首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wei  Dong  Cui  Kehui  Ye  Guoyou  Pan  Junfeng  Xiang  Jing  Huang  Jianliang  Nie  Lixiao 《Plant and Soil》2012,350(1-2):281-296
Plant and Soil - The improvement of nitrogen-deficiency tolerance (NDT) and nitrogen-use efficiency (NUE) traits is an important objective of many rice breeding programs. A better understanding of...  相似文献   

2.
M R Foolad  L P Zhang  P Subbiah 《Génome》2003,46(4):536-545
A BC1 population (N = 1000) of an F1 hybrid between a stress-sensitive Lycopersicon esculentum breeding line (NC84173; maternal and recurrent parent) and a germination stress-tolerant Lycopersicon pimpinellifolium accession (LA722) was evaluated for seed germination rate under drought stress (DS) (14% w/v polyethyleneglycol-8000, water potential approximately -680 kPa), and the most rapidly germinating seeds (first 3% to germinate) were selected. The 30 selected BC1 seedlings were grown to maturity and self pollinated to produce BC1S1 progeny seeds. Twenty of the 30 selected BC1S1 progeny families were evaluated for germination rate under DS and their average performance was compared with that of a "nonselected" BC1S1 population of the same cross. Results indicated that selection for rapid germination under DS significantly improved progeny germination rate under DS (selection gain = 19.6%), suggesting a realized heritability of 0.47 for rate of germination under DS in this population. The 30 selected BC1 plants were subjected to restriction fragment length polymorphism (RFLP) analysis, and marker allele frequencies for 119 RFLP markers which spanned 1153 cM of the 12 tomato chromosomes were determined. A distributional extreme marker analysis, which measures statistical differences in marker allele frequencies between a selected and a nonselected population, detected four quantitative trait loci (QTLs) for rate of germination under DS in this population. Of these, two QTLs, located on chromosomes 1 and 9, were contributed by the L. pimpinellifolium donor parent and had larger effects than the other two QTLs, located on chromosomes 8 and 12, which were contributed by the L. esculentum recurrent parent. A few BC1S1 families were identified with all or most of the identified QTLs and with germination rates comparable with that of LA722. These families should be useful for the development of germination drought-tolerant tomato lines using marker-assisted selection (MAS). The overall results indicate that drought tolerance during seed germination in tomato is genetically controlled and potentially could be improved by directional phenotypic selection or MAS.  相似文献   

3.
The rice blast caused by Magnaporthe oryzae is one of the most devastating diseases worldwide, and the panicle blast could result in more loss of yield in rice production. However, the quantitative trait loci (QTLs) and genes related to panicle-blast resistance have not been well studied due to the time-consuming screening methodology involved and variation in symptoms. The QTLs for panicle blast resistance have been mapped in a population of 162 RILs (recombination inbreeding lines), derived from a cross between a highly blast-resistant rice landrace, Heikezijing, and a susceptible variety, Suyunuo. Two QTLs for panicle-blast resistance, qPbh-11–1 and qPbh-7-1, were identified, which were distributed on chromosomes 11 and 7. The QTL qPbh-11–1 was stably detected in three independent experiments, at Nanjing in 2013 and 2014 and at Hainan in 2014, located between the region of RM27187 and RM27381 on the distal end of chromosome 11 far from the reported resistant loci Pb1 and qPbm11 for panicle blast. The QTL qPbh-7-1 was detected only at Nanjing in 2013 and located between the region of M18 and RM3555 on chromosome 7. With marker-assisted selection (MAS) three introgression lines with the major panicle blast-resistance QTL qPbh-11–1 were developed from a recurrent parent Nanjing 44 (NJ44) and the panicle resistance of introgression lines was improved 46.36–55.47 % more than NJ44. Based on the results provided, Heikezijing appears to be a valuable source for panicle blast resistance.  相似文献   

4.
We have developed 85 new markers (50 RFLPs, 5 SSRs, 12 DD cDNAs, 9 ESTs, 8 HSP-encoding cDNAs and one BSA-derived AFLP marker) for saturation mapping of QTL regions for drought tolerance in rice, in our efforts to identify putative candidate genes. Thirteen of the markers were localized in the close vicinity of the targeted QTL regions. Fifteen of the additional markers mapped, respectively, inside one QTL region controlling osmotic adjustment on chromosome 3 ( oa3.1) and 14 regions that affect root traits on chromosomes 1, 2, 4, 5, 6, 7, 8, 9, 10 and 12. Differential display was used to identify more putative candidate genes and to saturate the QTL regions of the genetic map. Eleven of the isolated cDNA clones were found to be derived from drought-inducible genes. Two of them were unique and did not match any genes in the GenBank, while nine were highly similar to cDNAs encoding known proteins, including a DnaJ-related protein, a zinc-finger protein, a protease inhibitor, a glutathione-S-transferase, a DNA recombinase, and a protease. Twelve new cDNA fragments were mapped onto the genetic linkage map; seven of these mapped inside, or in close proximity to, the targeted QTL regions determining root thickness and osmotic adjustment capacity. The gene I12A1, which codes for a UDP-glucose 4-epimerase homolog, was identified as a putative target gene within the prt7.1/brt7.1 QTL region, as it is involved in the cell wall biogenesis pathway and hence may be implicated in modulating the ability of rice roots to penetrate further into the substratum when exposed to drought conditions. RNAs encoding elongation factor 1, a DnaJ-related protein, and a homolog of wheat zinc-finger protein were more prominently induced in the leaves of IR62266 (the lowland rice parent of the mapping materials used) than in those of CT9993 (the upland rice parent) under drought conditions. Homologs of 18S ribosomal RNA, and mRNAs for a multiple-stress induced zinc-finger protein, a protease inhibitor, and a glutathione-S-transferase were expressed at significantly higher levels in CT9993 than in IR62266. Thus several genes involved in the regulation of DNA structure and mRNA translation were found to be drought-regulated, and may be implicated in drought resistance.Communicated by R. Hagemann  相似文献   

5.
The QTLs controlling germination and early seedling growth were mapped using seeds acquired from mapping population and parental lines of Chinese Spring and SQ1 grown under water-limited conditions, severe drought (SDr) and well-watered plants (C). Germination ability was determined by performing a standard germination test based on the quantification of the germination percentage (GP24) of seeds incubated for 24 h at 25°C in the dark. Early seedling growth was evaluated on the basis of the length of the root and leaf at the 6th day of the experiment. QTLs were identified by composite interval mapping method using Windows QTLCartographer 2.5 software. For the traits studied, a total of thirty eight additive QTLs were identified. Seventeen QTLs were mapped in C on chromosomes: 1A, 2A, 7A, 1B, 2B, 3B, 4B, 5B, 6B, 7B, 2D, 3D, 4D and 6D, while twenty one QTLs were identified in SDr on chromosomes: 1A, 2A, 5A, 2B, 3B, 4B, 5B, 6B, 7B, 3D, 5D and 6D. Most of the QTLs for GP and early leaf growth parameters were clustered on chromosome 4B (associated with the Rht-B1 marker) both in C and SDr plants. The results indicate the complex and polygenic nature of germination.  相似文献   

6.
The temperate japonica rice cultivar M202 is the predominant variety grown in California due to its tolerance to low temperature stress, good grain quality and high yield. Earlier analysis of a recombinant inbred line mapping population derived from a cross between M202 and IR50, an indica cultivar that is highly sensitive to cold stress, resulted in the identification of a number of QTL conferring tolerance to cold-induced wilting and necrosis. A major QTL, qCTS12, located on the short arm of chromosome 12, contributes over 40% of the phenotypic variance. To identify the gene(s) underlying qCTS12, we have undertaken the fine mapping of this locus. Saturating the short arm of chromosome 12 with microsatellite markers revealed that qCTS12 is closest to RM7003. Using RM5746 and RM3103, which are immediately outside of RM7003, we screened 1,954 F5-F10 lines to find recombinants in the qCTS12 region. Additional microsatellite markers were identified from publicly available genomic sequence and used to fine map qCTS12 to a region of approximately 87 kb located on the BAC clone OSJNBb0071I17. This region contains ten open reading frames (ORFs) consisting of five hypothetical and expressed proteins of unknown function, a transposon protein, a putative NBS-LRR disease resistance protein, two zeta class glutathione S-transferases (OsGSTZ1 and OsGSTZ2), and a DAHP synthetase. Further fine mapping with markers developed from the ORFs delimited the QTL to a region of about 55 kb. The most likely candidates for the gene(s) underlying qCTS12 are OsGSTZ1 and OsGSTZ2.The mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

7.
Summary Incorporation of15NO3-into amino acids was studied during the anaerobic germination of rice seeds. In treated coleoptiles, the label was incorporated into glutamine, glutamate, alanine,-aminobutyric acid (Gaba), arginine, aspartate and methionine. These findings are consistent with a primary incorporation of nitrate nitrogen into glutamine, glutamate and aspartate, and their further conversion to alanine, Gaba, arginine and methionine.  相似文献   

8.
Locating QTL for osmotic adjustment and dehydration tolerance in rice   总被引:31,自引:3,他引:28  
Research was conducted to identify and map quantitative traitloci (QTL) associated with dehydration tolerance and osmoticadjustment of rice. Osmotic adjustment capacity and lethal osmoticpotential were determined for 52 recombinant inbred lines grownin a controlled environment under conditions of a slowly developedstress. The lines were from a cross between an Indica cultivar,Co39, of lowland adaptation and a Japonica cultivar, Moroberekan,a traditional upland cultivar. The QTL analysis was conductedusing single marker analysis (ANOVA) and interval analysis (Mapmaker/QTL).The measurements obtained and the QTL identified were comparedto root traits and leaf rolling scores measured on the samelines. One major locus was associated with osmotic adjustment. Theputative locus for osmotic adjustment may be homoeologous witha single recessive gene previously identified for the same traitin wheat. The putative osmotic adjustment locus and two of thefive QTL associated with dehydration tolerance were close tochromosomal regions associated with root morphology. In thispopulation, osmotic adjustment and dehydration tolerance werenegatively associated with root morphological characters associatedwith drought avoidance. High osmotic adjustment and dehydrationtolerance were associated with Co39 alleles and extensive rootsystems were associated with Moroberekan alleles. To combinehigh osmotic adjustment with extensive root systems, the linkagebetween these traits will need to be broken. Alternatively,if the target environment is a lowland environment with onlybrief water deficit periods, selection for drought tolerancecharacteristics without consideration of the root system maybe most appropriate. Key words: Drought, rice, osmotic adjustment, dehydration tolerance, molecular markers, QTL, breeding  相似文献   

9.
Ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1) is the last enzyme involved in the pathway of nitrate assimilation in higher plants. This paper describes the synthesis and expression of the enzyme in anaerobic coleoptiles of rice (Oryza sativa L.) and its regulation by exogenous nitrate. The activity of Fd-GOGAT was strongly inhibited by cycloheximide between 4 and 9 d of anaerobic germination. The addition of nitrate slightly increased, in the first 5 h, the specific activity of Fd-GOGAT as well as the amount of a 160-kDa protein specifically immunoprecipitated with anti-Fd-GOGAT serum. Northern blot analysis, performed with a specific riboprobe, showed the presence of mRNA of the expected size and the inductive effect of nitrate. The role of Fd-GOGAT is discussed in relation to the anaerobic assimilation of nitrate by rice coleoptiles.Abbreviations CHX cycloheximide - Fd ferredoxin - GOGAT glutamate synthase - GS glutamine synthetase - NiR nitrite reductase - NR nitrate reductase The authors wish to thank Dr. J. Turner (Rothamsted Experimental Station, Harpenden, UK) for providing Fd-GOGAT antibody and Dr. H. Sakakibara (Nagoya University, Nagoya, Japan) for Fd-GOGAT clone. This research was supported by the National Research Council of Italy, special project RAISA, sub-projekt N. 2, paper N. 2174.  相似文献   

10.
11.
Root-knot nematodes (Meloidogyne spp.) can cause severe yield loss of soybean [Glycine max (L.) Merr.] in the southern production region of the USA. Planting root-knot nematode-resistant cultivars is the most effective method of preventing yield loss. DNA marker-assisted breeding may accelerate the development of root-knot nematode-resistant cultivars. RFLP markers have previously been used to identify quantitative trait loci (QTLs) conferring resistance to southern root-knot nematode [Meloidogyne incognita (Kofoid and White) Chitwood] (Mi) in a F2:3 soybean population created by crossing the resistant PI96354 and the susceptible ’Bossier.’ A major QTL on linkage group (LG) O conditioning 31% of the variation in Mi gall number and a minor QTL on LG-G conditioning 14% of the gall variation were reported. With the development of SSR markers for soybean improvement, a higher level of mapping resolution and semi-automated detection has become possible. The objectives of this research were: (1) to increase the marker density in the genomic regions of the QTLs for Mi resistance on LG-O and LG-G with SSR markers; and (2) to confirm the effect of the QTLs in a second population and a different genetic background. With SSR markers, the QTL on LG-O was flanked by Satt492 and Satt358, and on LG-G by Satt012 and Satt505. Utilizing SSR markers flanking the two QTLs, marker-assisted selection was performed in a second F2:3 population of PI96354× Bossier. Results confirmed the effectiveness of marker-assisted selection to predict the Mi phenotypes. By screening the BC2F2 population of Prichard (3)×G93–9009 we confirmed that selection for the minor QTL on LG-G with flanking SSR markers would enhance the resistance of lines containing the major QTL (which is most-likely Rmi1). Received: 29 September 2000 / Accepted: 17 April 2001  相似文献   

12.
Summary Ultrastructural changes of organelles, especially those of mitochondria in rice seedlings germinated under strictly anaerobic conditions were investigated.The embryos of dry seeds had slightly modified mitochondria, characterized by an electron transparent matrix with few cristae and electron opaque patches. These mitochondria developed normally for 48 hours irrespective of whether oxygen was present or not. However, after 72 hours' germination under anaerobic conditions vesiculation of the cristae developed and progressed greatly for the subsequent 24 hours and most of the spaces in the mitochondrion became occupied with vacuolated cristae. Vesiculation seemed to be the effect of cessation of energy supply from the mitochondria themselves.Ultrastructural changes of other organelles such as the plastids and endoplasmic reticulum were also observed after 96 hours under anaerobic conditions.  相似文献   

13.
The resistance of rice to ozone (O3) is a quantitative trait controlled by nuclear genes. The identification of quantitative trait loci (QTL) and analysis of molecular markers of O3 resistance is important for increasing the resistance of rice to O3 stress. QTL associated with the O3 resistance of rice were mapped on chromosomes 1, 7 and 11 using 164 recombinant inbred (RI) lines from a cross between 'Milyang 23' and 'Gihobyeo'. The quantitative trait loci were tightly linked to the markers RG109, C507 and RG1094 and were detected in each of three replications. The association between these markers and O3 resistance in 26 rice cultivars and doubled haploid (DH) populations was analysed. The markers permit the screening of rice germplasm for O3 resistance and the introduction of resistance into elite lines in breeding programs.  相似文献   

14.
Grain chalkiness is a highly undesirable trait affecting rice grain quality and milled rice yield. In order to clarify the genetic basis of chalkiness, a recombinant inbred line population (RIL) derived from a cross between Beilu130 (a japonica cultivar with high chalkiness) and Jin23B (an indica cultivar with low chalkiness) was developed for quantitative trait locus (QTL) mapping. A total of 10 QTLs for white belly rate (WBR) and white core rate (WCR) were detected on eight different chromosomes over 2 years. Two QTLs for WBR (qWBR2 and qWBR5) showed similar chromosomal locations with GW2 and qSW5/GW5, which have been cloned previously to control the grain width and should be the right candidate genes. Three novel minor QTLs controlling WCR, qWCR1, qWCR3, and qWCR4 were further validated in near isogenic F2 populations (NIL-F2) and explained 26.1, 18.3, and 21.1% of the phenotypic variation, respectively. These QTLs could be targets for map-based cloning of the candidate genes to elucidate the molecular mechanism of chalkiness and for marker-assisted selection (MAS) in rice grain quality improvement.  相似文献   

15.
Grain length in rice plays an important role in determining rice appearance, milling, cooking and eating quality. In this study, the genetic basis of grain length was dissected into six main-effect quantitative trait loci (QTLs) and twelve pairs of epistatic QTLs. The stability of these QTLs was evaluated in four environments using an F7 recombinant inbred line (RIL) population derived from the cross between a Japonica variety, Asominori, and an Indica variety, IR24. Moreover, chromosome segment substitution lines (CSSLs) harboring each of the six main-effect QTLs were used to evaluate gene action of QTLs across eight environments. A major QTL denoted as qGL-3a, was found to express stably not only in the isogenic background of Asominori but also in the recombinant background of Asominori and IR24 under multiple environments. The IR24 allele at qGL-3a has a positive effect on grain length. Based on the test of advanced backcross progenies, qGL-3a was dissected as a single Mendelian factor, i.e., long rice grain was controlled by a recessive gene gl-3. High-resolution genetic and physical maps were further constructed for fine mapping gl-3 by using 11 simple sequence repeat (SSR) markers designed using sequence information from seven BAC/PAC clones and a BC4F2 population consisting of 2,068 individuals. Consequently, the gl-3 gene was narrowed down to a candidate genomic region of 87.5 kb long defined by SSR markers RMw357 and RMw353 on chromosome 3, which provides a basis for map-based cloning of this gene and for marker-aided QTL pyramiding in rice quality breeding.  相似文献   

16.
Aluminum (Al) toxicity is a primary limitation to crop productivity on acid soils, and rice has been demonstrated to be significantly more Al tolerant than other cereal crops. However, the mechanisms of rice Al tolerance are largely unknown, and no genes underlying natural variation have been reported. We screened 383 diverse rice accessions, conducted a genome-wide association (GWA) study, and conducted QTL mapping in two bi-parental populations using three estimates of Al tolerance based on root growth. Subpopulation structure explained 57% of the phenotypic variation, and the mean Al tolerance in Japonica was twice that of Indica. Forty-eight regions associated with Al tolerance were identified by GWA analysis, most of which were subpopulation-specific. Four of these regions co-localized with a priori candidate genes, and two highly significant regions co-localized with previously identified QTLs. Three regions corresponding to induced Al-sensitive rice mutants (ART1, STAR2, Nrat1) were identified through bi-parental QTL mapping or GWA to be involved in natural variation for Al tolerance. Haplotype analysis around the Nrat1 gene identified susceptible and tolerant haplotypes explaining 40% of the Al tolerance variation within the aus subpopulation, and sequence analysis of Nrat1 identified a trio of non-synonymous mutations predictive of Al sensitivity in our diversity panel. GWA analysis discovered more phenotype-genotype associations and provided higher resolution, but QTL mapping identified critical rare and/or subpopulation-specific alleles not detected by GWA analysis. Mapping using Indica/Japonica populations identified QTLs associated with transgressive variation where alleles from a susceptible aus or indica parent enhanced Al tolerance in a tolerant Japonica background. This work supports the hypothesis that selectively introgressing alleles across subpopulations is an efficient approach for trait enhancement in plant breeding programs and demonstrates the fundamental importance of subpopulation in interpreting and manipulating the genetics of complex traits in rice.  相似文献   

17.
A recombinant inbred line (RIL) population bred from a cross between a javanica type (cv. D50) and an indica type (cv. HB277) rice was used to map seven quantitative trait loci (QTLs) for thousand grain weight (TGW). The loci were distributed on chromosomes 2, 3, 5, 6, 8 and 10. The chromosome 3 QTL qTGW3.2 was stably expressed over two years, and contributed 9–10% of the phenotypic variance. A residual heterozygous line (RHL) was selected from the RIL population and its selfed progeny was used to fine map qTGW3.2. In this “F2” population, the QTL explained about 23% of the variance, rising to nearly 33% in the subsequent “F2:3” generation. The physical location of qTGW3.2 was confined to a ~ 556 kb region flanked by the microsatellite loci RM16162 and RM16194. The region also contains other factors influencing certain yield-related traits, although it is also possible that qTGW3.2 affects these in a pleiotropic fashion.  相似文献   

18.
以中国75个杂草稻种群及其对应采样田的水稻品种为试验材料,研究了不同处理(破除休眠与不破除休眠、常温25℃与低温15℃、7 d测定和14 d测定)对种子发芽率的影响。结果表明,杂草稻的发芽率与对应采样点水稻品种的发芽率呈现极显著相关性。杂草稻破除休眠处理的发芽率显著或极显著高于不破除休眠处理。破除休眠与不破除休眠下,15℃处理的杂草稻种子发芽率均显著高于对应采样田的水稻品种,证明杂草稻相对于采样田水稻品种具有更强的耐冷性,可能进化出了新的耐冷性机制。25℃处理下杂草稻和对应水稻品种的发芽率均与纬度呈显著或极显著负相关,表明休眠性有随着纬度的降低而减弱的趋势。  相似文献   

19.
Low temperature at the booting stage is a serious abiotic stress in rice, and cold tolerance is a complex trait controlled by many quantitative trait loci (QTL). A QTL for cold tolerance at the booting stage in cold-tolerant near-isogenic rice line ZL1929-4 was analyzed. A total of 647 simple sequence repeat (SSR) markers distributed across 12 chromosomes were used to survey for polymorphisms between ZL1929-4 and the cold-sensitive japonica cultivar Towada, and nine were polymorphic. Single marker analysis revealed that markers on chromosome 7 were associated with cold tolerance. By interval mapping using an F2 population from ZL1929-4 × Towada, a QTL for cold tolerance was detected on the long arm of chromosome 7. The QTL explained 9 and 21% of the phenotypic variances in the F2 and F3 generations, respectively. Recombinant plants were screened for two flanking markers, RM182 and RM1132, in an F2 population with 2,810 plants. Two-step substitution mapping suggested that the QTL was located in a 92-kb interval between markers RI02905 and RM21862. This interval was present in BAC clone AP003804. We designated the QTL as qCTB7 (quantitative trait locus for cold tolerance at the booting stage on chromosome 7), and identified 12 putative candidate genes.  相似文献   

20.
 Most cultivars of tomato (Lycopersicon esculentum) are sensitive to salinity during seed germination and at later stages. Genetic resources for salt tolerance have been identified within the related wild species of tomato. The purpose of the present study was to identify quantitative trait loci (QTLs) for salt tolerance during germination in an inbred backcross (BC1S1) population of an interspecific cross between a salt-sensitive tomato breeding line (NC84173, maternal and recurrent parent) and a salt-tolerant Lycopersicon pimpinellifolium accession (LA722). Onehundred and nineteen BC1 individuals were genotyped for 151 restriction fragment length polymorphism (RFLP) markers and a genetic linkage map was constructed. The parental lines and 119 BC1S1 families (self-pollinated progeny of 119 BC1 individuals) were evaluated for germination at an intermediate salt-stress level (150 mM NaCl+15 mM CaCl2, water potential approximately −850 kPa). Germination was scored visually as radicle protrusion at 8-h intervals for 28 consecutive days. Germination response was analyzed by survival analysis and the time to 25, 50, and 75% germination was determined. In addition, a germination index (GI) was calculated as the weighted mean of the time from imbibition to germination for each family/line. Interval mapping, single-marker analysis and distributional extreme analysis, were used to identify QTLs and the results of all three mapping methods were generally similar. Seven chromosomal locations with significant effects on salt tolerance were identified. The L. pimpinellifolium accession had favorable QTL alleles at six locations. The percentage of phenotypic variation explained (PVE) by individual QTLs ranged from 6.5 to 15.6%. Multilocus analysis indicated that the cumulative action of all significant QTLs accounted for 44.5% of the total phenotypic variance. A total of 12 pairwise epistatic interactions were identified, including four between QTL-linked and QTL-unlinked regions and eight between QTL-unlinked regions. Transgressive phenotypes were observed in the direction of salt sensitivity. The graphical genotyping indicated a high correspondence between the phenotypes of the extreme families and their QTL genotypes. The results indicate that tomato salt tolerance during germination can be improved by marker-assisted selection using interspecific variation. Received: 29 January 1998 / Accepted: 4 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号