首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated cells obtained by enzymic digestion of young primary leaves of cold-hardened, dark-grown Kharkov winter wheat (Triticum aestivum L.) were exposed to various low temperature stresses. The initial uptake of 86Rb was generally decreased by increasing concentrations of Ca2+, but after longer periods of incubation, the inhibiting effect of high Ca2+ levels diminished. Viability of isolated cells suspended in water declined rapidly when ice encased at −1°C, while in the presence of 10 millimolar Ca2+ viability declined only gradually over a 5-week period. Ice encasement markedly reduced 86Rb uptake prior to a significant decline in cell viability or increased ion efflux. Cell damage increased progressively when the icing temperature was reduced from −1 to −2 and −3°C, but the presence of Ca2+ in the suspending medium reduced injury. Cell viability and ion uptake were reduced to a greater extent following slow cooling than after rapid cooling to subfreezing temperatures ranging from −10 to −30°C. The results from this study support the view that an early change in cellular properties due to prolonged ice encasement at −1°C involves the ion transport system, whereas cooling to lower subfreezing temperatures for only a few hours results in more general membrane damage, including loss of semipermeability of the plasma membrane.  相似文献   

2.
The interactions between freezing kinetics and subsequent storage temperatures and their effects on the biological activity of lactic acid bacteria have not been examined in studies to date. This paper investigates the effects of three freezing protocols and two storage temperatures on the viability and acidification activity of Lactobacillus delbrueckii subsp. bulgaricus CFL1 in the presence of glycerol. Samples were examined at −196°C and −20°C by freeze fracture and freeze substitution electron microscopy. Differential scanning calorimetry was used to measure proportions of ice and glass transition temperatures for each freezing condition tested. Following storage at low temperatures (−196°C and −80°C), the viability and acidification activity of L. delbrueckii subsp. bulgaricus decreased after freezing and were strongly dependent on freezing kinetics. High cooling rates obtained by direct immersion in liquid nitrogen resulted in the minimum loss of acidification activity and viability. The amount of ice formed in the freeze-concentrated matrix was determined by the freezing protocol, but no intracellular ice was observed in cells suspended in glycerol at any cooling rate. For samples stored at −20°C, the maximum loss of viability and acidification activity was observed with rapidly cooled cells. By scanning electron microscopy, these cells were not observed to contain intracellular ice, and they were observed to be plasmolyzed. It is suggested that the cell damage which occurs in rapidly cooled cells during storage at high subzero temperatures is caused by an osmotic imbalance during warming, not the formation of intracellular ice.  相似文献   

3.
The heterogeneous ice nucleation characteristics and frost injury in supercooled leaves upon ice formation were studied in nonhardened and cold-hardened species and crosses of tuber-bearing Solanum. The ice nucleation activity of the leaves was low at temperatures just below 0°C and further decreased as a result of cold acclimation. In the absence of supercooling, the nonhardened and cold-hardened leaves tolerated extracellular freezing between −3.5° and −8.5°C. However, if ice initiation in the supercooled leaves occurred at any temperature below −2.6°C, the leaves were lethally injured.

To prevent supercooling in these leaves, various nucleants were tested for their ice nucleating ability. One% aqueous suspensions of fluorophlogopite and acetoacetanilide were found to be effective in ice nucleation of the Solanum leaves above −1°C. They had threshold temperatures of −0.7° and −0.8°C, respectively, for freezing in distilled H2O. Although freezing could be initiated in the Solanum leaves above −1°C with both the nucleants, 1% aqueous fluorophlogopite suspension showed overall higher ice nucleation activity than acetoacetanilide and was nontoxic to the leaves. The cold-hardened leaves survived between −2.5° and −6.5° using 1% aqueous fluorophlogopite suspension as a nucleant. The killing temperatures in the cold-hardened leaves were similar to those determined using ice as a nucleant. However, in the nonhardened leaves, use of fluorophlogopite as a nucleant resulted in lethal injury at higher temperatures than those estimated using ice as a nucleant.

  相似文献   

4.
Studies of cold-active enzymes have provided basic information on the molecular and biochemical properties of psychrophiles; however, the physiological strategies that compensate for low-temperature metabolism remain poorly understood. We investigated the cellular pools of ATP and ADP in Psychrobacter cryohalolentis K5 incubated at eight temperatures between 22°C and −80°C. Cellular ATP and ADP concentrations increased with decreasing temperature, and the most significant increases were observed in cells that were incubated as frozen suspensions (<−5°C). Respiratory uncoupling significantly decreased this temperature-dependent response, indicating that the proton motive force was required for energy adaptation to frozen conditions. Since ATP and ADP are key substrates in metabolic and energy conservation reactions, increasing their concentrations may provide a strategy for offsetting the kinetic temperature effect, thereby maintaining reaction rates at low temperature. The adenylate levels increased significantly <1 h after freezing and also when the cells were osmotically shocked to simulate the elevated solute concentrations encountered in the liquid fraction of the ice. Together, these data demonstrate that a substantial change in cellular energy metabolism is required for the cell to adapt to the low temperature and water activity conditions encountered during freezing. This physiological response may represent a critical biochemical compensation mechanism at low temperature, have relevance to cellular survival during freezing, and be important for the persistence of microorganisms in icy environments.  相似文献   

5.
Streptomycin (100 micrograms per milliliter), desiccation (over CaSO4), and ultraviolet radiation (4500 microwatts per square centimeter at 254 nanometers for 15 minutes) reduced ice nucleation activity by Pseudomonas viridiflava strain W-1 as determined by freezing drops of the bacterial suspensions. Highest residual ice nucleation activity by dead cells was obtained by desiccation, although no freezing above −3.5°C was detected. The rate and extent of loss of ice nucleation activity following streptomycin and ultraviolet treatment was affected by preconditioning temperature. At 21°C and above, loss of activity by dead cells was rapid and irreversible.  相似文献   

6.
The purpose of this study was to examine cell viability after freezing. Two distinct ranges of temperature were identified as corresponding to stages at which yeast cell mortality occurred during freezing to −196°C. The upper temperature range was related to the temperature of crystallization of the medium, which was dependent on the solute concentration; in this range mortality was prevented by high solute concentrations, and the proportion of the medium in the vitreous state was greater than the proportion in the crystallized state. The lower temperature range was related to recrystallization that occurred during thawing. Mortality in this temperature range was increased by a high cooling rate and/or high solute concentration in the freezing medium and a low temperature (less than −70°C). However, a high rate of thawing prevented yeast mortality in this lower temperature range. Overall, it was found that cell viability could be conserved better under freezing conditions by increasing the osmotic pressure of the medium and by using an increased warming rate.  相似文献   

7.
The stability of the ice nucleation activity (INA) and viability of INA Pseudomonas syringae 31a, used as an ice nucleator in the manufacture of synthetic snow, was determined in snow. The viability of P. syringae 1-2b, a rifampin-resistant mutant selected from strain 31a to improve recovery from test samples, was determined in laboratory tests of three alpine soil and water samples from three different sources. Snow samples were exposed to environmental conditions or held in darkness at −20°C. Samples of soil and water were maintained in darkness at 0, 7.5, or 15°C. Parent strain 31a INA decreased significantly (>99.0%) in snow exposed to sunlight and freeze-thaw, while the INA of the cell population in snow held in darkness at −20°C remained essentially unchanged. No viable strain 31a was detected in snow exposed to the environment after 7 days, while the viability of strain 31a in snow held in darkness at −20°C decreased to <3% of the original inoculation at the test conclusion. Mutant strain 1-2b viability was undetectable or had decreased significantly 19 days postinoculation in soil samples held at 0 or 15°C. In contrast, 1-2b viability remained detectable at low levels for the duration of the test in soils held at 7.5°C. The 1-2b population demonstrated a significantly longer half-life in peatlike soil than in the loam soils tested. The rate of decrease in 1-2b viability was essentially the same in the three alpine water samples tested with respect to water temperature and sample location.  相似文献   

8.
The cryotolerance in frozen doughs and in water suspensions of bakers' yeast (Saccharomyces cerevisiae) previously grown under various industrial conditions was evaluated on a laboratory scale. Fed-batch cultures were very superior to batch cultures, and strong aeration enhanced cryoresistance in both cases for freezing rates of 1 to 56°C min−1. Loss of cell viability in frozen dough or water was related to the duration of the dissolved-oxygen deficit during fed-batch growth. Strongly aerobic fed-batch cultures grown at a reduced average specific rate (μ = 0.088 h−1 compared with 0.117 h−1) also showed greater trehalose synthesis and improved frozen-dough stability. Insufficient aeration (dissolved-oxygen deficit) and lower growth temperature (20°C instead of 30°C) decreased both fed-batch-grown yeast cryoresistance and trehalose content. Although trehalose had a cryoprotective effect in S. cerevisiae, its effect was neutralized by even a momentary lack of excess dissolved oxygen in the fed-batch growth medium.  相似文献   

9.
The freezing behavior of dimethylsulfoxide (DMSO) and sorbitol solutions and periwinkle (Catharanthus roseus) cells treated with DMSO and sorbitol alone and in combination was examined by nuclear magnetic resonance and differential thermal analysis. Incorporation of DMSO or sorbitol into the liquid growth medium had a significant effect in the temperature range for initiation to completion of ice crystallization. Compared to the control, less water crystallized at temperatures below −30°C in DMSO-treated cells. Similar results were obtained with sorbitol-treated cells, except sorbitol had less effect on the amount of water crystallized at temperatures below −25°C. There was a close association between the per cent unfrozen water at −40°C and per cent cell survival after freezing for 1 hour in liquid nitrogen. It appears that, in periwinkle suspension cultures, the amount of liquid water at −40°C is critical for a successful cryopreservation. The combination of DMSO and sorbitol was the most effective in preventing water from freezing. The results obtained may explain the cryoprotective properties of DMSO and sorbitol and why DMSO and sorbitol in combination are more effective as cryoprotectants than when used alone.  相似文献   

10.
The Formation and Distribution of Ice within Forsythia Flower Buds   总被引:1,自引:0,他引:1       下载免费PDF全文
Differential thermal analysis detected two freezing events when dormant forsythia (Forsythia viridissima Lindl.) flower buds were cooled. The first occurred just below 0°C, and was coincident with the freezing of adjacent woody tissues. The second exotherm appeared as a spike between −10 and −25°C and was correlated with the lethal low temperature. Although this pattern of freezing was similar to that observed in other woody species, differences were noted. Both direct observations of frozen buds and examination of buds freeze-fixed at −5°C demonstrated that ice formed within the developing flowers at temperatures above the second exotherm and lethal temperature. Ice crystals had formed within the peduncle and in the lower portions of the developing flower. Ice also formed within the scales. In forsythia buds, the developing floral organ did not freeze as a unit as noted in other species. Instead the low temperature exotherm appeared to correspond to the lethal freezing of supercooled water within the anthers and portions of the pistil.  相似文献   

11.
Isolated cell preparations of winter wheat (Triticum aestivum L.) were utilized to examine the effect of ice encasement at −1°C and exposure to ethanol on metabolic and biochemical properties of cells. Following icing and ethanol treatments, passive efflux of amino acids increased gradually with duration of exposure to the stress, and closely paralleled the decline in viability of cells. In contrast, uptake of 86Rb declined much more rapidly than viability following exposure to icing or ethanol. Electron spin resonance spectroscopy studies revealed no significant change in molecular ordering within the cell membranes following icing or exposure to ethanol, whereas a small but significant increase in order was detected in the noniced controls. O2 consumption by isolated cells declined only gradually due to icing and ethanol treatments, and remained relatively high even when cell viability was severely reduced. These results indicate that the plasma membrane is a primary site of injury during ice encasement and that damage to the ion transport system is the earliest manifestation of this injury.  相似文献   

12.
Not every cell of a given bacterial isolate that has ice-nucleating properties can serve as an ice nucleus at any given time and temperature. The ratio between the number of ice nuclei and number of bacterial cells in a culture (i.e. nucleation frequency) was found to vary with incubation temperature, growth medium composition, culture age, and genotype. Optimal conditions for ice nucleus production in vitro included incubation of the bacterial cells at 20 to 24°C on nutrient agar containing glycerol. The relationship between nucleation frequency and frost injury was examined by subjecting corn seedlings to −4°C immediately after they were sprayed with bacterial suspensions with different nucleation frequencies and by following both ice nucleus concentration and bacterial population size on leaves of corn seedlings as a function of time after bacterial application. The amount of frost injury to growth chamber-grown corn seedlings at −4°C was a function of the number of ice nuclei active at that temperature on the leaves. The number of ice nuclei, in turn, is the product of the nucleation frequency and population size of ice-nucleation-active bacteria present on the leaves.  相似文献   

13.
VISUALIZATION OF FREEZING DAMAGE   总被引:5,自引:0,他引:5       下载免费PDF全文
Freeze-cleaving can be used as a direct probe to examine the ultrastructural alterations of biological material due to freezing. We examined the thesis that at least two factors, which are oppositely dependent upon cooling velocity, determine the survival of cells subjected to freezing. According to this thesis, when cells are cooled at rates exceeding a critical velocity, a decrease in viability is caused by the presence of intracellular ice; but cells cooled at rates less than this critical velocity do not contain appreciable amounts of intracellular ice and are killed by prolonged exposure to a solution that is altered by the presence of ice. As a test of this hypothesis, we examined freeze-fractured replicas of the yeast Saccharomyces cerevisiae after suspensions had been cooled at rates ranging from 1.8 to 75,000°C/min. Some of the frozen samples were cleaved and replicated immediately in order to minimize artifacts due to sample handling. Other samples were deeply etched or were rewarmed to -20°C and recooled before replication. Yeast cells cooled at or above the rate necessary to preserve maximal viability (~7°C/min) contained intracellular ice, whereas cells cooled below this rate showed no evidence of intracellular ice.  相似文献   

14.
Fully hydrated lettuce (Lactuca sativa L.) seeds showed dual freezing exotherms (−9 and −18°C), even after 10 hours imbibition. Only the −9°C exotherm was observed in seeds imbibed for 20 hours, but without external nucleation, all water in the embryo supercooled. Results indicate that the endosperm acts as a barrier to ice propagation. Other experiments suggest that the pericarp may also protect the embryo under certain freezing conditions.  相似文献   

15.
There is no generally accepted value for the lower temperature limit for life on Earth. We present empirical evidence that free-living microbial cells cooling in the presence of external ice will undergo freeze-induced desiccation and a glass transition (vitrification) at a temperature between −10°C and −26°C. In contrast to intracellular freezing, vitrification does not result in death and cells may survive very low temperatures once vitrified. The high internal viscosity following vitrification means that diffusion of oxygen and metabolites is slowed to such an extent that cellular metabolism ceases. The temperature range for intracellular vitrification makes this a process of fundamental ecological significance for free-living microbes. It is only where extracellular ice is not present that cells can continue to metabolise below these temperatures, and water droplets in clouds provide an important example of such a habitat. In multicellular organisms the cells are isolated from ice in the environment, and the major factor dictating how they respond to low temperature is the physical state of the extracellular fluid. Where this fluid freezes, then the cells will dehydrate and vitrify in a manner analogous to free-living microbes. Where the extracellular fluid undercools then cells can continue to metabolise, albeit slowly, to temperatures below the vitrification temperature of free-living microbes. Evidence suggests that these cells do also eventually vitrify, but at lower temperatures that may be below −50°C. Since cells must return to a fluid state to resume metabolism and complete their life cycle, and ice is almost universally present in environments at sub-zero temperatures, we propose that the vitrification temperature represents a general lower thermal limit to life on Earth, though its precise value differs between unicellular (typically above −20°C) and multicellular organisms (typically below −20°C). Few multicellular organisms can, however, complete their life cycle at temperatures below ∼−2°C.  相似文献   

16.
Expression of a bacterial ice nucleation gene in plants   总被引:3,自引:0,他引:3       下载免费PDF全文
We have introduced an ice nucleation gene (inaZ) from Pseudomonas syringae pv. syringae into Nicotiana tabacum, a freezing-sensitive species, and Solanum commersonii, a freezing-tolerant species. Transformants of both species showed increased ice nucleation activity over untransformed controls. The concentration of ice nuclei detected at −10.5°C in 15 different primary transformants of S. commersonii varied by over 1000-fold, and the most active transformant contained over 100 ice nuclei/mg of tissue. The temperature of the warmest freezing event in plant samples of small mass was increased from approximately −12°C in the untransformed controls to −4°C in inaZ-expressing transformants. The threshold nucleation temperature of samples from transformed plants did not increase appreciably with the mass of the sample. The most abundant protein detected in transgenic plants using immunological probes specific to the inaZ protein exhibited a higher mobility on sodium dodecyl sulfate polyacrylamide gels than the inaZ protein from bacterial sources. However, some protein with a similar mobility to the inaZ protein could be detected. Although the warmest ice nucleation temperature detected in transgenic plants is lower than that conferred by this gene in P. syringae (−2°C), our results demonstrate that the ice nucleation gene of P. syringae can be expressed in plant cells to produce functional ice nuclei.  相似文献   

17.
The survival after freezing of ice nucleation-active (INA) and genetically engineered non-INA strains of Pseudomonas syringae was compared. Each strain was applied to oat seedlings and allowed to colonize for 3 days, and the plants were subjected to various freezing temperatures. Plant leaves were harvested before and after freezing on two consecutive days, and bacterial populations were determined. Populations of the INA wild-type strain increased 15-fold in the 18 h after the oat plants incurred frost damage at −5 and −12°C. Plants colonized by the non-INA strain were undamaged at −5°C and exhibited no changes in population size after two freeze trials. As freezing temperatures were lowered (−7, −9, and −12°C), oat plants colonized by the non-INA strain suffered increased frost damage concomitant with bacterial population increases following 18 h. At −12°C, both strains behaved identically. The data show a relationship between frost damage to plants and increased bacterial population size during the following 18 h, indicating a potential competitive advantage of INA strains of P. syringae over non-INA strains in mild freezing environments.  相似文献   

18.
Twenty fungal genera, including 14 Fusarium species, were examined for ice nucleation activity at −5.0°C, and this activity was found only in Fusarium acuminatum and Fusarium avenaceum. This characteristic is unique to these two species. Ice nucleation activity of F. avenaceum was compared with ice nucleation activity of a Pseudomonas sp. strain. Cumulative nucleus spectra are similar for both microorganisms, while the maximum temperatures of ice nucleation were −2.5°C for F. avenaceum and −1.0°C for the bacteria. Ice nucleation activity of F. avenaceum was stable at pH levels from 1 to 13 and tolerated temperature treatments up to 60°C, suggesting that these ice nuclei are more similar to lichen ice nuclei than to bacterial ones. Ice nuclei of F. avenaceum, unlike bacterial ice nuclei, pass through a 0.22-μm-pore-size filter. Fusarial nuclei share some characteristics with the so-called leaf-derived nuclei with which they might be identified: they are cell free and stable up to 60°C, and they are found in the same kinds of environment. Highly stable ice nuclei produced by fast-growing microorganisms have potential applications in biotechnology. This is the first report of ice nucleation activity in free-living fungi.  相似文献   

19.
When cooled at rapid rates to temperatures between −10 and −30°C, the incidence of intracellular ice formation was less in protoplasts enzymically isolated from cold acclimated leaves of rye (Secale cereale L. cv Puma) than that observed in protoplasts isolated from nonacclimated leaves. The extent of supercooling of the intracellular solution at any given temperature increased in both nonacclimated and acclimated protoplasts as the rate of cooling increased. There was no unique relationship between the extent of supercooling and the incidence of intracellular ice formation in either nonacclimated or acclimated protoplasts. In both nonacclimated and acclimated protoplasts, the extent of intracellular supercooling was similar under conditions that resulted in the greatest difference in the incidence of intracellular ice formation—cooling to −15 or −20°C at rates of 10 or 16°C/minute. Further, the hydraulic conductivity determined during freeze-induced dehydration at −5°C was similar for both nonacclimated and acclimated protoplasts. A major distinction between nonacclimated and acclimated protoplasts was the temperature at which nucleation occurred. In nonacclimated protoplasts, nucleation occurred over a relatively narrow temperature range with a median nucleation temperature of −15°C, whereas in acclimated protoplasts, nucleation occurred over a broader temperature range with a median nucleation temperature of −42°C. We conclude that the decreased incidence of intracellular ice formation in acclimated protoplasts is attributable to an increase in the stability of the plasma membrane which precludes nucleation of the supercooled intracellular solution and is not attributable to an increase in hydraulic conductivity of the plasma membrane which purportedly precludes supercooling of the intracellular solution.  相似文献   

20.
The sea ice microbial community plays a key role in the productivity of the Southern Ocean. Exopolysaccharide (EPS) is a major component of the exopolymer secreted by many marine bacteria to enhance survival and is abundant in sea ice brine channels, but little is known about its function there. This study investigated the effects of temperature on EPS production in batch culture by CAM025, a marine bacterium isolated from sea ice sampled from the Southern Ocean. Previous studies have shown that CAM025 is a member of the genus Pseudoalteromonas and therefore belongs to a group found to be abundant in sea ice by culture-dependent and -independent techniques. Batch cultures were grown at −2°C, 10°C, and 20°C, and cell number, optical density, pH, glucose concentration, and viscosity were monitored. The yield of EPS at −2°C and 10°C was 30 times higher than at 20°C, which is the optimum growth temperature for many psychrotolerant strains. EPS may have a cryoprotective role in brine channels of sea ice, where extremes of high salinity and low temperature impose pressures on microbial growth and survival. The EPS produced at −2°C and 10°C had a higher uronic acid content than that produced at 20°C. The availability of iron as a trace metal is of critical importance in the Southern Ocean, where it is known to limit primary production. EPS from strain CAM025 is polyanionic and may bind dissolved cations such at trace metals, and therefore the presence of bacterial EPS in the Antarctic marine environment may have important ecological implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号