogenase activity are rapidly regained upon re-illumination of the filaments, in a process dependent on de novo protein synthesis. Ammonia, acting indirectly through some of its metabolic derivatives, inhibits the light-promoted development of nitrogenase activity in filaments of Anabaena sp. ATCC 33047 and several other cyanobacteria containing mature heterocysts. The ammonia-mediated control system is also operative in N2-fixing filaments in the absence of any added source of combined nitrogen, with the ammonia resulting from N2-fixation already partially inhibiting full expression of nitrogenase. High nitrogenase levels, about two-fold higher than those in normal N2-fixing Anabaena sp. ATCC 33047, are found in cell suspensions which have been treated with the glutamine synthetase inhibitor l-methionine-d,l-sulfoximine or subjected to nitrogen starvation. Filaments treated in either way are insensitive to the ammonia-promoted inhibition of nitrogenase development, although this insensitivity is only transitory for the nitrogen-starved filaments, which become ammonia-sensitive once they regain their normal nitrogen status.Abbreviations Chl chlorophyll - EDTA ethylenediaminetetraacetic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

11.
The filamentous nitrogen-fixing cyanobacterium Anabaena variabilis ATCC 29413 is capable of heterotrophic growth in complete darkness. After 6 months of continuous dark growth, both the autotrophic and heterotrophic cultures were found to have the same doubling time of 14 h. On a cellular basis, the chlorophyll content remained the same and the phycobilin content showed an increase in the dark-grown cultures. Fluorescence emission spectra at 77 K of dark-grown cells indicated that the phycobilisomes are functionally associated with photosystem II (PSII). Moreover, upon transfer to light, the dark-grown cells readily evolved oxygen. Although photosystem I (PSI) and whole chain-mediated electron transfer rates were comparable in both types of cultures, the rate of PSII-mediated electron transfer was found to be 20% higher in dark-grown cells. The PSI to PSII ratio changed from 6:1 in autotrophic cultures to 4:1 in the dark-grown cells. These changes in the rate of PSII electron transfer and in the stoichiometry between the two photosystems under dark, heterotrophic growth conditions were brought about by a preferential increase in the number of PSII units while the number of PSI units remained unchanged. The advantages of using this organism in the selection of PSI-deficient mutants are discussed.  相似文献   

12.
The photophobic responses in the Cyanobacterium Anabaena variabilis which belongs to the Nostocaceae have been studied with aid of a population method as well as by single trichome observations. In white light experiments both step-up and step-down photophobic responses were observed. The wavelength dependence was examined at a constant fluence rate. The photophobically active light is absorbed by the photosynthetic pigments, mainly by the phycobiliproteins and chlorohyll a. Above 690 nm only negative reactions were observed, i.e. the trichomes left the light trap. In white light experiments DCMU strongly inhibited the photophobic responses, whereas photokinesis was not affected to the same extent indicating that the reaction is coupled with the non cyclic photosynthetic electron transport. DBMIB impaired the photophobic behaviour only slightly. It seems that the photophobic responses of A. variabilis are controlled by a similar mechanism as in Phormidium uncinatum (Oscillatoriaceae) although the two families and, hence, the two species differ in their movement mechanism as well as in their photoactic behaviour.  相似文献   

13.
Sporulation in the filamentous cyanobacterium Anabaena cylindrica involves the transformation of a vegetative cell into a thick-walled resistant structure. Because this process occurs at predictable loci in each filament and involves a significant increase in cell size, the course of sporulation in a culture can be quantitatively determined. Sporulation occurs during the late logarithmic phase of a culture, a time of slow but unbalanced growth. Under the conditions imployed here, sporulation is not a synchronous event either between or within filaments. The information in this paper provides an estimate of the rate of spore differentiation and supports the previous notion that in the formation of strings of more than one spore, a gradient of spore maturation exists.  相似文献   

14.
The in situ location of the electron carrier protein cytochrome C 553 (cyt c 553) has been investigated in both vegetative cells and heterocysts of the cyanobacterium Anabaena variabilis ATCC 29413 using the antibody-gold technique, carried out as a post-ernbedding immunoelectron microscopy procedure. When using a rabbit polyclonal anti-cyt c 553 specific antiserum an intense labelling, associated mainly with the cell periphery (cytoplasmic membrane and periplasmic area), was seen in both heterocysts and vegetative cells. The selective release of most of the cellular cyt c 553 during a Tris-EDTA treatment confirms a periplasmic localization of this protein in A. variabilis. The results indicate that most of cyt c 553 is located in the periplasmic space. The roles ascribed to this protein in both respiration and photosynthesis in cyanobacteria are discussed.Abbreviations Cyt c 553 cytochrome c 553 - PBS phosphate buffered saline (20 mM sodium phosphate, 0.9% NaCl, pH 7.4) - PMSF phenylmethylsulfonyl fluoride Recipient of a Research Fellowship of the Alexander von Humboldt Foundation (Bonn, FRG) for a leave to the University of Konstanz.  相似文献   

15.
To determine the fluorescence properties of cyanobacterial Photosystem I (PS I) in relatively intact systems, fluorescence emission from 20 to 295 K and polarization at 77 K have been measured from phycobilisomes-less thylakoids of Synechocystis sp. PCC 6803 and a mutant strain lacking Photosystem II (PS II). At 295 K, the fluorescence maxima are 686 nm in the wild type from PS I and PS II and at 688 nm from PS I in the mutant. This emission is characteristic of bulk antenna chlorophylls (Chls). The 690-nm fluorescence component of PS I is temperature independent. For wild-type and mutant, 725-nm fluorescence increases by a factor of at least 40 from 295 to 20 K. We model this temperature dependence assuming a small number of Chls within PS I, emitting at 725 nm, with an energy level below that of the reaction center, P700. Their excitation transfer rate to P700 decreases with decreasing temperature increasing the yield of 725-nm fluorescence.Fluorescence excitation spectra of polarized emission from low-energy Chls were measured at 77 and 295 K on the mutant lacking PS II. At excitation wavelengths longer than 715 nm, 760-nm emission is highly polarized indicating either direct excitation of the emitting Chls with no participation in excitation transfer or total alignment of the chromophores. Fluorescence at 760 nm is unpolarized for excitation wavelengths shorter than 690 nm, inferring excitation transfer between Chls before 760-nm fluorescence occurs.Our measurements illustrate that: 1) a single group of low-energy Chls (F725) of the core-like PS I complex in cyanobacteria shows a strongly temperature-dependent fluorescence and, when directly excited, nearly complete fluorescence polarization, 2) these properties are not the result of detergent-induced artifacts as we are examining intact PS I within the thylakoid membrane of S. 6803, and 3) the activation energy for excitation transfer from F725 Chls to P700 is less than that of F735 Chls in green plants; F725 Chls may act as a sink to locate excitations near P700 in PS I.Abbreviations Chl chlorophyll - BChl bacteriochlorophyll - PS Photosystem - S. 6803 Synechocystis sp. PCC 6803 - PGP potassium glycerol phosphate  相似文献   

16.
Teruo Ogawa  Yorinao Inoue 《BBA》1983,724(3):490-493
In Anabaena variabilis, a postillumination CO2 burst originating from a pool of HCO3? is described here. This burst is insensitive to the electron-transport inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, but is abolished by carbonyl cyanide p-trifluoromethoxyphenylhydrazone and N,N′-dicyclohexylcarbodiimide (inhibitors of photophosphorylation). The action spectrum for the burst shows that only Photosystem I is involved.  相似文献   

17.
18.
The nucleotide sequences of the genes coding for the subunits of the Photosystem I (PS I) core, PsaA and PsaB were determined for the marine prokaryotic oxyphototrophs Prochlorococcus sp. MED4 (CCMP1378), P. marinus SS120 (CCMP1375) and Synechococcus sp. WH7803. Divergence of these sequences from those of both freshwater cyanobacteria and higher plants was remarkably high, given the conserved nature of PsaA and PsaB proteins. In particular, the PsaA of marine prokaryotes showed several specific insertions and deletions with regard to known PsaA sequences. Even in between the two Prochlorococcus strains, which correspond to two genetically different ecotypes with shifted growth irradiance optima, the sequence identity was only 80.2% for PsaA and 88.9% for PsaB. Possible causes and implications of the fast evolution rates of these two PS I core subunits are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Hydrogen peroxide inhibits photosynthetic O2 evolution. It has been shown that H2O2 destroys the function of the oxygen-evolving complex (OEC) in some chloroplast and Photosystem (PS) II preparations causing release of manganese from the OEC. In other preparations, H2O2 did not cause or caused only insignificant release of manganese. In this work, we tested the effect of H2O2 on the photosynthetic electron transfer and the state of OEC manganese in a native system (intact cells of the cyanobacterium Anabaena variabilis). According to EPR spectroscopy data, H2O2 caused an increase in the level of photooxidation of P700, the reaction centers of PS I, and decreased the rate of their subsequent reduction in the dark by a factor larger than four. Combined effect of H2O2, CN-, and EDTA caused more than eight- to ninefold suppression of the dark reduction of P700+. EPR spectroscopy revealed that the content of free (or loosely bound) Mn2+ in washed cyanobacterial cells was ~20% of the total manganese pool. This content remained unchanged upon the addition of CN- and increased to 25-30% after addition of H2O2. The content of the total manganese decreased to 35% after the treatment of the cells with EDTA. The level of the H2O2-induced release of manganese increased after the treatment of the cells with EDTA. Incubation of cells with H2O2 for 2 h had no effect on the absorption spectra of the photosynthetic pigments. More prolonged incubation with H2O2 (20 h) brought about degradation of phycobilins and chlorophyll a and lysis of cells. Thus, H2O2 causes extraction of manganese from cyanobacterial cells, inhibits the OEC activity and photosynthetic electron transfer, and leads to the destruction of the photosynthetic apparatus. H2O2 is unable to serve as a physiological electron donor in photosynthesis.  相似文献   

20.
Heterocysts are terminally differentiated cells of some filamentous cyanobacteria that fix nitrogen for the entire filament under oxic growth conditions. Anabaena variabilis ATCC 29413 is unusual in that it has two Mo-dependent nitrogenases; one, called Nif1, functions in heterocysts, while the second, Nif2, functions under anoxic conditions in vegetative cells. Both nitrogenases depended on expression of the global regulatory protein NtcA. It has long been thought that a product of nitrogen fixation in heterocysts plays a role in maintenance of the spaced pattern of heterocyst differentiation. This model assumes that each cell in a filament senses its own environment in terms of nitrogen sufficiency and responds accordingly in terms of differentiation. Expression of the Nif2 nitrogenase under anoxic conditions in vegetative cells was sufficient to support long-term growth of a nif1 mutant; however, that expression did not prevent differentiation of heterocysts and expression of the nif1 nitrogenase in either the nif1 mutant or the wild-type strain. This suggested that the nitrogen sufficiency of individual cells in the filament did not affect the signal that induces heterocyst differentiation. Perhaps there is a global mechanism by which the filament senses nitrogen sufficiency or insufficiency based on the external availability of fixed nitrogen. The filament would then respond by producing heterocyst differentiation signals that affect the entire filament. This does not preclude cell-to-cell signaling in the maintenance of heterocyst pattern but suggests that overall control of the process is not controlled by nitrogen insufficiency of individual cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号