首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thylakoid membranes obtained from bean chloroplasts treated with bean galactolipase or phospholipase A2 (from Crotalus terr. terr.) showed marked changes in their polypeptide patterns when separated on SDS-PAGE. The obtained results have been discussed with regard to the relationship between chloroplast lipids and polypeptides originating from chlorophyll-protein complexes of bean thylakoids. A coexistence between galactolipids and the peripheral antennae in PS I complex and LHCP3 as well as a conspicuous role of phospholipids in PSI and PSII centre chlorophyll-protein complexes has to be underlined.Abbreviations CP1 chlorophyll a-protein complex of PSI - CPa chlorophyll a-protein complex of PSII - D10 digitonin subchloroplast particles enriched in PSII - D144 digitonin subchloroplast particles enriched in PSI - DCMU 3-(3,4-dichlorophenyl)-1, 1-dimethylurea - LHCP1-3 light harvesting chlorophyll a/b protein complexes - PAGE polyacrylamide gel electrophoresis - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulphate - TCA trichloroacetic acid - Tricine N-Tris-(hydroxymethyl)-methylglycine - Tris Tris-(hydroxymethyl)-aminomethan  相似文献   

2.
Thylakoid membranes obtained from bean chloroplasts treated with bean galactolipase or phospholipase A2 (from Crotalus terr. terr.) showed marked changes in their polypeptide patterns when separated on SDS-PAGE. The obtained results have been discussed with regard to the relationship between chloroplast lipids and polypeptides originating from chlorophyll-protein complexes of bean thylakoids. A coexistence between galactolipids and the peripheral antennae in PS I complex and LHCP3 as well as a conspicuous role of phospholipids in PSI and PSII centre chlorophyll-protein complexes has to be underlined.Abbreviations CP1 chlorophyll a-protein complex of PSI - CPa chlorophyll a-protein complex of PSII - D10 digitonin subchloroplast particles enriched in PSII - D144 digitonin subchloroplast particles enriched in PSI - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - LHCP1–3 light harvesting chlorophyll a/b protein complexes - PAGE polyacrylamide gel electrophoresis - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulphate - TCA trichloroacetic acid - Tricine N-Tris-(hydroxymethyl)-methylglycine - Tris Tris-(hydroxymethyl)-aminomethan  相似文献   

3.
In order to study the coordinate accumulation of chlorophyll (Chl) and apoproteins of Chl-protein complexes (CPs) during chloroplast development, we examined changes in the accumulation of the apoproteins in barley (Hordeum vulgare L.) leaves when the rate of Chl synthesis was altered by feeding 5-aminolevulinic acid (ALA), a precursor of Chl biosynthesis. Pretreatment with ALA increased the accumulation of Chl a and Chl b 1.5- and 2.3-fold, respectively, after 12 cycles of intermittent light (2 min light followed by 28 min darkness). Apoproteins of the light-harvesting Chl a/b-protein complex of photosystem II (LHCII) were increased 2.4-fold with ALA treatment. However, apoproteins of the P700-Chl a-protein complex (CP1) and the 43-kDa apoprotein of a Chl a-protein complex of photosystem II (CPa) were not increased by ALA application. With respect to CPs themselves, LHCII was increased when Chl synthesis was raised by ALA feeding, whereas CP1 exhibited no remarkable increase. These results indicate that LHCII serves a role in maintaining the stoichiometry of Chl to apoproteins by acting as a temporary pool for Chl molecules.Abbreviations ALA 5-aminolevulinic acid - Chl chlorophyll - CP chlorophyll-protein complex - CPa chlorophyll a-protein complex of PSII - CP1 P700-chlorophyll a-protein complex - LDS lithium dodecyl sulfate - LHCII light-harvesting chlorophyll a/b-protein complex of PSII This work was supported by the Grants-in-Aid for Scientific Research (04304004) from the Ministry of Education, Science and Culture, Japan.  相似文献   

4.
Pigment-protein-complexes of two chlorophyll b deficient mutants of Arabidopsis and from the wild type were separated electrophoretically. Light-harvesting proteins were absent in the chlorophyll b free mutant ch1 and their amount was reduced in the mutant ch2 which has a reduced content of chlorophyll b. The ratio of CPa:CP I increased with decreasing chlorophyll b content which indicated that the stoichiometry of photosystem II to photosystem I is not constant.Abbreviations Chl chlorophyll - CPa chlorophyll a-protein - CP I P-700 chlorophyll a-protein - LHCP light-harvesting chlorophyll a/b-protein - PAGE polyacrylamide gel electrophoresis - PAR photosynthetically active radiation - SDS sodium dodecyl sulfate  相似文献   

5.
Pigment-protein-complexes of two chlorophyll b deficient mutants of Arabidopsis and from the wild type were separated electrophoretically. Light-harvesting proteins were absent in the chlorophyll b free mutant ch1 and their amount was reduced in the mutant ch2 which has a reduced content of chlorophyll b. The ratio of CPa:CP I increased with decreasing chlorophyll b content which indicated that the stoichiometry of photosystem II to photosystem I is not constant.Abbreviations Chl chlorophyll - CPa chlorophyll a-protein - CP I P-700 chlorophyll a-protein - LHCP light-harvesting chlorophyll a/b-protein - PAGE polyacrylamide gel electrophoresis - PAR photosynthetically active radiation - SDS sodium dodecyl sulfate  相似文献   

6.
Etiolated bean plants were grown in intermittent light with dark intervals of shorter or longer duration, to modulate the rate of chlorophyll accumulation, relative to that of the other thylakoid components formed. We thus produced conditions under which chlorophyll becomes more or less a limiting factor. We then tested whether LHC complexes can be incorporated in the thylakoid. It was found that an equal amount of chlorophyll, formed under the same total irradiation received, may be used for the stabilization of few and large-in-size PS units containing LHC components (short dark-interval intermittent light), or for the stabilization of many and small-in-size PS units with no LHC components (long dark-interval intermittent light). The size of the PS units diminishes as the dark-interval duration is increased, with no further change after 98 minutes. The PSII/cytf ratio remains constant throughout development in intermittent light and equal to that of mature chloroplasts (PSII/cytf = 1) except in the case of very long dark-interval regimes, where about half PSII units per cytf are present. The PSII/PSI ratio was found to be correlated with the PSII unit size (the larger the size, the lower the ratio). The number of PSI units operating on the same electron transfer chain varied depending on the size of the PSII unit (the larger the PSII unit size, the more the PSI units per chain). The results suggest that it is not the chlorophyll content per se which regulates the stabilization of LHC in developing thylakoids and consequently the size of the PS units, but rather the rate by which it is accumulated, relative to that of the other thylakoid components.Abbreviations Chl Chlorophyll - CL Continuous light - CPa the reaction center complex of PSII - CPI the reaction center complex of PSI - CPIa Chlorophyll protein complex containing the CPI and the light harvesting complex of PSI - fr w fresh weight - LDC Light dark cycles - LHC-I Light-harvesting complex of PSI - LHC-II Light harvesting complex of PSII - PS photosystem - PSI photosystem I - PSII photosystem II  相似文献   

7.
R. E. Glick  S. W. McCauley  A. Melis 《Planta》1985,164(4):487-494
The effect of light quality during plant growth of chloroplast membrane organization and function in peas (Pisum sativum L. cv. Alaska) was investigated. In plants grown under photosystem (PS) I-enriched (far-red enriched) illumination both the PSII/PSI stoichiometry and the electrontransport capacity ratios were high, about 1.9. In plants grown under PSII-enriched (far-red depleted) illumination both the PSII/PSI stoichiometry and the electron-transport capacity ratios were significantly lower, about 1.3. In agreement, steady-state electron-transport measurements under synchronous illumination of PSII and PSI demonstrated an excess of PSII in plants grown under far-red-enriched light. Sodium dodecylsulfate polyacrylamide gel electrophoretic analysis of chlorophyll-containing complexes showed greater relative amounts of the PSII reaction center chlorophyll-protein complex in plants grown under farred-enriched light. Additional changes were observed in the ratio of light-harvesting chlorophyll a/b protein to PSII reaction center chlorophyll-protein under the two different light-quality regimes. The results demonstrate the dynamic nature of chloroplast structure and support the notion that light quality is an important factor in the regulation of chloroplast membrane organization and-function.Abbreviations and symbols Chl chlorophyll - CPa PSII reaction center chlorophyll protein complex - CPI PSI chlorophyll protein complex - FR-D light depleted in far-red sensitizing primarily PSII - FR-E light enriched in far-red sensitizing primarily PSI - LHCP PSII light-harvesting chlorophyll a/b protein complex - P 700 primary electron donor of PSI - PSI, PSII photosystems I and II, respectively - Q primary electron acceptor of PSII  相似文献   

8.
Abstract Alterations in the composition and structure of thylakoids were studied in Brassica rapa ssp. oleifera grown under high and low irradiance (800 μmol m?2 s?1 and 80 μmol m?2 s?1). During ageing, both high and low light induced a decrease in total protein particle density and in the relative amount of 80–90 Å cytochrome b6/f and 90–100 Å ATP-synthetase. The density of PSII complexes in stacked (EFs) and unstacked (EFu) thylakoids also decreased. In high light, a shift was noted towards smaller PSII complexes in the EFs face with decreasing attached antenna complex CP29, but the relative amount of the antenna chlorophyll a-protein complexes of photosystem II (CPa) remained stable. In contrast, the proportion of peripheral LHCH on the PFs face and the density of PFs particles increased together with an increase in grana size. In low light, a shift occurred towards larger PSII complexes on the EFs face, along with a decrease in the proportion of CPa complexes and the PFs particle density (peripheral LHCH), though a marked increase was observed in the proportion of chlorophyll a/b-protein complexes in SDS-PAGE. The amount of photosystem I in green gel remained fairly stable, although the density of PFu particles (including PSI) increased in low and slightly diminished in high light. The results indicate that the organization of thylakoid components depends strongly on the light conditions and stage of development.  相似文献   

9.
The ability of leaves to acclimate photosynthetically to low temperature was examined during leaf development in winter rye plants ( Secale cereale L. cv. Puma) grown at 20°C or at 6°C. All leaves grown at 6°C exhibit increased chlorophyll (Chl) levels per leaf area, higher rates of uncoupled, light-saturated photosystem I (PSI) electron transport, and slower increases in photosystem II (PSII) electron transport capacity, when compared with 20°C leaves. The stoiehiometry of PSI and PSII was estimated for each leaf age class by quantifying Chl in elcctrophorctic separations of Chl-protein complexes. The ratio of PSII/PSI electron transport in 20°C leaves is highly correlated with the ratio of core Chl a -proteins associated with PSII (CPa) to those associated with PSI (CP1). In contrast, PSII/PSI electron transport in 6°C leaves is not as well correlated with CPa/CP1 and is related, in part, to the amount and organization of light-harvesting Chl a/b -proteins associated with PSII. CPa/CP1 increases slowly in 6°C leaves, although the ratio of CPa/CP1 in mature 20°C and 6°C leaves is not different. The results suggest that increased PSI activity at low temperature is not related to an increase in the relative proportion of PSI and may reflect, instead, a regulatory change. Photosynthetic acclimation to low environmental temperature involves increased PSI activity in mature leaves shifted to 6°C. In leaves grown entirely at 6°C, however, acclimation includes both increased PSI activity and modifications in the rate of accumlation of PSII and in the organization of LHCII.  相似文献   

10.
Bean chloroplasts treated with galactolipase (lipolytic acyl hydrolase) isolated from bean leaves showed an inhibition of photosystem I activity as measured by methyl viologen-mediated oxygen uptake and NADP+ photoreduction. This inhibition was partially reversed by exogenous plastocyanin added to galactolipase-treated thylakoid membranes. Galactolipase released substantial amounts of endogenous plastocyanin (about 40%) from bean chloroplasts. The results are discussed with regard to the localization of plastocyanin in thylakoid membranes.Abbreviations chlf chlorophyll - DCMU 3-(2,4-dichlorophenyl)-1,1-dimethylurea - DGDG digalactosyldiacylglycerol - MGDG monogalactosyldiacylglycerol - MV methyl viologen - NADP+ nicotinamide dinucleotide phosphate - PC phosphatidylcholine - PG phosphatidylglycerol - PE phosphatidylethanolamine - PI phosphatidylinositol - SQDG sulphoquinovosyldiacylglycerol - SDS sodium dodecyl sulphate - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - Tricine N-Tris-(hydroxymethyl)-methylglycine - Tris Tris-(hydroxymethyl)-aminomethane  相似文献   

11.
The effect of light intensity (16 h white light and 8 h dark) during growth of pea plants at 20°C on the chlorophyll composition and on the relative distribution of chlorophyll amongst the various chlorophyll-protein of pea thylakoids was studied. The chl a/chl b ratios increased from 2.1 to 3.2 as light intensity during growth varied from 10 to 840 Em-2 s-1. This function can be described by two straight lines intersecting at a transition point of approximately 200 Em-2 s-1. Similar discontinuities in the responses were observed in the changes in the relative distribution of chlorophyll amongst the various chlorophyll-protein complexes. This demonstrates that the chl a/chl b ratio of the various thylakoids is a good indicator of changes in the relative distribution of chlorophyll. As the chl a/chl b ratio decreased, the amount of chlorophyll associated with photosystem I complexes decreased, that with photosystem II core reaction centre complex was halved, and that with the main chl a/b-proteins of the light-harvesting complex was markedly increased.Abbreviations chl chlorophyll - PS photosystem - SDS sodium dodecyl sulphate - Tricine N-tris (hydroxymethyl) methylglycine  相似文献   

12.
Low temperature sodium dodecyl sulfate polyacrylamide gel electrophoresis following mild solubilization of Euglena thylakoid components allowed to resolve, in addition to the main CP1, CPa and LHCP chlorophyll-protein complexes, the additional CP1a and LHCP green bands. A carotenoid enriched band CPc can be separated from CPa using high acrylamide concentration. Pigment and polypeptide composition of these complexes were analyzed by absorption and fluorescence measurements and two dimensional gel electrophoresis. Spectral properties of CP1 and CP1a indicate an heterogenous organization of chlorophyll and the presence of significant amount of chlorophyll b in these complexes. They both contain a major 68 kilodalton polypeptide associated with three minor low molecular weight polypeptides in CP1a. CPa and CPc exhibit a characteristic fluorescence emission at 687 nm and they each contain one polypeptide of 54 and 41 Kda respectively. LHCP and LHCP are less abundant than in higher plant thylakoids and they contain a lower proportion of chl b (chl a: chl b=3). They include two polypeptides of 26 and 29 Kda.Abbreviations chl chlorophyll - SDS Sodium Dodecyl Sulfate - EDTA Ethylene Diamine Tetraacetic Acid - DTT Dithiothreitol  相似文献   

13.
Solubilisation of thylakoid membranes from young leaves of Pisum sativum in the presence of Triton X-100 resulted in an almost complete loss of quenching of light-harvesting chlorophyll-protein (LHCP) fluorescence, as measured at 77°K. There were concomitant changes in the kinetics of light-saturation curves of electron transport from 2,6-dichlorophenolindophenol/ascorbate to methyl viologen. These effects were accompenied by a physical dissociation of LHCP polypeptides from photosystem I (PSI) and photosystem II (PSII) polypeptides, as determined by polyacrylamide gel-electrophoresis. Detergent-dialysis in the presence of exogenous purified galactolipids, about 80% of which were linoleoyl molecular species, only partially reversed these effects. However, detergent-dialysis using the phospholipids, phosphatidylglycerol and phosphatidylcholine, resulted in the substantial restoration of 77°K fluorescence quenching and the restoration of both emission spectra and electron transport kinetics of both Photosystems I and II that were typical of native membranes.Abbreviations Chl chlorophyll - DCPIP 2,6-dichlorophenolindophenol - DGD digalactosyldiacylglycerol - LHCP light-harvesting chlorophyll-protein - MGD monogalactosyldiacylglycerol - PCi phosphatidylcholine — Sigma grade NS - PCii -oleoyl, -palmitoyl phosphalidylcholine - PG phosphatidylglycerol - PSI photosystem I - PSII photosystem II  相似文献   

14.
Barley, maize, pea, soybean, and wheat exhibited differences in chlorophyll a/b ratio and chlorophyll-protein (CP) complex composition during the initial stages of chloroplast development. During the first hours of greening, the chlorophyll a/b ratios of barley, pea, and wheat were high (a/b8) and these species contained only the CP complex of photosystem I as measured by mild sodium dodecyl sulfate polyacrylamide gel electrophoresis. A decrease in chlorophyll a/b ratio and the observation of the CP complexes associated with photosystem II and the light-harvesting apparatus occurred at later times in barley, pea, and wheat. In contrast, maize and soybean exhibited low chlorophyll a/b ratios (a/b<8) and contained the CP complexes of both photosytem I and the light-harvesting apparatus at early times during chloroplast development. The species differences were not apparent after 8 h of greening. In all species, the CP complexes were stabilized during the later stages of chloroplast development as indicated by a decrease in the percentage of chlorophyll released from the CP complexes during detergent extraction. The results demonstrate that CP complex synthesis and accumulation during chloroplast development may not be regulated in the same way in all higher plant species.Abbreviations Chl chlorophyll - CP chlorophyll-protein - CPI P700 chlorophyll-a protein complex of photosystem I - CPa electrophoretic band that contains the photosystem II reaction center complexes and a variable amount of the photosystem I light-harvesting complex - LHC the major light-harvesting complex associated with photosystem II - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601. Paper No. 10335 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601.  相似文献   

15.
K. Humbeck  S. Römer  H. Senger 《Planta》1989,179(2):242-250
Dark-grown cells of mutant C-6D of the green alga Scenedesmus obliquus exhibit a high activity of photosystem I (PSI) but lack activity of photosystem II (PSII). These cells contain only the pigment-protein complex CPI, representing the reaction-center of PSI. Only chlorophyll a and precursors of carotenoids (lycopene, neurosporene, -carotene, -zeacarotene) could be detected in dark-grown cells by analysis using high-performance liquid chromatography.Activity of PSII and the corresponding pigment-protein complex, CPa, develop immediately upon transfer to light. Light-harvesting complexes and higher molecular forms of PSI are synthesized only in the later stages of light-induced chloroplast differentiation. During illumination the amounts of carotenoid precursors decrease and carotenes, xanthophylls and chlorophylls a and b are formed. -Carotene and lutein are synthesized without a lag-phase. Their kinetics are similar to those of CPa formation and development of PSII activity. In contrast, all other xanthophylls are synthesized only after a lag-phase of about 30 min.Inhibition of the transformation of precursors into carotenoids by nicotine prevents the light-inducible development of PSII activity and CPa formation. During illumination under anaerobic conditions no xanthophylls are synthesized but high amounts of - and -carotene accumulate. Such cells exhibit no PSII activity and show only traces of CPa. After subsequent transfer to aerobic conditions the xanthophylls are synthesized and simultaneously active PSII units are formed.The results prove that carotenoids are essential components for the assembly of active PSII units. Strong evidence is given that lutein is the absolute necessary prerequisite for this process. Whether -carotene is also an absolute necessary prerequisite for a functioning PSII unit cannot be deduced from our experiments.Abbreviations CP pigment-protein complex - HPLC high-performance liquid chromatography - LHCP light-harvesting chlorophyll-protein complex - PAGE polyacrylamide gel electrophoresis - PCV packed cell volume - PS photosystem  相似文献   

16.
The role of acyl lipids in the in vitro stabilization of the oligomeric form of light-harvesting complex II of winter rye (Secale cereale L. cv Muskateer) grown at 5 or 20°C was investigated. Purified light-harvesting complex II was enzymically delipidated to various extents by treatment with the following lipolytic enzymes: phospholipase C, phospholipase A2, and galactolipase. Complete removal of phosphatidylcholine had no effect on the stability of the oligomeric form, whereas the removal of phosphatidylcholine plus phosphatidylglycerol caused a decrease in the ratio of oligomeric:monomeric forms from 1.86 ± 0.17 to 0.85 ± 0.17 and 3.51 ± 0.82 to 0.81 ± 0.29 for purified cold-hardened and nonhardened light-harvesting complex II, respectively, with no change in free pigment content. Incubation of delipidated cold-hardened or nonhardened light-harvesting complex with purified thylakoid phosphatidylglycerol containing trans3-hexadecenoic acid resulted in 48% reconstitution of the oligomeric form on a total chlorophyll basis with an oligomer:monomer of about 1.90. Incubation in the presence of di- 16:0 or di- 18:1 phosphatidylglycerol, phosphatidylcholine, monogalactosyldiacylglyceride, or digalactosyldiacylglyceride caused no oligomerization, but rather a further destabilization of the monomeric form. These lipid-dependent structural changes were correlated with significant changes in the 77K fluorescence emission spectra for purified light-harvesting complex II. We conclude that the stabilization of the supramolecular organization of light-harvesting complex II from rye is specifically dependent upon molecular species of phosphatidylglycerol containing trans3-hexadecenoic acid.  相似文献   

17.
We have quantified the lateral distribution of 12 thylakoid proteins of Spirodela oligorrhiza by immunoblot analysis of detergent-derived granal and stromal lamellae. The immunological, ultrastructural, cytochemical, and biophysical measurements each indicated the expected overall separation of photosystem II (PSII) and photosystem I (PSI) components; however, certain proteins were not completely localized to one lamellar fraction. The apoproteins of the light harvesting chlorophyll a/b complex, subunit 1 of PSI and the components of the PSII reaction center (the 32 kilodalton, D2, and cytochrome b559 proteins) were dually located between granal and stromal lamellae. Proteins associated exclusively with one of the membrane types were: in granal lamellae, the 43 and 51 kilodalton PSII proteins, and in stromal lamellae, the α and β subunits of the proton ATPase.  相似文献   

18.
Chloroplast ultrastructural and photochemical features were examined in 6-d-old barley (Hordeum vulgare L. cv. Sundance) plants which had developed in the presence of 4-chloro-5-(dimethylamino)-2-phenyl-3(2H)-pyridazinone (San 9785). In spite of a substantial modification of the fatty-acid composition of thylakoid lipids there were no gross abnormalities in chloroplast morphology, and normal amounts of membrane and chlorophyll were present. Fluorescence kinetics at 77K demonstrated considerable energetic interaction of photosystem (PS)I and PSII chlorophylls within the altered lipid environment. An interference with electron transport was indicated from altered room-temperature fluorescence kinetics at 20°C. Subtle changes in the arrangements of chloroplast membranes were consistently evident and the overall effects of these changes was to increase the proportion of appressed to nonappressed membranes. This correlated with a lower chlorophyll a/b ratio, an increase in the amount of light-harvesting chlorophylls as determined by gel electrophoresis and fluorescence emission spectra, and an increase in excitation-energy transfer from PSII to PSI, as predicted from current ideas on the organisation of photosystems in appressed and non-appressed thylakoid membranes.Abbreviations CP1 P700-chlorophyll a protein - Fo, Fm, Fv minimal, maximal and variable fluorescence yield - LHCP light-harvesting chlorophyll-protein complex - PSI, PSII photosystem I, II - San 9785 4-chloro-5(dimethylamino)-2-phenyl-3(2H)-pyridazinone  相似文献   

19.
T D Elich  M Edelman    A K Mattoo 《The EMBO journal》1993,12(12):4857-4862
A number of photosystem II (PSII)-associated proteins, including D1, D2, CP43 and LHCII, are phosphorylated post-translationally by a membrane-bound, redox-regulated kinase activity. In vitro studies have demonstrated that these proteins can be dephosphorylated by membrane-bound phosphatase activity, reportedly insensitive to light or redox control. We demonstrate here that the PSII core proteins, D1, D2 and CP43, undergo light-stimulated, linear electron-transport-independent dephosphorylation in vivo. The in vivo dephosphorylation of D1 was characterized further and shown to depend upon light intensity, and to occur throughout the visible light spectrum with characteristics most consistent with light absorption by chlorophyll. PSII core protein dephosphorylation in vivo was stimulated by photosystem I (PSI)-specific far-red light, and inhibited by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, an inhibitor of plastoquinol oxidation by the cytochrome b6f complex. Based on these findings, we propose that PSI excitation is involved in regulating dephosphorylation of PSII core proteins in vivo.  相似文献   

20.
Chlorophyll a/b light-harvesting complexes (chl a/b LHC) and photosystem II (PSII) cores were isolated from an octyl glucoside-containing sucrose gradient after solubilization of barley thylakoid membranes with Triton X-100 and octyl glucoside. No cation precipitation step was necessary to collect the chl a/b LHC. PAGE under mildly denaturing and fully denaturing conditions showed that the chl a/b LHC fraction contained chlorophyll-protein complexes CP27, CP29, and CP64. The PSII core material contained CP43 and CP47, and little contamination by other nonpigmented polypeptides. Freeze-fracture electron microscopy of the chl a/b LHC after reconstitution into digalactosyldiglyceride (DG) or phosphatidylcholine (PC) vesicles showed that the protein particles (approximately 7.5 +/- 1.6 nm) were approximately 99 and 90% randomly dispersed, respectively, in the liposomes. Addition of Mg++ produced particle aggregation and membrane adhesion in chl a/b LHC-DG liposomes in a manner analogous to that described for LHC-PC liposomes. Reconstitution of PSII cores into DG vesicles also produced proteoliposomes with randomly dispersed particles (approximately 7.5 +/- 1.6 nm). In contrast, PSII-PC mixtures formed convoluted networks of tubular membranes that exhibited very few fracture faces. Most of the protein particles (approximately 7.0 +/- 1.5 nm) were seen trapped between, rather than embedded in, the membranes. The interaction between the zwitterionic head group of the phosphatidyl choline and the negatively charged PSII core may be responsible for the unusual membrane structures observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号