首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Perennial ryegrass (Lolium perenne L.) is a highly valued temperate climate grass species grown as forage crop and for amenity uses. Due to its outbreeding nature and recent domestication, a high degree of genetic diversity is expected among cultivars. The aim of this study was to assess the extent of linkage disequilibrium (LD) within European elite germplasm and to evaluate the appropriate methodology for genetic association mapping in perennial ryegrass. A high level of genetic diversity was observed in a set of 380 perennial ryegrass elite genotypes when genotyped with 40 SSRs and 2 STS markers. A Bayesian structure analysis identified two subpopulations, which were confirmed by principal coordinate analysis (PCoA). One subpopulation consisted mainly of genotypes originating from the UK, while germplasm mostly from Continental Europe was grouped into the second subpopulation. LD (r2) decay was rapid and occurred within 0.4 cM across European varieties, when population structure was taken into consideration. However, an extended LD of up to 6.6 cM was detected within the variety Aberdart. High genetic diversity and rapid LD decay provide means for high resolution association mapping in elite materials of perennial ryegrass. However, different strategies need to be applied depending on the material used. Genome-wide association study (GWAS) with several hundred markers can be applied within synthetic varieties to identify large (up to 10 cM) genomic regions affecting trait variation. A combination of available and novel DNA markers is needed to achieve resolution required for GWAS in elite breeding materials. An even higher marker density of several million SNPs might be needed for GWAS in diverse ecotype collections, potentially resulting in quantitative trait polymorphism (QTP) identification.  相似文献   

2.
Modern genomics approaches rely on the availability of high-throughput and high-density genotyping platforms. A major breakthrough in wheat genotyping was the development of an SNP array. In this study, we used a diverse panel of 172 elite European winter wheat lines to evaluate the utility of the SNP array for genomic analyses in wheat germplasm derived from breeding programs. We investigated population structure and genetic relatedness and found that the results obtained with SNP and SSR markers differ. This suggests that additional research is required to determine the optimum approach for the investigation of population structure and kinship. Our analysis of linkage disequilibrium (LD) showed that LD decays within approximately 5–10 cM. Moreover, we found that LD is variable along chromosomes. Our results suggest that the number of SNPs needs to be increased further to obtain a higher coverage of the chromosomes. Taken together, SNPs can be a valuable tool for genomics approaches and for a knowledge-based improvement of wheat.  相似文献   

3.

Background  

Recent studies of ancestral maize populations indicate that linkage disequilibrium tends to dissipate rapidly, sometimes within 100 bp. We set out to examine the linkage disequilibrium and diversity in maize elite inbred lines, which have been subject to population bottlenecks and intense selection by breeders. Such population events are expected to increase the amount of linkage disequilibrium, but reduce diversity. The results of this study will inform the design of genetic association studies.  相似文献   

4.
Linkage disequilibrium (LD) mapping offers much promise for the positional cloning of disease-causing genes. However, conventional estimates of LD may fluctuate substantially across contiguous genomic regions, because of population-specific phenomena such as mutation, genetic drift, population structure, and variations in allele frequencies. This fluctuation makes it difficult to interpret patterns of LD and distinguish where a causal gene is located. To address this issue, we propose hierarchical modeling of LD (HLD) for fine-scale mapping. This approach incorporates information on haplotype block structure and chromosomal spatial relations to refine the pattern of LD, increasing the ability to localize disease genes. Here, we present a framework for HLD, a simulation study assessing the performance of HLD under various scenarios, and an application of HLD to existing data. This work demonstrates that hierarchical modeling of linkage disequilibrium is a valuable and flexible approach for fine-scale mapping.  相似文献   

5.
Since public and private efforts announced the first draft of the human genome last year, researchers have reported great numbers of single nucleotide polymorphisms (SNPs). We believe that the availability of well-mapped, quality SNP markers constitutes the gateway to a revolution in genetics and personalized medicine that will lead to better diagnosis and treatment of common complex disorders. A new generation of tools and public SNP resources for pharmacogenomic and genetic studies--specifically for candidate-gene, candidate-region, and whole-genome association studies--will form part of the new scientific landscape. This will only be possible through the greater accessibility of SNP resources and superior high-throughput instrumentation-assay systems that enable affordable, highly productive large-scale genetic studies. We are contributing to this effort by developing a high-quality linkage disequilibrium SNP marker map and an accompanying set of ready-to-use, validated SNP assays across every gene in the human genome. This effort incorporates both the public sequence and SNP data sources, and Celera Genomics' human genome assembly and enormous resource ofphysically mapped SNPs (approximately 4,000,000 unique records). This article discusses our approach and methodology for designing the map, choosing quality SNPs, designing and validating these assays, and obtaining population frequency ofthe polymorphisms. We also discuss an advanced, high-performance SNP assay chemisty--a new generation of the TaqMan probe-based, 5' nuclease assay-and high-throughput instrumentation-software system for large-scale genotyping. We provide the new SNP map and validation information, validated SNP assays and reagents, and instrumentation systems as a novel resource for genetic discoveries.  相似文献   

6.
Although Phalaenopsis orchids are among the most economically important potted plants, little is known about either the genetic diversity among varieties or the genetic complexity of key ornamental traits. Therefore, we analysed the genetic diversity of a broad collection of Phalaenopsis varieties and selected wild species by means of molecular markers. The marker data were used to obtain genetic distances, estimates of the degree of linkage disequilibrium and population structure for the genotypes under study. With a total of 492 markers, the genotypes clustered according to their horticultural classification (for example, old hybrids vs. more recent hybrids) but not according to their origin, indicating extensive exchange of germplasm among breeders. Linkage disequilibrium was found to decrease relatively slowly, most likely due to the small number of generations that have occurred since the first hybrids were generated. Based on the most likely estimates for the population structure (ranging from 10 to 12 subpopulations), associations between ornamental traits like flower size, flower colour, flower type, flower texture, stem length and leaf shape were calculated. These results can now serve as starting points for detailed analyses of the genetic architecture of these traits.  相似文献   

7.
Kim KJ  Lee HJ  Park MH  Cha SH  Kim KS  Kim HT  Kimm K  Oh B  Lee JY 《Genomics》2006,88(5):535-540
Understanding patterns of linkage disequilibrium (LD) across genomes may facilitate association mapping studies to localize genetic variants influencing complex diseases, a recognition that led to the International Haplotype Mapping Project (HapMap). Divergent patterns of haplotype frequency and LD across global populations require that the HapMap database be supplemented with haplotype and LD data from additional populations. We conducted a pilot study of the LD and haplotype structure of a genomic region in a Korean population. A total of 165 SNPs were identified in a 200-kb region of 22q13.2 by direct sequencing. Unphased genotype data were generated for 76 SNPs in 90 unrelated Korean individuals. LD, haplotype diversity, and recombination rates were assessed in this region and compared with the HapMap database. The pattern of LD and haplotype frequencies of Korean samples showed a high degree of similarity with Japanese data. There was a strong correlation between high LD and low recombination frequency in this region. We found considerable similarities in local LD patterns between three Asian populations (Han Chinese, Japanese, and Korean) and the CEPH population. Haplotype frequencies were, however, significantly different between them. Our results should further the understanding of distinctive Korean genomic features and assist in designing appropriate association studies.  相似文献   

8.
STRUCTURE is the most widely used clustering software to detect population genetic structure. The last version of this software (STRUCTURE 2.1) has been enhanced recently to take into account the occurrence of linkage disequilibrium (LD) caused by admixture between populations. This last version, however, still does not consider the effects of strong background LD caused by genetic drift, and which may cause spurious results. STRUCTURE authors have, therefore, suggested a rough threshold value of the distance (1.0 cM) between two loci below which the pair of loci should not be used. Because of the sensitiveness of LD to demographic events, the distance between loci is not always a good indicator of the strength of LD. In this study, we examine the link between genomic distance and the strength of the correlation between loci (r(LD)) in a free-ranging population of mouflon (Ovis aries), and we present an empirical test of effect of r(LD) on the clustering results provided by the linkage model in STRUCTURE. We showed that a high r(LD) value increases the probability of detecting spurious clustering. We propose to use r(LD) as an index to base a decision on whether or not to use a pair of loci in a clustering analysis.  相似文献   

9.
We propose a simple model of evolution at a pair of SNP loci, under mutation, genetic drift and recombination. The developed model allows to consider evolution of SNPs under different demographic scenarios. We applied it to SNP data containing polymorphisms spanning 19 gene regions. We initially matched the linkage disequilibrium (LD) data only, and then we reconciled both LD and heterozygosity data. The imbalance between LD and heterozygosity data, observed for some of the analyzed genomic regions, may be a signature of selection acting in these regions. However, assuming neutrality, we obtain estimates of the age of population expansion of modern humans, which are consistent with the consensus estimates. In addition, we are able to estimate the ages of the polymorphisms observed in different genomic regions and we find that they vary widely with respect to their age. Polymorphisms at loci implicated in human disease, seem to be younger than average. Our results supplement the conclusions originally obtained by Reich and co-workers for the same set of data.  相似文献   

10.
11.
12.
Eucalyptus camaldulensis and E. tereticornis are closely related species commonly cultivated for pulp wood in many tropical countries including India. Understanding the genetic structure and linkage disequilibrium (LD) existing in these species is essential for the improvement of industrially important traits. Our goal was to evaluate the use of simple sequence repeat (SSR) loci for species discrimination, population structure and LD analysis in these species. Investigations were carried out with the most common alleles in 93 accessions belonging to these two species using 62 SSR markers through cross amplification. The polymorphic information content (PIC) ranged from 0.44 to 0.93 and 0.36 to 0.93 in E. camaldulensis and E. tereticornis respectively. A clear delineation between the two species was evident based on the analysis of population structure and species-specific alleles. Significant genotypic LD was found in E. camaldulensis, wherein out of 135 significant pairs, 17 pairs showed r(2)≥0.1. Similarly, in E. tereticornis, out of 136 significant pairs, 18 pairs showed r(2)≥0.1. The extent of LD decayed rapidly showing the significance of association analyses in eucalypts with higher resolution markers. The availability of whole genome sequence for E. grandis and the synteny and co-linearity in the genome of eucalypts, will allow genome-wide genotyping using microsatellites or single nucleotide polymorphims.  相似文献   

13.

Background  

Sexual dimorphism in ecologically important traits is widespread, yet the differences in the genomic architecture between the two sexes are largely unexplored. We employed a genome-wide multilocus approach to examine the sexual differences in population subdivision, natural selection and linkage disequilibrium (LD) in a wild Siberian jay (Perisoreus infaustus) population, using genotypes at a total of 107 autosomal and Z-chromosomal microsatellites.  相似文献   

14.
We employed a multilocus approach to examine the effects of population subdivision and natural selection on DNA polymorphism in 2 closely related wild tomato species (Solanum peruvianum and Solanum chilense), using sequence data for 8 nuclear loci from populations across much of the species' range. Both species exhibit substantial levels of nucleotide variation. The species-wide level of silent nucleotide diversity is 18% higher in S. peruvianum (pi(sil) approximately 2.50%) than in S. chilense (pi(sil) approximately 2.12%). One of the loci deviates from neutral expectations, showing a clinal pattern of nucleotide diversity and haplotype structure in S. chilense. This geographic pattern of variation is suggestive of an incomplete (ongoing) selective sweep, but neutral explanations cannot be entirely dismissed. Both wild tomato species exhibit moderate levels of population differentiation (average F(ST) approximately 0.20). Interestingly, the pooled samples (across different demes) exhibit more negative Tajima's D and Fu and Li's D values; this marked excess of low-frequency polymorphism can only be explained by population (or range) expansion and is unlikely to be due to population structure per se. We thus propose that population structure and population/range expansion are among the most important evolutionary forces shaping patterns of nucleotide diversity within and among demes in these wild tomatoes. Patterns of population differentiation may also be impacted by soil seed banks and historical associations mediated by climatic cycles. Intragenic linkage disequilibrium (LD) decays very rapidly with physical distance, suggesting high recombination rates and effective population sizes in both species. The rapid decline of LD seems very promising for future association studies with the purpose of mapping functional variation in wild tomatoes.  相似文献   

15.
The aim of this study was to better define the extent of linkage disequilibrium (LD) in populations of large-breed dogs and its variation by breed and chromosomal region. Understanding the extent of LD is a crucial component for successful utilization of genome-wide association studies and allows researchers to better define regions of interest and target candidate genes. Twenty-four Golden Retriever dogs, 28 Rottweiler dogs, and 24 Newfoundland dogs were genotyped for single-nucleotide polymorphism (SNP) data using a high-density SNP array. LD was calculated for all autosomes using Haploview. Decay of the squared correlation coefficient (r 2) was plotted on a per-breed and per-chromosome basis as well as in a genome-wide fashion. The point of 50 % decay of r 2 was used to estimate the difference in extent of LD between breeds. Extent of LD was significantly shorter for Newfoundland dogs based upon 50 % decay of r 2 data at a mean of 344 kb compared to Golden Retriever and Rottweiler dogs at 715 and 834 kb, respectively (P < 0.0001). Notable differences in LD by chromosome were present within each breed and not strictly related to the length of the corresponding chromosome. Extent of LD is breed and chromosome dependent. To our knowledge, this is the first report of SNP-based LD for Newfoundland dogs, the first report based on genome-wide SNPs for Rottweilers, and an almost tenfold improvement in marker density over previous genome-wide studies of LD in Golden Retrievers.  相似文献   

16.
Knowledge of genetic diversity, population structure, and degree of linkage disequilibrium (LD) in target association mapping populations is of great importance and is a prerequisite for LD-based mapping. In the present study, 96 genotypes comprising 92 accessions of the US peanut minicore collection, a component line of the tetraploid variety Florunner, diploid progenitors A. duranensis (AA) and A. ipaënsis (BB), and synthetic amphidiploid accession TxAG-6 were investigated with 392 simple sequence repeat (SSR) marker bands amplified using 32 highly-polymorphic SSR primer pairs. Both distance- and model-based (Bayesian) cluster analysis revealed the presence of structured diversity. In general, the wild-species accessions and the synthetic amphidiploid grouped separately from most minicore accessions except for COC155, and were eliminated from most subsequent analyses. UPGMA analysis divided the population into four subgroups, two major subgroups representing subspecies fastigiata and hypogaea, a third group containing individuals from each subspecies or possibly of mixed ancestry, and a fourth group, either consisting of COC155 alone if wild species were excluded, or of COC155, the diploid species, and the synthetic amphidiploid. Model-based clustering identified four subgroups- one each for fastigiata and hypogaea subspecies, a third consisting of individuals of both subspecies or of mixed ancestry predominantly from Africa or Asia, and a fourth group, consisting of individuals predominantly of var fastigiata, peruviana, and aequatoriana accessions from South America, including COC155. Analysis of molecular variance (AMOVA) revealed statistically-significant (P < 0.0001) genetic variance of 16.87% among subgroups. A total of 4.85% of SSR marker pairs revealed significant LD (at r2 ≥ 0.1). Of the syntenic marker pairs separated by distances < 10 cM, 11–20 cM, 21–50 cM, and > 50 cM, 19.33, 5.19, 6.25 and 5.29% of marker pairs were found in strong LD (P ≤ 0.01), in accord with LD extending to great distances in self pollinated crops. A threshold value of r2 > 0.035 was found to distinguish mean r2 values of linkage distance groups statistically from the mean r2 values of unlinked markers; LD was found to extend to 10 cM over the entire minicore collection by this criterion. However, there were large differences in r2 values among marker pairs even among tightly-linked markers. The implications of these findings with regard to the possibility of using association mapping for detection of genome-wide SSR marker-phenotype association are discussed.  相似文献   

17.
Two main reasons for the difficulties to search for susceptibility single-nucleotide polymorphisms (SNPs) underlying genetic diseases are that the findings are not easy to be confirmed and the interactions between potential susceptibility SNPs are not clear. Many available association studies usually presented results with significance levels but did not illustrate the stability of the results. In some sense, their performances might be unclear in real practice. In this paper, we develop a novel method based on mutual information theory and linkage disequilibrium by grouping case-control. Mutual information (MI) is used to test multiple SNPs in combining with disease status. Those SNPs contributing the maximum MI are selected as potential susceptibility SNPs. Linkage disequilibrium (LD) analysis is used to extend MI detected result so that both direct and indirect factors can be included in the final result. The purpose of case-control grouping is to generate a number of data groups by randomly sampling from target samples. Each group is assumed to have almost the same number of individuals (cases and controls), and overlap is allowed among the groups. We apply the method to each data group, and then make comparisons and intersections between the results obtained from each of the groups so as to give the final result. We implement the method by continuously grouping until the final result reaches a stable state and a highly significance level. The experimental results indicate that our method to detect susceptibility SNPs in simulated and real data sets has shown remarkable success.  相似文献   

18.
19.
Association mapping is considered to be an important alternative strategy for the identification of quantitative trait loci (QTL) as compared to traditional QTL mapping. A necessary prerequisite for association analysis to succeed is detailed information regarding hidden population structure and the extent of linkage disequilibrium. A collection of 430 tetraploid potato cultivars, comprising two association panels, has been analysed with 41 AFLP® and 53 SSR primer combinations yielding 3364 AFLP fragments and 653 microsatellite alleles, respectively. Polymorphism information content values and detected number of alleles for the SSRs studied illustrate that commercial potato germplasm seems to be equally diverse as Latin American landrace material. Genome-wide linkage disequilibrium (LD)—reported for the first time for tetraploid potato—was observed up to approximately 5 cM using r 2 higher than 0.1 as a criterion for significant LD. Within-group LD, however, stretched on average twice as far when compared to overall LD. A Bayesian approach, a distance-based hierarchical clustering approach as well as principal coordinate analysis were adopted to enquire into population structure. Groups differing in year of market release and market segment (starch, processing industry and fresh consumption) were repeatedly detected. The observation of LD up to 5 cM is promising because the required marker density is not likely to disable the possibilities for association mapping research in tetraploid potato. Population structure appeared to be weak, but strong enough to demand careful modelling of genetic relationships in subsequent marker-trait association analyses. There seems to be a good chance that linkage-based marker-trait associations can be identified at moderate marker densities.  相似文献   

20.
Habitat fragmentation increases the migration distances among remnant populations, and is predicted to play a significant role in altering both demographic and genetic processes. Nevertheless, few studies have evaluated the genetic consequences of habitat fragmentation in light of information about population dynamics in the same set of organisms. In a 10,000-km(2) experimentally fragmented landscape of rainforest reserves in central Amazonia, we examine patterns of genetic variation (amplified fragment length polymorphisms, AFLPs) in the epiphyllous (e.g. leaf-inhabiting) liverwort Radula flaccida Gott. Previous demographic work indicates that colonization rates in this species are significantly reduced in small forest reserves. We scored 113 polymorphic loci in 86 individuals representing five fragmented and five experimentally unmanipulated populations. Most of the variation (82%) in all populations was harboured at the smallest (400 m(2)) sampling unit. The mean ((+/-) SD) within-population genetic diversity (Nei's), of forest remnants (0.412 +/- 0.2) was indistinguishable from continuous (0.413 +/- 0.2) forests. Similarly, F(ST) was identical among small (1- and 10-ha) and large (> or = 100-ha) reserves (0.19 and 0.18, respectively), but linkage disequilibrium between pairs of loci was significantly elevated in fragmented populations relative to those in continuous forests. These results illustrate that inferences regarding the long-term viability of fragmented populations based on neutral marker data alone must be viewed with caution, and underscore the importance of jointly evaluating information on both genetic structure and demography. Second, multilocus analyses may be more sensitive to the effects of fragmentation in the short term, although the effects of increasing linkage disequilibrium on population viability remain uncertain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号