首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Iseki  H Kondo  M Hitomi  T Ono 《Histochemistry》1988,89(4):317-322
The immunocytochemical localization of fatty acid binding protein (FABP) of liver type was studied at light and electron microscopic levels by the peroxidase-antiperoxidase (PAP) method using a specific polyclonal antibody against FABP in the liver of fed and fasted rats. In the liver of rats fed ad libitum, the intense immunoreactivity was confined to portions of the liver cell cytoplasm adjacent to the glycogen area. After 2-days' fasting, such a focal intracellular localization of the immunoreactivity was abolished, in association with the disappearance of the glycogen area, and was replaced by a diffuse distribution of the immunoreactivity throughout the cytoplasm, with higher intensity at the periphery of the cells. In liver cells exhibiting an overall hypertrophy of smooth endoplasmic reticulum (SER) induced by the treatment of fasted rats with phenobarbital, the peripheral localization of FABP immunoreactivity remained unchanged compared with that obtained in the case of fasting alone, and the immunoreactivity did not occur in association with the proliferated SER in the central cytoplasm. These results suggest that FABP, although cytosolic in nature, changes its localization within the liver cells in response to the general metabolic alterations caused by the starvation, inferring that FABP is intimately involved in the intracellular transport and metabolism of free fatty acids.  相似文献   

2.
An in situ hybridization technique using a [35S]-labeled oligonucleotide probe was employed, in combination with immunohistochemistry and autoradiography, to examine gene expression for hepatic fatty acid binding protein (FABP) in the jejunal epithelia from both fed and fasted rats. In rats fed ad libitum, immunoreactivity and mRNA signal for FABP were localized to the absorptive epithelial cells lining the villus, whereas they were absent in the crypt epithelial cells. The level of FABP mRNA was relatively low in the tip of the villus, although FABP immunoreactivity remained high in this area. Animals fasted for 3 days exhibited a downward shift of the lower boundary of the FABP-expressing cell population into the middle portion of the crypt, in terms of the immunoreactivity and the mRNA signal. The proliferative cell compartment of the crypt, as revealed by [3H]-TdR incorporation, showed no substantial change in size between the fed and fasted states. The present results provided evidence that (a) during the differentiation and upward migration of the absorptive epithelial cells, the expression of FABP gene begins at the crypt-villus junction and declines before the cells reach the villus tip, and (b) fasting induces an earlier expression of the FABP gene in the maturing crypt epithelial cells.  相似文献   

3.
Summary The localization of liver fatty acid-binding protein (L-FABP) and its mRNA in the liver and jejunum was examined in normal and 3-day-fasted rats by means of immunohistochemistry using a specific antibody to L-FABP and in situ hybridization using a synthetic oligonucleotide complementary to L-FABP mRNA as probe. In the liver from normally fed rats, the signal for L-FABP mRNA in hepatocytes was distributed throughout the lobule, with higher intensity in the periportal than in the centrolobular region. After a 3-d fasting, the mRNA signal declined in intensity throughout the lobule, in accordance with the result of Northern blot analysis. Immunohistochemistry for L-FABP showed intralobular patterns of immunoreactivity similar to those of the mRNA signal in both fed and fasted animals. In the jejunum from fed rats, L-FABP-mRNA signal was abundant in the absorptive epithelial cells lining the lower two-thirds of villus and less abundant in the villus tip cells, while the intensity of L-FABP immunoreactivity remained high in the latter cells. Fasting brought about a downward shift of the mRNA signal to an area including the upper half of the crypt and the lower portions of villus, with decreased intensity in the rest of the villus. Immunohistochemistry also showed a downward extension of the immunoreactivity into the upper crypt area. The present results suggest that in situ hybridization is a useful tool to analyze regulations of the expression of L-FABP gene in the digestive organs in association with epithelial cell migration and dietary condition.  相似文献   

4.
We recently observed that a 24-h fasted group of rats could run longer than an ad libitum fed control group before becoming exhausted. Because of the demonstrated importance of glycogen levels and free fatty acid availability during endurance exercise, we have investigated several parameters of carbohydrate and lipid metabolism in exercised and nonexercised rats that were either fed ad libitum or fasted for 24 h. A 24-h fast depleted liver glycogen, lowered plasma glucose concentration, decreased muscle glycogen levels, and increased free fatty acid and beta-hydroxybutyrate concentrations in plasma. During exercise the fasted group had lower plasma glucose concentration, higher plasma concentration of free fatty acids and beta-hydroxybutyrate, and a lower muscle glycogen depletion rate than did the ad libitum fed group. Since fasted rats were able to continue running even when plasma glucose had dropped to levels lower than those of fed-exhausted rats, it seems unlikely that blood glucose level, per se, is a factor in causing exhaustion. These results suggest that fasting increases fatty acid utilization during exercise and the resulting "glycogen sparing" effect may result in increased endurance.  相似文献   

5.
The fine structure of hepatocytes from rats maintained on a controlled feeding schedule are described. Liver samples were processed for electron microscopy, histochemistry and chemical determinations of glycogen at precise time-intervals following a 30-hour fast and a 2-hour meal. Hepatocytes from 30-hour-fasted rats with extremely low hepatic glycogen levels were devoid of glycogen particles. Centrilobular cells showed areas of the cytoplasm rich in vesicles of smooth endoplasmic reticulum (SER) while periportal hepatocytes contained less extensive regions of SER. Soon after feeding the fasted rats, glycogen particles appeared in regions of the cell rich in SER. Centrilobular hepatocytes contained numerous glycogen areas which were infiltrated with tubules of SER, while periportal cells showed dense glycogen deposits with SER restricted to the periphery of the masses of glycogen. Throughout glycogen deposition each glycogen particle was closely associated with membranes of SER until maximum glycogen deposition was achieved 12 hours after initiation of feeding. At this point SER was reduced to the lowest amounts of the time-periods studied. During stages of glycogen depletion SER proliferated and reached the highest concentration measured in this study. Tubules of SER were present throughout the glycogen masses of centrilobular hepatocytes, whereas in periportal cells the organelle was restricted to the periphery of the glycogen masses. It is concluded that SER is associated with glycogen particles in rat hepatocytes during both deposition and depletion of glycogen.  相似文献   

6.
Metabolic responses to exercise after fasting   总被引:1,自引:0,他引:1  
Fasting before exercise increases fat utilization and lowers the rate of muscle glycogen depletion. Since a 24-h fast also depletes liver glycogen, we were interested in blood glucose homeostasis during exercise after fasting. An experiment was conducted with human subjects to determine the effect of fasting on blood metabolite concentrations during exercise. Nine male subjects ran (70% maximum O2 consumption) two counterbalanced trials, once fed and once after a 23-h fast. Plasma glucose was elevated by exercise in the fasted trial but there was no difference between fed and fasted during exercise. Lactate was significantly higher (P less than 0.05) in fasted than fed throughout the exercise bout. Fat mobilization and utilization appeared to be greater in the fasted trial as evidenced by higher plasma concentrations of free fatty acids, glycerol, and beta-hydroxybutyrate as well as lower respiratory exchange ratio in the fasted trial during the first 30 min of exercise. These results demonstrate that in humans blood glucose concentration is maintained at normal levels during exercise after fasting despite the depletion of liver glycogen. Homeostasis is probably maintained as a result of increased gluconeogenesis and decreased utilization of glucose in the muscle as a result of lowered pyruvate dehydrogenase activity.  相似文献   

7.
In rats, a high carbohydrate fat-free (HCFF) diet, given after fasting, induces both hepatic lipogenic and glycogenic enzymes. In the present study, we evaluated the involvement of Kupffer cells in the metabolic events occurring in the liver during the fasting-refeeding transition. Male Wistar rats were fasted for 48 h and received an intravenous injection of either NaCl 0.9% (Gd-) or 10 mg/kg GdCl(3) (Gd+), an inhibitor of Kupffer cells, then fed for 12 h with a HCFF diet. The comparison of colloidal carbon uptake was similar in rats fasted and in rats fasted and then refed a HCFF diet, thus indicating that refeeding does not affect per se Kupffer cell phagocytic activity. The inhibition of Kupffer cells by GdCl(3) did not affect fatty acid synthase (FAS) induction, as shown by the analysis of both FAS mRNA and activity; refeeding a HCFF diet increased the hepatic triglyceride and glycogen content to the same extent in Gd+ and Gd- rats. Our results do not support the involvement of Kupffer cells in the metabolic events occurring in the liver tissue by feeding a HCFF diet after fasting. However, the discussion supports the involvement of Kupffer cells in the modulation of the hepatic lipid metabolism by other nutrients than carbohydrates.  相似文献   

8.
9.
The influence of fasting and refeeding on the response to adrenergic stimulation of several enzymes involved in glycogen metabolism has been investigated in the isolated, intact rat diaphragm. The in vitro response of the phosphorylase system to terbutaline was found to decrease markedly following fasting. A pronounced increase in this response was seen upon refeeding. This increased responsiveness was normalized by incubation of isolated tissues with palmitate (1.5 mM). Plasma free fatty acid concentration was increased in fasted rats compared to the value found in refed animals. The effect of terbutaline on cyclic AMP concentration and protein kinase activity was not significantly influenced by fasting and refeeding while fasting decreased the effect of terbutaline upon phosphorylase b kinase. Diaphragm glycogen levels were reduced by more than 50% in rats fasted for 24 hours and were significantly increased upon refeeding compared to fed rats. The results indicate that the nutritional state can modulate the sensitivity of the interconverting system for phosphorylase. It is suggested that this modulation might depend upon fatty acid metabolism.  相似文献   

10.
The effect of fasting on energy utilization during running or swimming was studied in adult male Wistar rats. Compared with fed rats, fasted animals displayed a decreased contribution of carbohydrates in energy supply, with decreased liver and muscle glycogen contents and decreased rate of glycogen breakdown. This was compensated by an enhanced rate of beta-oxidation. In addition, fasting induced an exaggerated sympathoadrenal response during exercise, reflected by a greater epinephrine plasma level and a higher norepinephrine turnover rate in both liver and soleus. Nevertheless, endurance capacity was similar in fasted and fed animals. These results contrast with the impairment of endurance observed in fasting humans but also with the improvement of endurance in rats previously reported by Dohm et al. (J. Appl. Physiol. 55: 830-833, 1983). These data suggest that the metabolic responses to exercise subsequent to food deprivation depend not only on the considered species but also, in the same species (rat), on the age of the animals and the duration of the fast. These factors probably determine the hormonal secretion and substrate utilization during prolonged exercise in fasting conditions.  相似文献   

11.
Hepatic glycogen metabolism was studied in rats during the period of transition from the fed to fasted states. Glycogenic activity was measured in vivo based on the incorporation of [14C]glucose into liver glycogen. Its changes were almost parallel to the changes in glucogen synthase activity. Progressive accumulation of liver glycogen that occurred in the fed state was associated with a proportional increase in glycogenic activity. Within 4 h after the cessation of food intake, glycogenic activity showd a precipitous fall from the peak to its nadir without significant changes in glycogen content. Meanwhile, the glucose concentration in the portal vein decreased. Upon further development of fasting, glycogenic activity displayed a progressive regain, reciprocally as glycogen contents gradually decreased. The precipitous fall of glycogenic activity during the transition from the fed to fasted states was associated with a transient increase in plasma glucagon, and was partly overcome by the injection of anti-glucagon serum. It is concluded that the fall of portal venous concentration of glucose and secretion of glucagon act as a signal to initiate liver glycogen metabolism characteristics of the fasted or postabsorptive state.  相似文献   

12.
In this study, we tested the efficacy of increasing liver glycogen synthase to improve blood glucose homeostasis. The overexpression of wild-type liver glycogen synthase in rats had no effect on blood glucose homeostasis in either the fed or the fasted state. In contrast, the expression of a constitutively active mutant form of the enzyme caused a significant lowering of blood glucose in the former but not the latter state. Moreover, it markedly enhanced the clearance of blood glucose when fasted rats were challenged with a glucose load. Hepatic glycogen stores in rats overexpressing the activated mutant form of liver glycogen synthase were enhanced in the fed state and in response to an oral glucose load but showed a net decline during fasting. In order to test whether these effects were maintained during long term activation of liver glycogen synthase, we generated liver-specific transgenic mice expressing the constitutively active LGS form. These mice also showed an enhanced capacity to store glycogen in the fed state and an improved glucose tolerance when challenged with a glucose load. Thus, we conclude that the activation of liver glycogen synthase improves glucose tolerance in the fed state without compromising glycogenolysis in the postabsorptive state. On the basis of these findings, we propose that the activation of liver glycogen synthase may provide a potential strategy for improvement of glucose tolerance in the postprandial state.  相似文献   

13.
Glycogen content of white and red skeletal muscles, cardiac muscle, and liver was investigated in conditions where changes in plasma levels of non‐esterified fatty acids (NEFA) occur. The experiments were performed in fed and 12 and 48 h‐fasted rats. The animals were also submitted to swimming for 10 and 30 min. Glycogen content was also investigated in both pharmacologically induced low plasma NEFA levels fasted rats and pharmacologically induced high plasma NEFA levels fed rats. The participation of Akt and glycogen synthase kinase‐3 (GSK‐3) in the changes observed was investigated. Plasma levels of NEFA, glucose, and insulin were determined in all conditions. Fasting increased plasma NEFA levels and reduced glycogen content in the liver and skeletal muscles. However, an increase of glycogen content was observed in the heart under this condition. Akt and GSK‐3 phosphorylation was reduced during fasting in the liver and skeletal muscles but it remained unchanged in the heart. Our results suggest that in conditions of increased plasma NEFA levels, changes in insulin‐stimulated phosphorylation of Akt and GSK‐3 and glycogen content vary differently in liver, skeletal muscles, and heart. Akt and GSK‐3 phosphorylation and glycogen content are decreased in liver and skeletal muscles, but in the heart it remain unchanged (Akt and GSK‐3 phosphorylation) or increased (glycogen content) due to consistent increase of plasma NEFA levels. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The purpose of the present study was to test the hypothesis that the exercise-induced increase in insulin-like growth factor binding protein (IGFBP)-1 is not always linked to a decrease in blood glucose level and to examine whether the decreasing levels of liver glycogen during exercise may be associated with the increase in IGFBP-1. Three groups of rats were submitted to a 70-min treadmill exercise. One group of rats was fed normally, and the two other groups had their food intake restricted by 50% (50% fast) the night before the experiment. One of these two 50% fasted groups of rats was infused (intravenously) with glucose throughout exercise to maintain euglycemia. Exercise in noninfused 50% fasted rats, compared with the normally fed rats, resulted in significantly lower blood glucose (minute 70) and insulin levels, significantly lower liver glycogen content, no change in IGF-I, and significantly higher increases in free fatty acid, glycerol, beta-hydroxybutyrate, and IGFBP-1. Maintenance of euglycemia during exercise in glucose-infused 50% fasted rats reduced to a large extent the decrease in insulin levels but only slightly attenuated the lipid response and the IGFBP-1 response seen in noninfused 50% fasted rats. Comparisons of all individual liver glycogen and IGFBP-1 values revealed that liver glycogen values were highly (P < 0.001) predictive of the IGFBP-1 response during exercise (R = 0.564). The present results indicate that the IGFBP-1 response during exercise is not always linked to a decrease in plasma glucose and suggest that the increase in IGFBP-1 during exercise may be related to the decrease in liver glycogen content.  相似文献   

15.
D-mannose is an essential monosaccharide constituent of glycoproteins and glycolipids. However, it is unknown how plasma mannose is supplied. The aim of this study was to explore the source of plasma mannose. Oral administration of glucose resulted in a significant decrease of plasma mannose concentration after 20 min in fasted normal rats. However, in fasted type 2 diabetes model rats, plasma mannose concentrations that were higher compared with normal rats did not change after the administration of glucose. When insulin was administered intravenously to fed rats, it took longer for plasma mannose concentrations to decrease significantly in diabetic rats than in normal rats (20 and 5 min, respectively). Intravenous administration of epinephrine to fed normal rats increased the plasma mannose concentration, but this effect was negated by fasting or by administration of a glycogen phosphorylase inhibitor. Epinephrine increased mannose output from the perfused liver of fed rats, but this effect was negated in the presence of a glucose-6-phosphatase inhibitor. Epinephrine also increased the hepatic levels of hexose 6-phosphates, including mannose 6-phosphate. When either lactate alone or lactate plus alanine were administered as gluconeogenic substrates to fasted rats, the concentration of plasma mannose did not increase. When lactate was used to perfuse the liver of fasted rats, a decrease, rather than an increase, in mannose output was observed. These findings indicate that hepatic glycogen is a source of plasma mannose.  相似文献   

16.
This study investigated the roles of cortisol and growth hormone (GH) during a period of fasting in overwintering salmonid fish. Indices of carbohydrate (plasma glucose, liver glycogen), lipid (plasma free fatty acids (FFAs)) and protein metabolism (plasma protein, total plasma amino acids) were determined, together with plasma GH, cortisol and somatolactin (SL) levels at intervals in three groups of rainbow trout (continuously fed; fasted for 9 weeks then fed; fasted for 17 weeks). In fasted fish, a decline in body weight and condition factor was accompanied by reduced plasma glucose and hepatic glycogen and increased plasma FFA. No consistent elevation of plasma GH occurred until after 8 weeks of fasting when plasma GH levels increased ninefold. No changes were observed in plasma total protein and AA until between weeks 13 and 17 when both were reduced significantly. When previously fasted fish resumed feeding, plasma glucose and FFA, and hepatic glycogen levels rapidly returned to control values and weight gain resumed. No significant changes in plasma cortisol levels, related to feeding regime, were evident at any point during the study and there was no evidence that SL played an active role in the response to fasting. The results suggest that overwinter fasting may not represent a significant nutritional stressor to rainbow trout and that energy mobilisation during fasting may be achieved without the involvement of GH, cortisol or SL.  相似文献   

17.
Livers from fed or 24-hr fasted male rats were perfused in a recycling system. VLDL labeled with [1-14C]oleate (95% in triglyceride), produced in separate perfusions of livers from fed rats, was added to the medium as a pulse. Uptake of VLDL 14C-labeled triglyceride by livers from fasted rats was less than that from fed rats regardless of addition of oleate. During the interval in which radioactive triglyceride was taken up, the mass of triglyceride in the medium increased, indicative of the synthesis and net secretion of triglycerides. The rates of secretion of VLDL and uptake of VLDL were both more rapid in livers from fed rats in comparison to those from fasted animals. It was calculated that about 50% of the triglyceride synthesized and secreted by the liver was taken back by livers from fed rats. The VLDL from livers of fasted rats did not contain any apoE detectable by SDS gel electrophoresis or by radioimmunoassay when no fatty acid or 166 mumol of oleic acid was infused. In contrast, apoE comprised 6% of the VLDL apoprotein derived from perfusion of livers from fed animals in the absence of added fatty acid, and 20% when the fed livers were infused with 166 mumol of oleic acid. However, the net output (accumulation) of apoE by fasted liver was only two-thirds that from fed livers. When lipoprotein-free rat plasma containing apoE (4 mg/dl) was used in place of bovine serum albumin, the VLDL secreted by livers from either fed or fasted rats contained apoE and was taken up to a similar extent by such livers. These data suggested that the apoE of the d greater than 1.21 g/ml fraction was transferred to newly secreted VLDL which then stimulated uptake of the VLDL by livers from fasted rats. With further stimulation of secretion of VLDL triglyceride by infusion of 332 mumol of oleic acid/hr, the percent of apoE in the VLDL secreted by livers from fasted rats increased to 20%, which was similar to that of the VLDL produced by livers from fed rats when either 166 or 332 mumol/hr was infused. These data suggest a relationship between rates of hepatic secretion of VLDL (TG) and apoE, and the association of apoE with the secreted VLDL. During fasting, reduced secretion of both VLDL and apoE resulted in a VLDL particle that was considerably diminished in content of apoE and, therefore, that would be taken up by the liver at a reduced rate, in comparison to that observed in the fed animal.  相似文献   

18.
Rat liver parenchymal cells were isolated with (a) collagenase alone and (b) with both collagenase and hyaluronidase. Addition of hyaluronidase significantly decreased intracellular glycogen content of cells from fed rats. Effects of various concentrations of glucagon on gluconeogenesis were also studied in isolated hepatocytes from fed and fasted rats. Glucagon at the concentration of 10?12M to 10?10M stimulated gluconeogenesis in fed rats. Higher concentrations (10?8M) had no further stimulating effect. In fasted rats, glucagon at the concentrationsof 10?12M had no effect whereas at 10?10M to 10?8M concentrations, it stimulated gluconeogenesis by 2 fold. These studies suggest that glucagon functions in gluconeogenesis both in the fed and fasted state.  相似文献   

19.
To determine the effect of maternal exercise on fetal liver glycogen content, fed and fasted rats that were pregnant for 20.5 or 21.5 days were run on a rodent treadmill for 60 min at 12 m/min with a 0% grade or 16 m/min up a 10% grade. The rats were anesthetized by intravenous injection of pentobarbital sodium, and fetal and maternal liver and plasma samples were collected and frozen. Fetal liver glycogenolysis did not occur as a result of maternal exercise. Fetal blood levels of lactate increased 22-60%, but glucose, plasma glucagon, and insulin were unchanged during maternal exercise. Maternal liver glycogen decreased as a result of exercise in all groups of rats except the fasted 20.5-day-pregnant group. Plasma free fatty acids increased in all groups and blood lactate increased in fed (20.5 days) and fasted (21.5 days) pregnant rats. Maternal glucose, glucagon, and insulin values remained constant during exercise. The fetus appears to be well-protected from metabolic stress during moderate-intensity maternal exercise.  相似文献   

20.
Effect of prolonged maternal fasting on the fetal liver and heart glycogen and triglyceride content and on concentration of glucose, urea, uric acid and alpha amino-nitrogen in the amniotic fluid has been studied in rats. The animals were divided into four groups: fed (control), fasted for one day (from 20 to 21 day of pregnancy), fasted for two days (from 19 to 21 day) and fasted for three days (from 18 to 21 day). Maternal fasting for two and three days resulted in reduction in fetal growth. The fetal liver glycogen content was reduced already after one day of fasting, stabilized after two days and then further decreased after three days. The fetal heart glycogen content was reduced only after three days of fasting. The fetal liver triglyceride content increased gradually during the first two days of fasting and then stabilized. The content of triglycerides in the heart was elevated after two and three days of food deprivation. The amniotic fluid glucose concentration decreased after one day of fasting and then stabilized. Fasting did not effect the concentration of the nitrogenous compounds in the amniotic fluid. It is concluded that maternal fasting affects markedly metabolism of energy substrates stored in the fetal liver and the heart and the composition of the amniotic fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号