首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Is the nuclear matrix the site of DNA replication in eukaryotic cells?   总被引:1,自引:0,他引:1  
Four types of experiment were carried out to test the recently proposed model of matrix-bound replication in eukaryotic cells. In experiments with pulse-labelling we found preferential association of newly replicated DNA with the matrix only when the procedure for isolation includes first high-salt treatment of isolated nuclei and then digestion with nucleases, or when prior to digestion the nuclei have been stored for a prolonged time. In both cases, however, evidence was found that this preferential association is due to a secondary, artifactual binding of the newly replicated chromatin region to the matrix elements. Pulse-chase experiments and experiments with continuous labelling were carried out to answer the question whether during replication the DNA is reeled through the replication complexes, i.e., whether newly replicated DNA is temporarily or permanently associated with the matrix. The results showed that at that time the matrix DNA does not move from its site of attachment. Since, according to the model of matrix-bound replication, the forks are assumed to be firmly anchored to high-salt resistant proteinaceous matrix structures, the chromatin fragments isolated with endonuclease not recognizing newly replicated DNA and purified by sucrose gradient centrifugation should be free of replication intermediates. The electronmicroscopic analysis of such fragments revealed the existence of intact replication micro-bubbles. Moreover, the fragments with replication configurations appeared as smooth chromatin fibres not attached to elements characteristic for the matrix. All these experiments suggest that the nuclear skeleton is not a native site of DNA replication in eukaryotic cells.  相似文献   

3.
Sonically disrupted nuclei from proliferating liver cells were fractionated in Cs2SO4 equilibrium density gradients. Nuclear constituents were concentrated in three bands designated as light band (LB, 1.21 g/cm3), middle band (MB, 1.26 g/cm3), and heavy band (HB, 1.32 g/cm3). Analysis of protein and nucleic acid distribution in gradients suggests preservation of some macromolecular interactions. Studies comparing distributions of radioactively labeled DNA after 1- or 120-min intervals following tritiated thymidine injection indicate enrichment of nascent DNA in LB and MB. This enrichment is sensitive to time and pressure of sonication. Furthermore, DNA-polymerase activity was demonstrated in the gradient fractions following removal of Cs2SO4, with most activity once again in the LB and MB. These results suggest this procedure as an initial step in the isolation of an enzymatically active DNA replication complex.  相似文献   

4.
Both DNA and chromatin need to be duplicated during each cell division cycle. Replication happens in the context of defects in the DNA template and other forms of replication stress that present challenges to both genetic and epigenetic inheritance. The replication machinery is highly regulated by replication stress responses to accomplish this goal. To identify important replication and stress response proteins, we combined isolation of proteins on nascent DNA (iPOND) with quantitative mass spectrometry. We identified 290 proteins enriched on newly replicated DNA at active, stalled, and collapsed replication forks. Approximately 16% of these proteins are known replication or DNA damage response proteins. Genetic analysis indicates that several of the newly identified proteins are needed to facilitate DNA replication, especially under stressed conditions. Our data provide a useful resource for investigators studying DNA replication and the replication stress response and validate the use of iPOND combined with mass spectrometry as a discovery tool.  相似文献   

5.
SeqA protein negatively regulates replication initiation in Escherichia coli and is also proposed to organize maturation and segregation of the newly replicated DNA. The seqA mutants suffer from chromosomal fragmentation; since this fragmentation is attributed to defective segregation or nucleoid compaction, two‐ended breaks are expected. Instead, we show that, in SeqA's absence, chromosomes mostly suffer one‐ended DNA breaks, indicating disintegration of replication forks. We further show that replication forks are unexpectedly slow in seqA mutants. Quantitative kinetics of origin and terminus replication from aligned chromosomes not only confirm origin overinitiation in seqA mutants, but also reveal terminus under‐replication, indicating inhibition of replication forks. Pre‐/post‐labelling studies of the chromosomal fragmentation in seqA mutants suggest events involving single forks, rather than pairs of forks from consecutive rounds rear‐ending into each other. We suggest that, in the absence of SeqA, the sister‐chromatid cohesion ‘safety spacer’ is destabilized and completely disappears if the replication fork is inhibited, leading to the segregation fork running into the inhibited replication fork and snapping the latter at single‐stranded DNA regions.  相似文献   

6.
To study the relationship between DNA replication and chromatin assembly, we have purified a factor termed Drosophila chromatin assembly factor 1 (dCAF-1) to approximately 50% homogeneity from a nuclear extract derived from embryos. dCAF-1 appears to consist of four polypeptides with molecular masses of 180, 105, 75, and 55 kDa. dCAF-1 preferentially mediates chromatin assembly of newly replicated DNA relative to unreplicated DNA during T-antigen-dependent simian virus 40 DNA replication in vitro, as seen with human CAF-1. Analysis of the mechanism of DNA replication-coupled chromatin assembly revealed that both dCAF-1 and human CAF-1 mediate chromatin assembly preferentially with previously yet newly replicated DNA relative to unreplicated DNA. Moreover, the preferential assembly of the postreplicative DNA was observed at 30 min after inhibition of DNA replication by aphidicolin, but this effect slowly diminished until it was no longer apparent at 120 min after inhibition of replication. These findings suggest that the coupling between DNA replication and chromatin assembly may not necessarily involve a direct interaction between the replication and assembly factors at a replication fork.  相似文献   

7.
D. G. Bedo 《Genetica》1982,59(1):9-21
Double labelling of Simulium ornatipes polytene chromosomes with H3- and C14-thymidine shows that chromosome synthesis follows three distinct phases viz. a short phase of initiation in puffs and interbands spreading to more condensed regions; a long continuous labelling phase, then a discontinuously labelled end phase as bands complete their replication in temporal sequence. Analysis of H3 labelling patterns indicates that while heterochromatic bands replicate there is no clear correlation between heterochromatic or C-banding regions and band replication time. The major characteristic governing band replication time appears to be band size and density. However, in some bands this relationship is modified, perhaps it is suggested, by DNA organisation influencing the efficiency of replicons. The existence of great variability in homologous band replication times, even within a chromosome pair, indicates that the control of band replication is highly autonomous. It is suggested that polymorphisms at the molecular level determine this variation. Replication time of active nucleolar organisers is very long in contrast to the short replication of condensed inactive organisers. This may reflect differential polytenisation of ribosomal DNA as a result of a developmental polymorphism, or the amplification of ribosomal DNA by active nucleolar organisers.  相似文献   

8.
Two-dimensional neutral/neutral agarose gel electrophoresis is used extensively to localize replication origins. This method resolves DNA structures containing replication forks. It also detects X-shaped recombination intermediates in meiotic cells, in the form of a typical vertical spike. Intriguingly, such a spike of joint DNA molecules is often detectable in replicating DNA from mitotic cells. Here, we used naturally synchronous DNA samples from Physarum polycephalum to demonstrate that postreplicative, DNA replication-dependent X-shaped DNA molecules are formed between sister chromatids. These molecules have physical properties reminiscent of Holliday junctions. Our results demonstrate frequent interactions between sister chromatids during a normal cell cycle and suggest a novel phase during DNA replication consisting of transient, joint DNA molecules formed on newly replicated DNA.  相似文献   

9.
In order to determine the time required for nucleosomes assembled on the daughter strands of replication forks to assume favoured positions with respect to DNA sequence, psoralen cross-linked replication intermediates purified from preparative two-dimensional agarose gels were analysed by exonuclease digestion or primer extension. Analysis of sites of psoralen intercalation revealed that nucleosomes in the yeast Saccharomyces cerevisiae rDNA intergenic spacer are positioned shortly after passage of the replication machinery. Therefore, both the 'old' randomly segregated nucleosomes as well as the 'new' assembled histone octamers rapidly position themselves (within seconds) on the newly replicated DNA strands, suggesting that the positioning of nucleosomes is an initial step in the chromatin maturation process.  相似文献   

10.
Nascent DNA (newly replicated DNA) was visualized in situ with regard to the position of the previously replicated DNA and to chromatin structure. Localization of nascent DNA at the replication sites can be achieved through pulse labeling of cells with labeled DNA precursors during very short periods of time. We were able to label V79 Chinese Hamster cells for as shortly as 2 min with BrdU; Br-DNA, detected by immunoelectron microscopy, occurs at the periphery of dense chromatin, at individual dispersed chromatin fibers, and within dispersed chromatin areas. In these regions DNA polymerase alpha was also visualized. After a 5-min BrdU pulse, condensed chromatin also became labeled. When the pulse was followed by a chase, a larger number of gold particles occurred on condensed chromatin. Double-labeling experiments, consisting in first incubating cells with IdU for 20 min, chased for 10 min and then labeled for 5 min with CldU, reveal CldU-labeled nascent DNA on the periphery of condensed chromatin, while previously replicated IdU-labeled DNA has been internalized into condensed chromatin. Altogether, these results show that the sites of DNA replication correspond essentially to perichromatin regions and that the newly replicated DNA moves rapidly from replication sites toward the interior of condensed chromatin areas.  相似文献   

11.
DNA replication is initiated within a few chromosomal bands as normal human fibroblasts enter the S phase. In the present study, we determined the timing of replication of sequences along a 340 kb region in one of these bands, 1p36.13, an R band on chromosome 1. Within this region, we identified a segment of DNA (approximately 140 kb) that is replicated in the first hour of the S phase and is flanked by segments replicated 1-2 h later. Using a quantitative PCR-based assay to measure sequence abundance in size-fractionated (900-1,700 nt) nascent DNA, we mapped two functional origins of replication separated by 54 kb and firing 1 h apart. One origin was found to be functional during the first hour of S and was located within a CpG island associated with a predicted gene of unknown function (Genscan NT_004610.2). The second origin was activated in the second hour of S and was mapped to a CpG island near the promoter of the aldehyde dehydrogenase 4A1 (ALDH4A1) gene. At the opposite end of the early replicating segment, a more gradual change in replication timing was observed within the span of approximately 100 kb. These data suggest that DNA replication in adjacent segments of band 1p36.13 is organized differently, perhaps in terms of replicon number and length, or rate of fork progression. In the transition areas that mark the boundaries between different temporal domains, the replication forks initiated in the early replicated region are likely to pause or delay progression before replication of the 340 kb contig is completed.  相似文献   

12.
O Hyrien  M Mchali 《The EMBO journal》1993,12(12):4511-4520
We have analysed the replication of the chromosomal ribosomal DNA (rDNA) cluster in Xenopus embryos before the midblastula transition. Two-dimensional gel analysis showed that replication forks are associated with the nuclear matrix, as in differentiated cells, and gave no evidence for single-stranded replication intermediates (RIs). Bubbles, simple forks and double Ys were found in each restriction fragment analysed, showing that replication initiates and terminates without detectable sequence specificity. Quantification of the results and mathematical analysis showed that the average rDNA replicon replicates in 7.5 min and is 9-12 kbp in length. This time is close to the total S phase duration, and this replicon size is close to the maximum length of DNA which can be replicated from a single origin within this short S phase. We therefore infer that (i) most rDNA origins must be synchronously activated soon in S phase and (ii) origins must be evenly spaced, in order that no stretch of chromosomal DNA is left unreplicated at the end of S phase. Since origins are not specific sequences, it is suggested that this spatially and temporally concerted pattern of initiation matches some periodic chromatin folding, which itself need not rely on DNA sequence.  相似文献   

13.
Nascent DNA (newly replicated DNA) was visualized in situ with regard to the position of the previously replicated DNA and to chromatin structure. Localization of nascent DNA at the replication sites can be achieved through pulse labeling of cells with labeled DNA precursors during very short periods of time. We were able to label V79 Chinese Hamster cells for as shortly as 2 min with BrdU; Br-DNA, detected by immunoelectron microscopy, occurs at the periphery of dense chromatin, at individual dispersed chromatin fibers, and within dispersed chromatin areas. In these regions DNA polymerase α was also visualized. After a 5-min BrdU pulse, condensed chromatin also became labeled. When the pulse was followed by a chase, a larger number of gold particles occurred on condensed chromatin. Double-labeling experiments, consisting in first incubating cells with IdU for 20 min, chased for 10 min and then labeled for 5 min with CldU, reveal CldU-labeled nascent DNA on the periphery of condensed chromatin, while previously replicated IdU-labeled DNA has been internalized into condensed chromatin. Altogether, these results show that the sites of DNA replication correspond essentially to perichromatin regions and that the newly replicated DNA moves rapidly from replication sites toward the interior of condensed chromatin areas.  相似文献   

14.
When S phase lymphocytes were treated for various times with high doses of ConA, we observed that labelled precursor incorporation into DNA was suppressed. This inhibition is characterized by its rapid onset, its lectin dose dependence and reversibility by α-methyl-mannoside. The uptake of labelled desoxyribonucleoside precursors is not modified by the treatment. The nucleoside kinase activity tested on cellular extracts showed a slight but significant decrease. However, the fact that the specific activity of newly replicated DNA was not modified indicates that the DNA labelling suppression is not a direct consequence of alterations in pathways of labelled DNA precursor synthesis. The available ATP pool in treated cells decreased by 25% after 30 min and near 50% after 1 h. The decrease in DNA labelling observed is related to a decrease in the overall rate of DNA synthesis. From density shift analysis of very large DNA molecules labelled by [125I]UdRBUdR (a large part of a cluster of replicons), as well as velocity sedimentation analysis of pulse-chased molecules, we have demonstrated that (i) the DNA elongation within active replicons is not blocked; (ii) the rate of assembly of newly replicated DNA fragments (replicons) seems to be unmodified. Consequently, the initiations of adjacent replicons in operating clusters are not affected. However, the number of clusters which start their replication by initiation of new replicons is greatly reduced after 1 h of ConA treatment.  相似文献   

15.
Newly replicated DNA is assembled into chromatin through two principle pathways. Firstly, parental nucleosomes segregate to replicated DNA, and are transferred directly to one of the two daughter strands during replication fork passage. Secondly, chromatin assembly factors mediate de-novo assembly of nucleosomes on replicating DNA using newly synthesized and acetylated histone proteins. In somatic cells, chromatin assembly factor 1 (CAF-1) appears to be a key player in assembling new nucleosomes during DNA replication. It provides a molecular connection between newly synthesized histones and components of the DNA replication machinery during the S phase of the cell division cycle.  相似文献   

16.
Somatic histone H1 reduces both the rate and extent of DNA replication in Xenopus egg extract. We show here that H1 inhibits replication directly by reducing the number of replication forks, but not the rate of fork progression, in Xenopus sperm nuclei. Density substitution experiments demonstrate that those forks that are active in H1 nuclei elongate to form large tracts of fully replicated DNA, indicating that inhibition is due to a reduction in the frequency of initiation and not the rate or extent of elongation. The observation that H1 dramatically reduces the number of replication foci in sperm nuclei supports this view. The establishment of replication competent DNA in egg extract requires the assembly of prereplication complexes (pre-RCs) on sperm chromatin. H1 reduces binding of the pre-RC proteins, XOrc2, XCdc6, and XMcm3, to chromatin. Replication competence can be restored in these nuclei, however, only under conditions that promote the loss of H1 from chromatin and licensing of the DNA. Thus, H1 inhibits replication in egg extract by preventing the assembly of pre-RCs on sperm chromatin, thereby reducing the frequency of initiation. These data raise the interesting possibility that H1 plays a role in regulating replication origin use during Xenopus development.  相似文献   

17.
In an attempt to recognize any ordering of DNA synthesis which might occur in ciliates, the distribution of labelled DNA in the G1 and S periods of the first, second, and third generations of a synchronized population of Euplotes eurystomus was studied by means of autoradiography. The results presented here show that the replicating DNA which at the time of label incorporation is restricted to a morphologically identifiable narrow region of the nucleus (the replication band), becomes dispersed and is evenly distributed throughout the nucleus. This dispersal of labelled DNA occurs previous to division and is observable throughout the G1 period of the following generation. During the S phase of this second generation, this previously labelled DNA once again becomes restricted to a small portion of the nucleus. Now, however, it is present at the tips of the macronucleus independently of the position of the replication band. Again the labelled DNA is found to be dispersed during G1 of the third generation. In the S period of this third generation however the radioactive DNA again appears localized in the replication bands which are found at the same position in the nucleus where they were when the pulse was given two generations earlier. The observations derived from the autoradiographic analysis suggest a non-permanent organization for at least those DNA molecules which are replicated during the first third of the S period. This DNA can be associated in either of two specific locations, replication band or tip, and these two patterns of organization alternate from generation to generation.  相似文献   

18.
We have studied the role of the nuclear matrix in DNA replication in a naturally synchronized eucaryote, Physarum polycephalum. When P. polycephalum. When P. polycephalum macroplasmodia were pulse labeled with 3H-thymidine, the DNA remaining tightly associated with the matrix was highly enriched in newly synthesized DNA. This enrichment was found both in nuclei that had just initiated DNA replication as well as in nuclei isolated later during S phase. Pulse chase experiments showed that the association of newly replicated DNA with the matrix is transient, since most of the newly replicated DNA could be chased from the matrix by incubating pulse labeled macroplasmodia in media containing unlabeled thymidine. Studies measuring the size distribution of the matrix DNA supported the hypothesis that replication forks are attached to the nuclear matrix. Reconstitution controls indicated that these results were unlikely to be due to preferential, nonspecific binding of nascent DNA to the matrix during the extraction procedures. These results with P. polycephalum in combination with previous studies in non-synchronized rodent cells, suggest that the association of newly replicated DNA with the nuclear matrix may be a general feature of eucaryotic DNA replication.  相似文献   

19.
20.
The effects of inhibiting histone deacetylation on the maturation of newly replicated chromatin have been examined. HeLa cells were labeled with [3H]thymidine in the presence or absence of sodium butyrate; control experiments demonstrated that butyrate did not significantly inhibit DNA replication for at least 70 min. Like normal nascent chromatin, chromatin labeled for brief periods (0.5-1 min) in the presence of butyrate was more sensitive to digestion with DNase I and micrococcal nuclease than control bulk chromatin. However, chromatin replicated in butyrate did not mature as in normal replication, but instead retained approximately 50% of its heightened sensitivity to DNase I. Incubation of mature chromatin in butyrate for 1 h did not induce DNase I sensitivity: therefore, the presence of sodium butyrate was required during replication to preserve the increased digestibility of nascent chromatin DNA. In contrast, sodium butyrate did not inhibit or retard the maturation of newly replicated chromatin when assayed by micrococcal nuclease digestion, as determined by the following criteria: 1) digestion to acid solubility, 2) rate of conversion to mononucleosomes, 3) repeat length, and 4) presence of non-nucleosomal DNA. Consistent with the properties of chromatin replicated in butyrate, micrococcal nuclease also did not preferentially attack the internucleosomal linkers of chromatin regions acetylated in vivo. The observation of a novel chromatin replication intermediate, which is highly sensitive to DNase I but possesses normal resistance to micrococcal nuclease, suggests that nucleosome assembly and histone deacetylation are not obligatorily coordinated. Thus, while deacetylation is required for chromatin maturation, histone acetylation apparently affects chromatin organization at a level distinct from that of core particle or linker, possibly by altering higher order structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号