首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high sucrose phosphate synthase (SPS) capacity and the low soluble acid invertase activity of mature leaves of the first flush of leaves remained stable during second flush development. Conversely, fluctuations of sucrose synthase (SS) activity were in parallel with the sucrose requirement of the second flush. Sucrose synthase activity (synthesis direction) in first flush leaves could increase in 'response' to sink demand constituted by the second flush growth. Only the ptotosynthates provided by flush mature leaves were translocated for a current flush, while the starch content of these leaves remained stable. After their emergence, second flush leaves showed an increase in SPS and SS (Synthetic direction) activities. The high sucrose synthesis in second flush leaves was used for leaf expansion. When young leaves were 30% fully expanded (stage II20), SPS activity showed little change whereas SS activity declined rapidly toward and after full leaf expansion. The starch accumulation in the young leaves occured simultaneously with their expansion. Developing leaves showed a high level of acid invertase activity until maximum leaf expansion (stage II1). In first and second flush leaves, changes in acid invertase activity correlated positively with changes in reducing sugar concentrations. Alkaline invertase and sucrose synthase (cleavage direction) activities showed similar changes with low values when compared with those of acid invertase activity, especially in second flush leaves. The present results suggest that soluble acid invertase was the primary enzyme responsible for sucrose catabolism in the expanding common oak leaf.  相似文献   

2.
3.
Huber SC 《Plant physiology》1984,76(2):424-430
The effects of K-deficiency on carbon exchange rates (CER), photosynthate partitioning, export rate, and activities of key enzymes involved in sucrose metabolism were studied in soybean (Glycine max [L.] Merr.) leaves. The different parameters were monitored in mature leaves that had expanded prior to, or during, imposition of a complete K-deficiency (plants received K-free nutrition solution). In general, recently expanded leaves had the highest concentration of K, and imposition of K-stress at any stage of leaf expansion resulted in decreased K concentrations relative to control plants (10 millimolar K). A reduction in CER, relative to control plants, was only observed in leaves that expanded during the K-stress. Stomatal conductance also declined, but this was not the primary cause of the decrease in carbon fixation because internal CO2 concentration was unaffected by K-stress. Assimilate export rate from K-deficient leaves was reduced but relative export, calculated as a percentage of CER, was similar to control leaves. Over all the data, export rate was correlated positively with both CER and activity of sucrose phosphate synthase in leaf extracts. K-deficient leaves had higher concentrations of sucrose and hexose sugars. Accumulation of hexose sugars was associated with increased activities of acid invertase. Neutral invertase activity was low and unaffected by K-nutrition. It is concluded that decreased rates of assimilate export are associated with decreased activities of sucrose phosphate synthase, a key enzyme involved in sucrose formation, and that accumulation of hexose sugars may occur because of increased hydrolysis of sucrose in K-deficient leaves.  相似文献   

4.
Levels of activity of the sucrose catabolizing enzymes, acid invertase (EC 3.2.1.26) and sucrose synthase (EC 2.4.1.13), were measured during development of new leaves of Citrus sinensis (L.) Osbeck cv. Shamouti. Soluble acid invertase showed a peak activity of 32 nkat (g fresh weight)−1 at ca 60% of full leaf expansion and rapidly declined toward and after full expansion. There was no concomitant increase in an insoluble form of the enzyme. Sucrose synthase activity, measured in the synthesis direction, declined from 33% of full leaf expansion [10 nkat (g fresh weight)−1] 10, and following, full expansion. Highest sucrose synthase activity, measured in the cleavage direction, was 6 nkat (g fresh weight)−1 and showed little change during development. Acid invertase has a Km of 5 m M for sucrose, while sucrose synthase had a Km of 118 m M for sucrose. Changes in acid invertase activity correlated with changes in the reducing sugar:sucrose ratio. These results suggest that soluble acid invertase activity is the primary enzyme responsible for sucrose catabolism in the expanding Citrus leaf. Changes in leaf expansion rate and invertase activity did not correlate positively with changes in endogenous free IAA level, as determined by enzyme linked immunoassay.  相似文献   

5.
The activity of sucrose-phosphate synthase (SPS) in sugar beet (Beta vulgaris L.) leaves was shown to exceed considerably the synthesizing activity of sucrose synthase (SS). The rise in SPS activity was related to the daylight period; i.e., it was associated with the rate of photosynthesis. The highest SPS activity was characteristic of fully expanded source leaves. In young developing leaves (leaves expanded to less than half of their final size), which represent the sink organs, the SPS activity was 2.5 times lower. At all stages of leaf development, the synthesizing SS activity was rather low. The diurnal change of SS activity was independent of photosynthesis and showed a slight rise from 6:00–8:00 p.m. Under field conditions, the highest SPS activity was found in leaves in the terminal stage of their development (105-day-old plants); the synthesizing activity of SS showed little changes during this period. The activity of soluble acid invertase was characteristic of young leaves. In mature leaves, the activity of this enzyme correlated with the daylight period. These changes occurred on the background of low sucrose content in leaves. The regulation of SPS, SS, and invertase activity is discussed. It is supposed that compartmentation of these enzymes in the photosynthesizing cell is important for transport, metabolism, and the osmotic function of sucrose in leaves.  相似文献   

6.
There is continuing controversy over whether a degree of C4 photosynthetic metabolism exists in ears of C3 cereals. In this context, CO2 exchange and the initial products of photosynthesis were examined in flag leaf blades and various ear parts of two durum wheat (Triticum durum Desf.) and two six-rowed barley (Hordeum vulgare L.) cultivars. Three weeks after anthesis, the CO2 compensation concentration at 210 mmol mol?1 O2 in durum wheat and barley ear parts was similar to or greater than that in flag leaves. The O2 dependence of the CO2 compensation concentration in durum wheat ear parts, as well as in the flag leaf blade, was linear, as expected for C3 photosynthesis. In a complementary experiment, intact and attached ears and flag leaf blades of barley and durum wheat were radio-labelled with 14CO2 during a 10s pulse, and the initial products of fixation were studied in various parts of the ears (awns, glumes, inner bracts and grains) and in the flag leaf blade. All tissues assimilated CO2 mainly by the Calvin (C3) cycle, with little fixation of 14CO2 into the C4 acids malate and aspartate (about 10% or less). These collective data support the conclusion that in the ear parts of these C3 cereals C4 photosynthetic metabolism is nil.  相似文献   

7.
Sucrose phosphate synthase and acid invertase activities in the mature leaves of roses (Rosa hybrida cv Golden Times) were greater in plants grown under a higher night temperature than under a lower temperature regime. In young shoots, the activity of acid invertase was promoted by the lower temperature while that of sucrose synthase was increased at the higher temperature. At both temperatures benzyladenine when applied to the axillary bud stimulated sucrose phosphate synthase activity and advancement of its peak of activity in the leaf subtending to the bud, and also stimulated sucrose synthase activity in the young shoot. At the lower temperature, application of benzyladenine to the axillary bud stimulated acid invertase activity in the young shoot but not in the leaves.  相似文献   

8.
Vassey TL 《Plant physiology》1989,89(1):347-351
The activity of sucrose phosphate synthase, sucrose synthase, and acid invertase was monitored in 1- to 2-month-old sugar beet (Beta vulgaris L.) leaves. Sugar beet leaves achieve full laminar length in 13 days. Therefore, leaves were harvested at 2-day intervals for 15 days. Sucrose phosphate synthase activity was not detectable for 6 days in the dark-grown leaves. Once activity was measurable, sucrose phosphate synthase activity never exceeded half that observed in the light-grown leaves. After 8 days in the dark, leaves which were illuminated for 30 minutes showed no significant change in sucrose phosphate synthase activity. Leaves illuminated for 24 hours after 8 days in darkness, however, recovered sucrose phosphate synthase activity to 80% of that of normally grown leaves. Sucrose synthase and acid invertase activity in the light-grown leaves both increased for the first 7 days and then decreased as the leaves matured. In contrast, the activity of sucrose synthase oscillated throughout the growth period in the dark-grown leaves. Acid invertase activity in the dark-grown leaves seemed to be the same as the activity found in the light-grown leaves.  相似文献   

9.
The intracellular distribution of serine hydroxymethyltransferase (EC 2.1.2.1) was studied in young wheat ( Triticum aestivum L. cv. Starke II) leaves by fractionation of protoplasts and further purification of peroxisomes and chloroplasts. Essentially all of the activity in wheat leaves was located in the mitochondria. Within the mitochondria the enzyme was mainly in the matrix as shown by centrifugation of sonicated wheat mitochondria. In the C4 plants, Zea mays (L. cv. Earliking), Panicum miliaceum and Panicum maximum (cv. Australia) belonging to different C4 types, serine hydroxymethyltransferase was almost exclusively found in bundle sheath cells. The location of this enzyme in leaves is consistent with its role relative to glycine decarboxylation during photorespiration.  相似文献   

10.
The specific activity of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco, EC 4.1.1.39) was measured from the crude extracts of five C3 plants consisting of wheat ( Triticum aestivum L. cv. Maris Mink), spinach ( Spinacia oleracea L.), pea ( Pisum sativum L. cv. Greenfeast), pumpkin ( Cucurbita pepo L. cv. Jättiläismeloni) and Ceratodon purpureus (Hedw.) Brid., and two C4 plants, maize ( Zea mays L. ETA F1) and sugar sorghum [ Sorghum saccharatum (L. emend, L.) Moench]. The amount of Rubisco in the crude extracts was estimated by polyacrylamide gel electro-phoresis with the Coomassie Brilliant Blue staining procedure. The amounts of the dye bound to the purified Rubisco of different higher plants were similar. The method gave a linear response for both purified enzyme and crude extracts, and the results agreed with those observed by immunochemical methods. The addition of positive effectors such as inorganic phosphate was necessary to obtain maximal activity in the crude extracts of all the studied plants except in that of maize. No significant differences in the specific carboxylase activity at 25°C were found between the C3 and C4 plants.  相似文献   

11.
Huber SC 《Plant physiology》1989,91(2):656-662
It is not known why some species accumulate high concentrations of sucrose in leaves during photosynthesis while others do not. To determine the possible basis, we have studied 10 species, known to differ in the accumulation of sucrose, in terms of activities of sucrose hydrolyzing enzymes. In general, acid invertase activity decreased as leaves expanded; however, activities remaining in mature, fully expanded leaves ranged from low (<10 micromoles per gram fresh weight per hour) to very high (>100 micromoles per gram fresh weight per hour). In contrast, sucrose synthase activities were low and relatively similar among the species (4-10 micromoles per gram fresh weight per hour). Importantly, leaf sucrose concentration, measured at midafternoon, was negatively correlated with acid invertase activity. We propose that sucrose accumulation in vacuoles of species such as soybean and tobacco is prevented by acid invertase-mediated hydrolysis. Initial attempts were made to characterize the relatively high activity of acid invertase from mature soybean leaves. Two apparent forms of the enzyme were resolved by Mono Q chromatography. The two forms had similar affinity for substrate (apparent Km [sucrose] = 3 millimolar) and did not interconvert upon rechromatography. It appeared that the loss of whole leaf invertase activity during expansion was largely the result of changes in one of the enzyme forms. Overall, the results provide a mechanism to explain why some species do not accumulate sucrose in their leaves. Some futile cycling between sucrose and hexose sugars is postulated to occur in these species, and thus, the energy cost of sucrose production may be higher than is generally thought.  相似文献   

12.
Excision of developing potato (Solanum tuberosum L.) tubers from the mother plant, followed by storage at 10°C, resulted in a rapid, substantial decrease in sucrose synthase activity and considerable increases in hexose content and acid invertase activity. A comparison of the response of three genotypes, known to accumulate different quantities of hexoses in storage, showed that both sucrose synthase activity and the extent to which activity declined following excision were similar in all cases. However, there was significant genotypic variation in the extent to which acid invertase activity developed, with tubers accumulating the highest hexose content also developing the highest extractable activity of invertase. Similar effects were found in nondetached tubers when growing plants were maintained in total darkness for a prolonged period. Furthermore, supplying sucrose to detached tubers through the cut stolon surface prevented the decline in sucrose synthase activity. Maltose proved to be ineffective. Western blots using antibodies raised against maize sucrose synthase showed that the decline in sucrose synthase activity was associated with the loss of protein rather than the effect of endogenous inhibitors. Although there were indications that maintaining a flux of sucrose into isolated tubers could prevent the increase in acid invertase activity, the results were not conclusive.  相似文献   

13.
The organ topography of sucrose synthase and soluble acid invertase in pea seedlings at heterotrophic stage (3–14 days) was studied. Sucrose synthase was most active in the roots, with the highest activity on the 6–8th days. In the leaves, its activity decreased from day 3 to day 14. In the stems, sucrose synthase activity was at an invariantly low level. The patterns of sucrose synthase activity in etiolated and green plants were similar. As distinct from sucrose synthase, invertase activity was the highest in the stem, especially in etiolated plants. The peak of its activity was observed on the 6-8th days. In the leaves, invertase activity was lower but its pattern was the same. In the roots, acid invertase activity decreased from the 3rd day and did not depend on illumination. The conclusion is that differences in sucrose synthase and acid invertase activities in roots, leaves, and stem are determined by differences in the import of hydrolytic products of stored compound from the cotyledons as well as by different demands of these organs for these products for the processes of organ expansion and for the maintenance of organ metabolism.  相似文献   

14.
The gradients in photosynthetic and carbohydrate metabolism which persist within the fully expanded second leaf of barley ( Hordeum vulgare ) were examined. Although all regions of the leaf blade were green and photosynthetically active, the basal 5 cm, representing approximately 20% of the leaf area, retained some characteristics of sink tissue. The leaf blade distal from the leaf sheath exhibited characteristics typical of source tissue; the activities of sucrolytic enzymes (invertase and sucrose synthase) were relatively low, whilst that of sucrose phosphate synthase was high. These regions of the leaf accumulated sucrose throughout the photoperiod and starch only in the second half of the photoperiod whilst hexose sugars remained low. By contrast the leaf blade proximal to the leaf sheath retained relatively high activities of sucrolytic enzymes (especially soluble, acid invertase) whilst sucrose phosphate synthase activity was low. Glucose, as well as sucrose, accumulated throughout the photoperiod. Although starch accumulated in the second half of the photoperiod, a basal level of starch was present throughout the photoperiod, by contrast with the rest of the leaf. The 14CO2 feeding experiments indicated that a constant amount of photosynthate was partitioned towards starch in this region of the leaf irrespective of irradiance. These findings are interpreted as the base of the leaf blade acting as a localized sink for carbohydrate as a result of sucrose hydrolysis by acid invertase.  相似文献   

15.
The impact of reduced vacuolar invertase activity on photosynthetic and carbohydrate metabolism was examined in tomato (Solanum lycopersicon L.). The introduction of a co-suppression construct (derived from tomato vacuolar invertase cDNA) produced plants containing a range of vacuolar invertase activities. In the leaves of most transgenic plants from line INV-B, vacuolar invertase activity was below the level of detection, whereas leaves from line INV-A and untransformed wild-type plants showed considerable variation. Apoplasmic invertase activity was not affected by the co-suppression construct. It has been suggested that, in leaves, vacuolar invertase activity regulates sucrose content and its availability for export, such that in plants with high vacuolar invertase activity a futile cycle of sucrose synthesis and degradation takes place. In INV-B plants with no detectable leaf vacuolar invertase activity, sucrose accumulated to much higher levels than in wild-type plants, and hexoses were barely detectable. There was a clear threshold relationship between invertase activity and sucrose content, and a linear relationship with hexose content. From these data the following conclusions can be drawn. (i) In INV-B plants sucrose enters the vacuole where it accumulates as hydrolysis cannot take place. (ii) There was not an excess of vacuolar invertase activity in the vacuole; the rate of sucrose hydrolysis depended upon the concentration of the enzyme. (iii) The rate of import of sucrose into the vacuole is also important in determining the rate of sucrose hydrolysis. The starch content of leaves was not significantly different in any of the plants examined. In tomato plants grown at high irradiance there was no impact of vacuolar invertase activity on the rate of photosynthesis or growth. The impact of the cosuppression construct on root vacuolar invertase activity and carbohydrate metabolism was less marked.Abbreviations CaMV Cauliflower Mosaic Virus - WT wild type  相似文献   

16.
In peach (Prunus persica [L.] Batsch.), sorbitol and sucrose are the two main forms of photosynthetic and translocated carbon and may have different functions depending on the organ of utilization and its developmental stage. The role and interaction of sorbitol and sucrose metabolism was studied in mature leaves (source) and shoot tips (sinks) of ‘Nemaguard’ peach under drought stress. Plants were irrigated daily at rates of 100, 67, and 33% of evapotranspiration (ET). The relative elongation rate (RER) of growing shoots was measured daily. In mature leaves, water potential (Ψw), osmotic potential (Ψs), sorbitol‐6‐phosphate dehydrogenase (S6PDH, EC 1.1.1.200), and sucrose‐phosphate synthase (SPS, EC 2.4.1.14) activities were measured weekly. Measurements of Ψs, sorbitol dehydrogenase (SDH, 1.1.1.14), sucrose synthase (SS, EC 2.4.1.13), acid invertase (AI, EC 3.2.1.26), and neutral invertase (NI, EC 3.2.1.27) activities were taken weekly in shoot tips. Drought stress reduced RER and Ψw of plants in proportion to water supply. Osmotic adjustment was detected by the second week of treatment in mature leaves and by the third week in shoot tips. Both SDH and S6PDH activities were reduced by drought stress within 4 days of treatment and positively correlated with overall Ψw levels. However, only SDH activity was correlated with Ψs. Among the sucrose enzymes, only SS was affected by drought, being reduced after 3 weeks. Sorbitol accumulation in both mature leaves and shoot tips of stressed plants was observed starting from the second week of treatment and reached up to 80% of total solutes involved in osmotic adjustment. Sucrose content was up to 8‐fold lower than sorbitol content and accumulated only occasionally. We conclude that a loss of SDH activity in sinks leads to osmotic adjustment via sorbitol accumulation in peach. We propose an adaptive role of sorbitol metabolism versus a maintenance role of sucrose metabolism in peach under drought stress.  相似文献   

17.
Plasma membranes were isolated from green leaves of maize ( Zea mays ), spinach ( Spinacia oleracea ), Setaria viridis and wheat ( Triticum aestivum cv. Omase) by aqueous two-phase partitioning. Carbonic anhydrase activity was detected in these membranes. The activity was inhibited by specific inhibitors for carbonic anhydrase, acetazolamide and ethoxyzolamide. The carbonic anhydrase activity was markedly enhanced by the addition of Triton X-100 to the plasma membranes. The highest activity was obtained in the presence of 0.015% detergent. The activity was scarcely affected when the plasma membrane vesicles were treated with proteinase K, but largely inactivated by the protease after treating the membranes with Triton X-100. These results indicate that carbonic anhydrase faces the cytoplasmic side of the membrane since plasma membranes purified by aqueous two-phase partitioning are tightly sealed vesicles of right side-out orientation (apoplastic side-out). With leaves of C4 plants, 20 to 60% of the total carbonic anhydrase activity was found in the microsomal fraction. By contrast, only 1 to 3% of the activity was found in the microsomal fraction from leaves of C3 plants. Western blot analysis showed that a polypeptide in the spinach plasma membrane cross-reacted with an antiserum raised against spinach chloroplast carbonic anhydrase, and that the molecular mass of the plasma membrane enzyme was higher than that of the chloroplast carbonic anhydrase (28 and 26 kDa, respectively). This indicates the presence of different molecular species of carbonic anhydrase in the chloroplast and the plasma membrane.  相似文献   

18.
Evidence is presented contrary to the suggestion that C4 plants grow larger at elevated CO2 because the C4 pathway of young C4 leaves has C3-like characteristics, making their photosynthesis O2 sensitive and responsive to high CO2. We combined PAM fluorescence with gas exchange measurements to examine the O2 dependence of photosynthesis in young and mature leaves of Panicum antidotale (C4, NADP-ME) and P. coloratum (C4, NAD-ME), at an intercellular CO2 concentration of 5 Pa. P. laxum (C3) was used for comparison. The young C4 leaves had CO2 and light response curves typical of C4 photosynthesis. When the O2 concentration was gradually increased between 2 and 40%, CO2 assimilation rates (A) of both mature and young C4 leaves were little affected, while the ratio of the quantum yield of photosystem II to that of CO2 assimilation (ΦPSII/ΦCO2) increased more in young (up to 31%) than mature (up to 10%) C4 leaves. A of C3 leaves decreased by 1·3 and ΦPSII/ΦCO2 increased by 9-fold, over the same range of O2 concentrations. Larger increases in electron transport requirements in young, relative to mature, C4 leaves at low CO2 are indicative of greater O2 sensitivity of photorespiration. Photosynthesis modelling showed that young C4 leaves have lower bundle sheath CO2 concentration, brought about by higher bundle sheath conductance relative to the activity of the C4 and C3 cycles and/or lower ratio of activities of the C4 to C3 cycles.  相似文献   

19.
Castrillo  M. 《Photosynthetica》2000,36(4):519-524
Sucrose metabolism was studied at three leaf development stages in two Phaseolus vulgaris L. cultivars, Tacarigua and Montalban. The changes of enzyme activities involved in sucrose metabolism at the leaf development stages were: (1) Sink (9-11 % full leaf expansion, FLE): low total sucrose phosphate synthase (SPS) activity, and higher acid invertase (AI) activity accompanied by low sucrose synthase (SuSy) synthetic and sucrolytic activities. (2) Sink to source transition (40-47 % FLE): increase in total SPS and SuSy activities, decrease in AI activity. (3) Source (96-97 % FLE): high total SPS activity, increased SuSy activities, decreased AI activity. The hexose/sucrose ratio decreased from sink to source leaves in both bean cultivars. The neutral invertase activity was lower than that of AI; it showed an insignificant decrease during the sink-source transition.  相似文献   

20.
Metabolic changes in the contents of sucrose and hexoses in relation to the activities of invertase, sucrose synthase and sucrose-phosphate synthase in early (CoJ 64) and late (Co 1148) maturing cultivars of sugarcane have been studied. During early stages of cane growth, lower activities of sucrose synthase and sucrose-phosphate synthase in leaf blade In CoJ 64 over Co 1148 were observed. However, sucrose content in sheath/blade was higher in CoJ 64 than in Co 1148. With the advancing age, the activity of soluble acid invertase (pH 5.4) in stem declined more rapidly in CoJ 64. This resulted in building up of high ratio of sucroselinvert sugars in stem tissue of this cultivar. Feeding uniformly-labelled sucrose and glucose to the cut discs of leaf sheath resulted in higher uptake of 14C in CoJ 64 than in Co 1148. Uptake by stem tissue discs of 14C from sucrose was less than that from hexoses. Based on these results, it is suggested that (i) the rapid fall in the activity of soluble acid invertase in stem concomitant with fast accumulation of sucrose in this tissue is an index of early maturity of the cane, and (ii) high content of sucrose in sheath is a reflection of an efficient translocation of this sugar in early maturing cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号