首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on island populations of house mice (Mus domesticus) and their viruses reveal insights into viral persistence in isolated communities. We surveyed the ectoparasites, endoparasites, and antiviral antibodies for 11 murine viruses and two bacteria of house mice inhabiting two islands off Australia. House mice on Boullanger Island were seropositive to two viruses, murine cytomegalovirus and epizootic diarrhea of infant mice. On subantarctic Macquarie Island, house mice were seropositive for five viruses: murine cytomegalovirus, lymphocytic choriomeningitis virus, mouse parvovirus, epizootic diarrhea of infant mice, and Theiler's murine encephalomyelitis virus. The diversity of antiviral antibodies was lower among populations of house mice on islands than those inhabiting mainland Australia. The decreased diversity of viruses in island populations of house mice may be a function of which agent the founder mice transfer to the island and related to the low densities which the host population may periodically reach over time.  相似文献   

2.
House mice (Mus domesticus) were recently introduced to Thevenard Island, off the northwest coast of Western Australia. This island is also habitat for an endangered native rodent, the short-tailed mouse (Leggadina lakedownensis). Concerns have been raised that house mice may pose a threat to L. lakedownensis both through competition and as a source of infection. To assess the threat to L. lakedownensis posed by viral pathogens from M. domesticus, a serological survey was conducted from 1994 to 1996 of both species for evidence of infection with 14 common murine viruses (mouse hepatitis virus, murine cytomegalovirus, lymphocytic choriomeningitis virus, ectromelia virus, mouse adenovirus strains FL and K87, minute virus of mice, mouse parvovirus, reovirus type 3, Sendai virus, Theiler's mouse encephalomyelitis virus, polyoma virus, pneumonia virus of mice, and encephalomyocarditis virus) and Mycoplasma pulmonis. Despite previous evidence that populations of free-living M. domesticus from various locations on the Australian mainland were infected with up to eight viruses, M. domesticus on Thevenard Island were seropositive only to murine cytomegalovirus (MCMV). Antibodies to MCMV were detected in this species at all times of sampling, although seroprevalence varied. Infectious MCMV could be isolated in culture of salivary gland homogenates from seropositive mice. In contrast, L. lakedownensis on Thevenard Island showed no serological evidence of infection with MCMV, any of the other murine viruses, or M. Pulmonis, and no virus could be isolated in culture from salivary gland homogenates. Although MCMV replicated to high titers in experimentally infected inbred BALB/c laboratory mice as expected, it did not replicate in the target organs of experimentally inoculated L. lakedownensis, indicating that the strict host specificity of MCMV may prevent its infection of L. lakedownensis. These results suggest that native mice on Thevenard Island are not at risk of MCMV infection from introduced house mice, and raise interesting questions about the possible selective survival of MCMV in small isolated populations of M. domesticus.  相似文献   

3.
Mice which were infected with the herpesvirus murine cytomegalovirus or herpes simplex virus type 1 on the day of birth exhibited mouse strain-dependent differences in the development of lethal disease. The pattern of resistance among the strains was distinct for each virus and closely resembled that reported in adult mice. However, much lower doses of the viruses were required in newborn mice to reveal these resistance patterns. For murine cytomegalovirus, both H-2-associated and non-H-2 genes conferred resistance, and, as has been shown for adults, there was a 25-fold difference in the dose required to kill 50% of the animals belonging to the most resistant and susceptible strains. The resistance of newborn mice to herpes simplex virus type 1 was conferred by non-H-2 genes in C57BL/6 mice, as has been reported for adults, and newborn C57BL/6 mice were considerably more resistant than mice of susceptible strains. Resistance was also reflected in the titer of these viruses in the spleen or liver early in infection and, with murine cytomegalovirus, in the survival time of infected mice. The resistance of newborn mice to lethal disease was not conferred postnatally by the mother. This appears to be the first report of genetically determined resistance to herpesviruses in newborn mice. Such autonomous virus-specific resistance may provide a significant barrier to naturally acquired infection in genetically resistant strains. Similar genetically regulated mechanisms may protect the newborns of many species, including humans, against infection with herpesviruses.  相似文献   

4.
Laboratory mice serve as important models in biomedical research. Monitoring these animals for infections and infestations and excluding causative agents requires extensive resources. Despite advancements in detection and exclusion over the last several years, these activities remain challenging for many institutions. The infections and infestations present in laboratory mouse colonies are well documented, but their mode of introduction is not always known. One possibility is that wild rodents living near vivaria somehow transmit infections to and between the colonies. This study was undertaken to determine what infectious agents the wild mice on the University of Pennsylvania (Philadelphia) campus were carrying. Wild mice were trapped and evaluated for parasites, viruses, and selected bacteria by using histopathology, serology, and PCR-based assays. Results were compared with known infectious agents historically circulating in the vivaria housing mice on campus and were generally different. Although the ectoparasitic burdens found on the 2 populations were similar, the wild mice had a much lower incidence of endoparasites (most notably pinworms). The seroprevalence of some viral infections was also different, with a low prevalence of mouse hepatitis virus among wild mice. Wild mice had a high prevalence of murine cytomegalovirus, an agent now thought to be confined to wild mouse populations. Helicobacter DNA was amplified from more than 90% of the wild mice (59% positive for H. hepaticus). Given the results of this study, we conclude that wild mice likely are not a source of infection for many of the agents that are detected in laboratory mouse colonies at the University of Pennsylvania.Abbreviations: EDIM, epizootic diarrhea of infant mice; MAV, mouse adenovirus; MCMV, murine cytomegalovirus; MFIA, multiplex fluorescent immunoassay; MHV, mouse hepatitis virus; MNV, murine norovirus; MPV, mouse parvovirus; MVM, minute virus of mice; TMEV, Theiler mouse encephalomyelitis virusLaboratory mice constitute the most popular animal models used in biomedical research today. Like all animals, even mice housed in so-called ‘barrier’ facilities are subject to infection. The infectious agents and organisms present in laboratory mouse colonies on the University of Pennsylvania campus are known and documented by the University Laboratory Animal Resources Diagnostic Services Unit. Sentinel mice that are housed on soiled bedding from resident mouse cages are screened onsite at 3 quarterly intervals for fur mites and pinworms and for a panel of viral infections: mouse hepatitis virus (MHV); epizootic diarrhea of infant mice (EDIM) virus; minute virus of mice (MVM); mouse parvovirus (MPV); Theiler mouse encephalomyelitis virus (TMEV); and Sendai virus. Comprehensive bacteriology and parasitology assessments are performed on all sentinels once yearly during the fourth quarter. In addition, these sentinels are screened serologically for 18 viral infections, Mycoplasma pulmonis, cilia-associated respiratory bacillus, and Encephalitozoon cuniculi and by PCR for Helicobacter spp. and M. pulmonis. Mesenteric lymph nodes from sentinels monitoring barrier-maintained colonies are also screened once yearly by PCR for MPV. In addition, University Laboratory Animal Resources maintains a quarantine facility for rodents received from nonapproved sources (sources other than selected commercial breeding facilities). Mice entering the quarantine facility are housed in semirigid isolators, and contact sentinels are tested for all of the agents included in the fourth quarter comprehensive health assessment described, including PCR for MPV.Wild mice (Mus musculus) could serve as a source of infection or infestation in laboratory mouse colonies, although little is known about the prevalence of infectious diseases in wild mouse populations in Philadelphia. However, we have surveyed wild mouse populations in other geographic areas.1,9 Significant seroprevalence of MHV, EDIM, murine cytomegalovirus (MCMV), parvovirus, and thymic virus (murid herpesvirus 3), in addition to the presence of many types of parasites and bacteria including Myocoptes spp., Myobia spp., Radfordia spp., Spironucleus spp., Giardia spp., Pasteurella pneumotropica, Pseudomonas spp., and Leptospira spp. were found in wild populations of mice from farms in southeastern Connecticut.1 Studies of wild mouse (Mus domesticus) populations in the cereal-growing region of southeastern Australia revealed a high serologic prevalence of MHV, EDIM, and MCMV, as well as significant seroprevalence of mouse adenovirus (MAV), MPV, and reovirus type 3.9The goal of the current study was to expand preliminary data obtained from wild mice trapped in the University City district of Philadelphia in 2005 (which are included with the current results from a 2007 survey). These data document the prevalence of various infectious agents and parasites commonly found in populations of wild mice on the University of Pennsylvania campus in Philadelphia and are discussed in the context of infectious disease outbreaks in campus vivaria over the past 5 y.  相似文献   

5.
The course of systemic viral infections is determined by the virus productivity of infected cell types and the efficiency of virus dissemination throughout the host. Here, we used a cell-type-specific virus labeling system to quantitatively track virus progeny during murine cytomegalovirus infection. We infected mice that expressed Cre recombinase selectively in vascular endothelial cells or hepatocytes with a murine cytomegalovirus for which Cre-mediated recombination would generate a fluorescently labeled virus. We showed that endothelial cells and hepatocytes produced virus after direct infection. However, in the liver, the main contributor to viral load in the mouse, most viruses were produced by directly infected hepatocytes. Remarkably, although virus produced in hepatocytes spread to hepatic endothelial cells (and vice versa), there was no significant spread from the liver to other organs. Thus, the cell type producing the most viruses was not necessarily the one responsible for virus dissemination within the host.  相似文献   

6.
Xiao J  Tong T  Zhan X  Haghjoo E  Liu F 《Journal of virology》2000,74(20):9488-9497
We have recently generated a pool of murine cytomegalovirus (MCMV) mutants by using a Tn3-based transposon mutagenesis approach. In this study, one of the MCMV mutants, RvM43, which contained the transposon inserted in open reading frame M43, was characterized. Our results provide the first direct evidence to suggest that M43 is not essential for viral replication in vitro in NIH 3T3 cells. Moreover, RvM43 exhibited a titer similar to that of the wild-type virus in the lungs, livers, spleens, and kidneys of both BALB/c and SCID mice and was as virulent as the wild-type virus in killing SCID mice that had been intraperitoneally infected with the viruses. In contrast, titers of the mutant virus in the salivary glands of the infected animals at 21 days postinfection were significantly (100 to 1,000-fold) lower than those of the wild-type virus and a rescued virus that restored the M43 region and its expression. Thus, M43 appears to be not essential for viral growth in vivo in the lungs, livers, spleens, and kidneys of infected animals and is also dispensable for virulence in killing SCID mice. Moreover, our results suggest that M43 is an MCMV determinant for growth in the salivary glands. Studies of viral genes required for replication in the salivary glands are important in understanding the mechanism of viral tropism for the salivary glands and shedding in saliva, which is believed to be one of the major routes of CMV transmission among healthy human populations.  相似文献   

7.
The NK gene complex (NKC) on mouse chromosome 6 encodes receptors that are expressed on NK cells, such as Ly49H, and is involved in regulating NK cell control of virus infections, such as murine cytomegalovirus (MCMV). In the present study, we investigated the level of allelic heterogeneity in NKC loci in populations of outbred wild mice. This work revealed extensive levels of heterogeneity within two wild mouse populations. Analysis of MCMV replication in a population of specific pathogen-free outbred wild mice revealed that low viral titres, which are normally associated with the Cmv1(r) allele of the Cmv1 host resistance locus, were not prevalent in the mice tested. Hence, NKC-mediated resistance associated with Cmv1(r)/Ly49H-like effects was rare in this population. Overall, these data indicate that the NKC region is highly polymorphic and thus it is very likely that it confers on mice sufficient variability to cope with infection by a range of pathogens.  相似文献   

8.
Rabbit anti-mouse macrophage serum (AMS) was used to study the role played by macrophages against murine cytomegalovirus infection. Treatment of mice with AMS enhanced morbidity and mortality following virus infection. These results are discussed in relation to the role of macrophages against virus infections.  相似文献   

9.
It has been recognized that macrophages play an important role in controlling virus infection in experimental animal models. To evaluate the role of macrophages in acute murine cytomegalovirus infection, macrophages in the spleen and the liver were eliminated by an intravenous injection of liposomes containing a cytolytic agent, dichloromethylene diphosphonate. The depletion of macrophages led to a significant increase of virus titer in the spleen and lungs in both susceptible BALB/c and resistant C57BL/6 mice during the first three days after intravenous infection. In the spleen, the increase of virus titer in macrophage-depleted BALB/c mice was much greater than that in NK cell-depleted mice. These results suggest that macrophages contribute to protection mainly by the mechanisms which are independent of NK cells during the first three days after infection. The increase of virus titer in macrophage-depleted C57BL/6 mice was as great as that in NK cell-depleted mice because of the high contribution of NK cells to protection in C57BL/6 mice. In the liver in both strains of mice, the effects of macrophage depletion on virus titer were not as much as those in the spleen and lungs. Furthermore, the local depletion of peritoneal macrophages resulted in a great increase of virus titer in the spleen at three days after intraperitoneal infection. We conclude that macrophages greatly contribute to decreasing the virus load in some organs possibly through either or both intrinsic and extrinsic mechanisms in the early phase of primary infection with murine cytomegalovirus.  相似文献   

10.
The prophylactic and therapeutic efficacy of interleukin-12 was studied by using murine models of herpes simplex virus infection. Prophylactic administration consisted of two intraperitoneal doses of interleukin-12 given 48 and 24 h prior to infection. Therapeutic intraperitoneal administration of interleukin-12 commenced 6 h after the mice were infected with herpes simplex virus and was continued daily for a total of 5 days. Interleukin-12 therapy improved the survival rates of mice with systemic herpes simplex virus infection compared with those of placebo-treated infected mice. Subcutaneous administration of interleukin-12 also improved the rate of survival of mice after systemic herpes simplex virus infection, although higher doses were required to give comparable effects. Combined prophylactic and therapeutic administration of interleukin-12 produced the greatest effect on survival after an otherwise lethal systemic infection. Intraperitoneal administration of interleukin-12 for 2 days before and 3 days after systemic infection with herpes simplex virus resulted in survival of 80% of the mice. These surviving mice were resistant to subsequent reinfection with herpes simplex virus. Such resistance was apparently specific for herpes simplex virus infection, since a second group of survivors succumbed to a lethal infection with murine cytomegalovirus. Infectious virus was recovered from lumbar ganglia explants dissected from survivors of prophylactic interleukin-12 therapy and cultured for 5 days in vitro, suggesting that interleukin-12 treatment did not prevent the establishment of latent herpes simplex virus infection. One action of interleukin-12 may be to enhance natural killer cell-mediated clearance of the virus. However, interleukin-12 therapy was also effective in mice carrying the beige mutation, which reduces natural killer cell lytic activity, suggesting that interleukin-12 has additional activities in vivo.  相似文献   

11.
Pathogenesis of murine cytomegalovirus infection   总被引:11,自引:0,他引:11  
Infection of mice with murine cytomegalovirus (MCMV) is an established model for studying human cytomegalovirus (HCMV) infection. Similarly to HCMV infection, pathological changes and disease manifestations during MCMV infection are mainly dependent on the immune status of the mouse host. This review focuses mainly on the pathogenesis of MCMV infection in immunocompetent and immunodeficient and/or immature mice and discusses the principles of immunosurveillance of infection and the mechanisms by which this virus evades immune control.  相似文献   

12.
An important target tissue for murine cytomegalovirus (CMV) infection is the submaxillary salivary gland. Submaxillary salivary gland biopsy specimens from BALB/c mice latently infected with murine CMV were examined for murine CMV DNA by in vitro enzymatic amplification using the polymerase chain reaction preceding oligonucleotide hybridization. The amplified sequence was a 152-base pair segment from within the immediate early gene of murine CMV. Biopsy and whole gland specimens from acutely infected BALB/c mice and latently infected, immunosuppressed BALB/c mice were compared for active murine CMV infection. After acute infection with murine CMV, virus was recovered in all cultures of both biopsy and whole salivary gland specimens but from none of the latently infected animals. Reactivated virus was detected by culture of both biopsy (90%) and whole salivary gland specimens (100%) from latently infected mice that received antithymocyte serum. Viral nucleic acid was detected in 90% of biopsy specimens from latently infected animals. Hence, active murine CMV infection can be detected in biopsy specimens from mice with acute and reactivated infection and murine CMV DNA can be amplified and detected in salivary gland biopsy specimens from latently infected animals. Biopsy of this or other target tissues can be useful for obtaining tissue for viral studies where the survival of the animal is important and it is useful to distinguish latent from acute or reactivated infection.  相似文献   

13.
The pathogenicity of cytomegalovirus   总被引:8,自引:0,他引:8  
Human cytomegalovirus is ubiquitous, yet causes little illness in immunocompetent individuals. Disease is evident in immunodeficient groups such as neonates, transplant recipients and AIDS patients either following a primary infection or reactivation of a latent infection. Little is known of the mechanisms underlying the pathogenicity of the virus. The recent determination of the nucleotide sequence of both human cytomegalovirus (strain AD169) and murine cytomegalovirus (murine cytomegalovirus strain Smith) has allowed an analysis of the biological importance of several virus genes. Studies with human cytomegalovirus have indicated that many viral genes are non-essential for replication in vitro which are thus assumed to be important in the pathogenesis of the virus. This is being examined in the murine model where the role of the gene and its product in disease can be directly examined in vivo using viral mutants in which the relevant gene has been interrupted or deleted. Current information on the role of cytomegalovirus genes in tissue tropism, immune evasion, latency, reactivation from latency and damage is described.  相似文献   

14.
The serological prevalence of 13 murine viruses was surveyed among 103 wild-caught and 51 captive-bred house mice (Mus domesticus), originating from several trapping locations in northwest England, using blood samples obtained during routine health screening of an established wild mouse colony. A high proportion of recently caught wild mice were seropositive for mouse hepatitis virus (86%), mouse cytomegalovirus (79%), mouse thymic virus (78%), mouse adenovirus (68%), mouse parvovirus (59%) and minute virus of mice (41%). Seroprevalences of lymphocytic choriomeningitis virus (LCMV), orthopoxvirus, reovirus-3 and murid herpesvirus 4 (MuHV-4, also called murine gamma-herpesvirus [MHV-68]) were low (3-13%), and no animals were seropositive to Sendai virus, pneumonia virus or polyomavirus. Seroprevalence in wild-caught animals that had been in captivity for over six months was generally consistent with the range found in recently caught wild animals, while seroprevalence was generally much lower in captive-bred mice despite no attempt to prevent viral spread. A notable exception to this was LCMV, which appeared to have spread efficiently through the captive population (both captive-bred and wild-caught animals). Given the known viral life cycles in laboratory mice, it appears that viral persistence in the host was an important contributing factor in the spread of infection in captivity.  相似文献   

15.
It is not known if murine cytomegalovirus (MCMV) establishes a state of molecular latency independent of low-level persistent infection. The presence of low levels of infectious MCMV distinguishes persistence from molecular latency. Thus, the distinction between persistence and latency has depended on the sensitivity of plaque assays for detecting low levels of infectious virus in tissue of previously infected mice. To determine whether MCMV establishes molecular latency or remains persistent, we developed two assays for detecting low levels of MCMV in tissue. Using prolonged in vitro culture of virus with either mouse embryonic fibroblasts or the murine 3T12 fibroblast cell line, we reproducibly detected a single PFU of MCMV. Inclusion of undiluted sonicated tissue in this assay decreased sensitivity by up to 100-fold. However, sensitivity was improved to 1 PFU of MCMV when sonicated tissue was appropriately diluted. Severe combined immunodeficient (SCID) mice were also used to detect MCMV in sonicated tissue. Infection of SCID mice with a single PFU of MCMV killed two of eight SCID mice, and the 50% lethal dose of MCMV in SCID mice was 2 to 3 PFU. Applying these two methods, we detected infectious virus in 0 of 34 spleens, 1 of 34 kidneys, and 0 of 37 salivary glands from latently infected mice. Spleens and kidneys assessed for persistent virus contained MCMV DNA by PCR and reactivated after 10 to 50 days in explant cultures. Latently infected kidney cells reactivated after adoptive transfer to SCID mice. Quantitation of the MCMV genome by PCR showed that latently infected spleens without detectable infectious MCMV contained about 3,000,000 copies of the MCMV genome. These results demonstrate that MCMV latency in spleen and kidney exists in the absence of low-level persistent infection. Use of assays with defined sensitivity for detection of MCMV in tissue provides a basis for evaluation of cytomegalovirus gene expression in the spleen and kidney during molecular latency.  相似文献   

16.
We used virus assay and in situ hybridization with a cloned fragment of the murine cytomegalovirus (MCMV) genome to study MCMV infection of circulating leukocytes harvested from 3-week-old BALB/c, C57BL/6, and C3H mice infected with MCMV intraperitoneally. Infectious virus or MCMV DNA was detected in leukocytes on days 1 through 21 of infection in BALB/c mice and on days 3 through 7 in C57BL/6 mice. On days 5 and 7, MCMV DNA or infectious virus was detected in the leukocytes of 17 (94%) of 18 BALB/c mice and 10 (59%) of 17 C57BL/6 mice. In both strains infection peaked on days 5 and 7, when as many as 0.01 to 0.1% of the circulating leukocytes contained MCMV DNA. In C3H mice, however, infectious virus was rarely recovered from leukocyte fractions and MCMV DNA was detected in the circulating leukocytes of only one animal. Circulating leukocytes may have an important role in the dissemination of CMV infections in susceptible hosts.  相似文献   

17.
Murine cytomegalovirus infection of mouse testes.   总被引:4,自引:1,他引:3       下载免费PDF全文
With the aim of illustrating a mechanism of cytomegalovirus (CMV) venereal transmission, we induced murine CMV infection in the mouse testes of immunologically competent mice. Using in situ cytohybridization, we were able to show that murine CMV-specific DNA was associated with spermatocytes and mature sperm. Electron microscopy studies also supported sperm infection. The virus could be reisolated from infected epididymal sperm by cocultivation with mouse embryo fibroblasts. We found no difference in either the sexual performance or the fertilization efficiency of the sperm between infected and uninfected males.  相似文献   

18.
Congenital human cytomegalovirus (HCMV) occurs in 0.5–1% of live births and approximately 10% of infected infants develop hearing loss. The mechanism(s) of hearing loss remain unknown. We developed a murine model of CMV induced hearing loss in which murine cytomegalovirus (MCMV) infection of newborn mice leads to hematogenous spread of virus to the inner ear, induction of inflammatory responses, and hearing loss. Characteristics of the hearing loss described in infants with congenital HCMV infection were observed including, delayed onset, progressive hearing loss, and unilateral hearing loss in this model and, these characteristics were viral inoculum dependent. Viral antigens were present in the inner ear as were CD3+ mononuclear cells in the spiral ganglion and stria vascularis. Spiral ganglion neuron density was decreased after infection, thus providing a mechanism for hearing loss. The lack of significant inner ear histopathology and persistence of inflammation in cochlea of mice with hearing loss raised the possibility that inflammation was a major component of the mechanism(s) of hearing loss in MCMV infected mice.  相似文献   

19.
Resistance to the paralytic effects of a wild mouse (Cas-Br-M) murine leukemia virus infection develops with age and is complete by 10 days of age in susceptible NFS mice. The possibility that cell-mediated immunity plays a significant role in this resistance was suggested by the observation that treatment of 10-day-old mice with antithymocyte serum rendered them susceptible to paralysis. By comparison, mice rendered incapable of generating a humoral immune response by treatment from birth to 1 month of age with anti-immunoglobulin M serum did not develop paralysis after challenge with virus at day 10. Transfer of unseparated and T-cell-enriched populations of Cas-Br-M murine leukemia virus-immune spleen cells protected neonatally infected NFS recipients from paralysis; transfer of Cas-Br-M murine leukemia virus-immune populations enriched for B cells delayed the onset but did not ultimately protect neonatally infected NFS mice from paralysis. Transfer of naive adult spleen cells had no protective effect in neonatally infected NFS mice. High-level virus replication occurred in the spleens and brains of all mice that developed paralysis regardless of treatment; low-level virus replication in spleen and barely detectable replication in brain occurred in mice that remained clinically normal. These studies suggest that the age-acquired resistance to the paralytic effect of Cas-Br-M murine leukemia virus infection is immunologically mediated and that T cells may play a major role.  相似文献   

20.
A severe, antigen-nonspecific, and long-lasting immune-deficient state can be induced in healthy, adult immune-competent F1 hybrid mice by a single i.v. injection of parental T lymphocytes. The present report demonstrates that this graft-vs-host-induced immune deficiency (GVHID) can be prevented in an antigen-specific way by immunization of the F1 mice with allogeneic cells before induction of GVHID. Thus, spleen cells from (A X B)F1 mice primed with allogeneic cells from strain C and then injected with parental spleen cells from A did not generate cytotoxic T lymphocyte responses to trinitophenyl-modified self cells or to allogeneic cells from third party strains D or E. However, spleen cells from the same mice generated normal levels of cytotoxic T lymphocyte activity to allogeneic cells from C, the strain used for immunization. Furthermore, mice exposed to murine cytomegalovirus before induction of GVHID were resistant to a subsequent challenge with murine cytomegalovirus, whereas GVHID mice that received only the murine cytomegalovirus challenge all died. These findings are discussed with respect to the possibilities that primed and unprimed T helper cells may be differentially susceptible to the suppressive effects of GVH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号