首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structures of the Asn linked oligosaccharides of quail egg-yolk immunoglobulin (IgY) were determined in this study. Asn linked oligosaccharides were cleaved from IgY by hydrazinolysis and labelled withp-aminobenzoic acid ethyl ester (ABEE) afterN-acetylation. The ABEE labelled oligosaccharides were then fractionated by a combination of Concanavalin A-agarose column chromatography and anion exchange, normal phase and reversed phase HPLC before their structures were determined by sequential exoglycosidase digestion, methylation analysis, HPLC, and 500 MHz1H-NMR spectroscopy. Quail IgY contained only neutral oligosaccharides of the following categories: the glucosylated oligomannose type (0.6%, Glc1-3Glc1-3Man9GlcNAc2; 35.6%, Glc1-3Man7–9GlcNAc2). oligomannose type (15.0%, with the structure Man5–9GlcNAc2) and biantennary complex type with core structures of-Man1-3(-Man1-6)Man1-4GlcNAc1-4GlcNAc (9.9%),-Man1-3(GlcNAc1-4)(-Man1-6)Man1-4GlcNAc1-4GlcNAc (25.1%) and-Man1-3(GlcNAc1-4)(-Man1-6)Man1-4GlcNAc1-4(Fuc1-6)GlcNAc (11.4%). Although never found in mammalian proteins, glucosylated oligosaccharides (Glc1Man7–9GlcNAc2) have been located previously in hen IgY.Abbreviations IgG, IgM, IgA, IgY immunoglobulin G, M, A and Y, respectively - ABEE p-aminobenzoic acid ethyl ester  相似文献   

2.
We have developed a new method for the large scale preparation of pyridylaminated (PA-) oligosaccharides from glycoproteins. Phenol/chloroform extration was adapted for the removal of protein and excess 2-aminopyridine, improving the efficiency of preparation. From a 2.5 g sample of human apo-transferrin, 25–30 mol of agalacto biantennary PA-oligosaccharide could be obtained. By increasing the concentration of PA-oligosaccharide substrate, we were able to detect a very low level ofN-acetylglucosaminlytransferase IV activity in CHO cell extracts.Abbreviations PA 2-aminopyridine - SDS sodium dodecyl sulfate - GlcNAc N-acetylglucosamine - GnT N-acetylglucosaminyltransferase - Gn,Gn-bi-PA GlcNAc1-2Man1-3(GlcNAc1-2Man1-6)Man1-4GlcNAc1-4GlcNAc-2-aminopyridine - Gn,Gn,Gn-tri-PA GlcNAc1-2(GlcNAc1-4)Man1-3(GlcNAc1-2Man1-6)Man1-4GlcNAc1-4GlcNAc-2-aminopyridine - Gn,Gn,Gn-trí-PA GlcNAc1-2Man1-3({GlcNAc1-2(GlcNAc1-6)Man1-6})Man1-4GlcNac1-4GlcNAc-2-aminopyridine - Gn,(Gn),Gn-bi-PA GlcNAc1-2Man1-3(GlcNAc1-4)(GlcNAc1-2Man1-6)Man1-4GlcNAc1-4GlcNAc-2-aminopyridine  相似文献   

3.
Asparagine-linked oligosaccharides present on hen egg-yolk immunoglobulin, termed IgY, were liberated from the protein by hydrazinolysis. AfterN-acetylation, the oligosaccharides were labelled with a UV-absorbing compound,p-aminobenzoic acid ethyl ester (ABEE). The ABEE-derivatized oligosaccharides were fractionated by anion exchange, normal phase and reversed phase HPLC, and their structures were determined by a combination of sugar composition analysis, methylation analysis, negative ion FAB-MS, 500 MHz1H-NMR and sequential exoglycosidase digestions. IgY contained monoglucosylated oligomannose type oligosaccharides with structures of Glc1-3Man7–9-GlcNAc-GlcNAc, oligomannose type oligosaccharides with the size range of Man5–9GlcNAc-GlcNAc, and biantennary complex type oligosaccharides with core region structure of Man1-6(±GlcNAc1-4)(Man1-3)Man1-4GlcNAc1-4(±Fuc1-6)GlcNAc. The glucosylated oligosaccharides, Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2, have not previously been reported in mature glycoproteins from any source.Abbreviations IgG, IgM, IgD, IgE, and IgA immunoglobulin G, M, D, E, and A, respectively - IgY egg-yolk antibody - ABEE p-aminobenzoic acid ethyl ester - HPLC high performance liquid chromatography - FAB-MS fast atom bombardment mass spectrometry - Hex hexose - HexNAc N-acetylhexosamine - hCG human chorionic gonadotropsin  相似文献   

4.
-N-Acetyl-d-hexosaminidase from Aspergillus oryzae catalysed the stereo- and regiospecific formation of the 6-O-benzylated disaccharide derivatives GalNAc1-3(6- OBn)Gal-SEt and GlcNAc1-3(6-OBn)Gal-SEt, which were obtained in transglycosylation reactions employing ethyl 6- O-benzyl-1-thio--d-galactopyranoside as acceptor. Preparative amounts of the chitobiose derivative GlcNAc1- 3GlcNAc-OPhNO2-p was prepared as well. - N-Acetyl-d-hexosaminidase from bovine testes catalysed the specific synthesis of GlcNAc1-3(6-OBn)GlcNH2-SEt and GalNAc1-3(6-OBn)GlcNH2-SEt, employing ethyl 2-amino-6-O-benzyl-2-deoxy-1-thio--d-glucopyranoside as acceptor. -d-Glucuronidase from E. coli was found to catalyse the formation of GlcA1-3(6-OBn)GlcNH2- SEt employing the same acceptor.  相似文献   

5.
A novel linear tetrasaccharide, Gal1-4GlcNAc1-6Gal1-4GlcNAc, was isolated from partial acid hydrolysates of metabolically labeled poly-N-acetyllactosaminoglycans of murine teratocarcinoma cells. It was characterized by exo-glycosidase sequencing and by mild acid hydrolysis followed by identification of all partial cleavage products. The tetrasaccharide, and likewise labelled GlcNAc1-6Gal1-4GlcNAc, resisted the action of endo--galactosidase (EC 3.2.1.103) fromE. freundii at a concentration of 125 mU/ml, while the isomeric, radioactive teratocarcinoma saccharides Gal1-4GlcNAc1-3Gal1-4GlcNAc and GlcNAc1-3Gal1-4GlcNAc were cleaved in the expected manner.Abbreviations WGA wheat germ agglutinin - BSA bovine serum albumin - [3H]GlcNAc1-4-GlcNAc1-4GlcNAcOL N,N,NN'-triacetylchitotriose reduced with NaB3H4  相似文献   

6.
Incubation of synthetic Man\1-4GlcNAc-OMe, GalNAc1-4GlcNAc-OMe, Glc1-4GlcNAc-OMe, and GlcNAc1-4GlcNac-OMe with CMP-Neu5Ac and rat liver Gal1-4GlcNAc (2-6)-sialyltransferase resulted in the formation of Neu5Ac2-6Man1-4GlcNAc-OMe, Neu5Ac2-6GalNAc1-4GlcNAc-OMe, Neu5Ac2-6Glc1-4GlcNAc-OMe and Neu5Ac2-6GlcNAc1-4GlcNAc-OMe, respectively. Under conditions which led to quantitative conversion of Gal1-4GlcNAc-OEt into Neu5Ac2-6Gal1-4GlcNAc-OEt, the aforementioned products were obtained in yields of 4%, 48%, 16% and 8%, respectively. HPLC on Partisil 10 SAX was used to isolate the various sialyltrisaccharides, and identification was carried out using 1- and 2-dimensional 500-MHz1H-NMR spectroscopy.Abbreviations 2D 2-dimensional - CMP cytidine 5-monophosphate - CMP-Neu5Ac cytidine 5-monophospho--N-acetylneuraminic acid - COSY correlation spectroscopy - DQF double quantum filtered - HOHAHA homonuclear Hartmann-Hahn - MLEV composite pulse devised by M. Levitt - Neu5Ac N-acetylneuraminic acid - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid  相似文献   

7.
Fowl plague virus, strain Dutch, was metabolically labeled withd-[2-3H]mannose, or withd-[6-3H]glucosamine, and the small subunit (HA2; 0.8 mg in total) of the viral hemagglutinin was isolated by preparative sodium dodecylsulfate-polyacrylamide gel electrophoresis. After proteolytic digestion, the radioactive oligosaccharides were sequentially liberated from the glycopeptides by treatment with different endo--N-acetylglucosaminidases and with peptide:N-glycosidase or, finally, by hydrazinolysis. In this manner, four groups of glycans could be obtained by consecutive gel filtrations and were subfractionated by HPLC. The structures of the individual oligosaccharides were analyzed by micromethylation, by acetolysis or by digestion with exoglycosidases. The major species amongst the high mannose glycans at Ans-406 of the viral glycopolypeptide were found to be Man1-2Man1-3(Man1-2Man1-6)Man1-6(Man1-2Man1-2Man1-3)Man1-4GlcNac1-4GlcNAc and Man1-3(Man1-2Man1-6)Man1-6(Man1-2Man1-2Man1-3)Man1-4GlcNAc1-4GlcNAc, while the complex glycans at Asn-478 are predominantly GlcNAc1-2Man1-3(GlcNAc1-2Man1-6)Man1-4GlcNAc1-4GlcNAc (lacking, in part, one of the outerN-acetylglucosamine residues) and GlcNAc1-2Man1-3(Gal1-4GlcNAc1-2Man1-6)Man1-4GlcNAc1-4GlcNAc.Abbreviation BSA bovine serum albumin - endo D (F,H) endo--N-acetyl-d-glucosaminidase D (F,H) - HA hemagglutinin (HA1, large subunit of HA - HA2 small subunit - FPV fowl plague virus - PNGase F peptide:N-glycosidase F - SDS sodium dodecylsulfate  相似文献   

8.
    
A partially purified preparation of 1,3-fucosyltransferase(s) from human milk was used to [14C]fucosylate oligosac-charides containing Gal1-4GlcNAc units. Substitution ofN-acetyllactosamine at position 3 with a -linkedN-acetylglucosamine enhanced the reactivity of the acceptor, whereas similar substitution at position 6 was inhibitory. Thus, the trisaccharide GlcNAcl-6Gal1-4GlcNAc (5), the branched tetrasaccharide GlcNAc1-3(GlcNAc1-6)Gal1-4GlcNAc (11) and the triply branched decasaccharide GlcNAc1-3(GlcNAc1-6)Gall-4GlcNAc1-3[GlcNAc1-3(GlcNAc1-6)Gal1-4GlcNAc1-6]Gal1-4GlcNAc (26) gave remarkably poor yields of 1,3-fucosylated products in comparison to GlcNAc1-3Gal1-4GlcNAc (3). 1,4-Galactosyl derivatives of5 and11, however, gave good yields of 1,3-fucosylated products, but the fucosylation was restricted to the distalN-acetyllactosamine units of Gal1-4GlcNAc1-6Gal1-4GlcNAc (16), Gal1-4GlcNAc1-3(Gal1-4GlcNAc1-6)Gal1-4GlcNAc (18) and also in Gal1-3Gal1-4GlcNAc1-3(Gal1-3Gal1-4GlcNAc1-6)Gal1-4GlcNAc (22). Immobilized wheat germ agglutinin (WGA), possessing high affinity for16 [1], revealed no affinity for the fucosylated derivative Gal1-4(Fuc1-3)GlcNAc1-6Gal1-4GlcNAc (17). The isomeric heptasaccharides Gal1-4(Fuc1-3)GlcNAc1-3(Gal1-4GlcNAc1-6)Gal1-4GlcNAc (19) and Gal1-4GlcNAc1-3[Gal1-4(Fuc1-3)GlcNAc1-6]Gal1-4GlcNAc (20) were readily separated from each other on WGA-agarose, and so were the isomeric nonasaccharides Gal1-3Gal1-4(Fuc1-3)GlcNAc1-3(Gal1-3Gal1-4GlcNAc1-6)Gal1-4GlcNAc (23) and Gal1-3Gal1-4GlcNAc1-3[Gal1-3Gal1-4(Fuc1-3)GlcNAc1-6]Gal1-4GlcNAc (24).  相似文献   

9.
GlcNAc1-2Man and GlcNAc1-6Man were synthesized using the reverse hydrolysis activity of -N-acetylglucosaminidase from both jack beans and Bacillus circulans. In turn, Gal1-4GlcNAc1-2Man and Gal1-4GlcNAc1-6Man were synthesized regioselectively using the transglycosylation activity of -galactosidase from Diplococcus pneumoniae and B. circulans, respectively. These di- and trisaccharides are important components of complex type sugar chains and will be used as intermediates in our synthetic studies. Abbreviations: pNp--GlcNAc, p-nitrophenyl 2-acetamido-2-deoxy--D-glucopyranoside; pNp--Gal, p-nitrophenyl -D-galacto-pyranoside  相似文献   

10.
    
An 1,3-fucosyltransferase was purified 3000-fold from mung bean seedlings by chromatography on DE 52 cellulose and Affigel Blue, by chromatofocusing, gelfiltration and affinity chromatography resulting in an apparently homogenous protein of about 65 kDa on SDS-PAGE. The enzyme transferred fucose from GDP-fucose to the Asn-linkedN-acetylglucosaminyl residue of an N-glycan, forming an 1,3-linkage. The enzyme acted upon N-glycopeptides and related oligosaccharides with the glycan structure GlcNAc2Man3 GlcNAc2. Fucose in 1,6-linkage to the asparagine-linked GlcNAc had no effect on the activity. No transfer to N-glycans was observed when the terminal GlcNAc residues were either absent or substituted with galactose.N-acetyllactosamine, lacto-N-biose andN-acetylchito-oligosaccharides did not function as acceptors for the 1,3-fucosyltransferase.The transferase exhibited maximal activity at pH 7.0 and a strict requirement for Mn2+ or Zn2+ ions. The enzyme's activity was moderately increased in the presence of Triton X-100. It was not affected byN-ethylmaleimide.Abbreviations 1,3-Fuc-T GDP-fucose:-N-acetylglucosamine(Fuc to Asn-linked GlcNAc)1,3-fucosyltransferase - 1,6-Fuc-T GDP-fucose:-N-acetylglucosamine(Fuc to Asn-linked GlcNAc) 1,6-fucosyltransferase - PA pyridylamino - GnGn GlcNAc1-2Man1-6(GlcNAc1-2Man1-3)Man1-4GlcNAc1-4GlcNAc - GnGnF3 GlcNAc1-2Man1-6(GlcNAc1-2Man1-3)Man1-4GlcNAc1-4(Fuc1-3)GlcNAc - GnGnF6 GlcNAc1-2-Man1-6(GlcNAc1-2Man1-3)Man1-4GlcNAc1-4(Fuc1-6)GlcNAc - GnGnF3F6 GlcNAc1-2Man1-6(GlcNAc1-2Man1-3)Man1-4GlcNAc1-4(Fuc1-3)[Fuc1-6]GlcNAc - MM Man1-6(Man1-3)Man1-4GlcNAc1-4GlcNAc - MMF3 Man1-6(Man1-3)Man1-4GlcNAc1-4(Fuc1-3)GlcNAc - MMF3F6 Man1-6(Man1-3)Man1-4GlcNAc1-4(Fuc1-3)[Fuc1-6]GlcNAc  相似文献   

11.
Endo--galactosidase (EC 3.2.1.103) ofBacteroides fragilis, at 250 mU ml–1, did not cleave the internal galactosidic linkage of the linear radiolabelled trisaccharide GlcNAc1-6Gal1-4GlcNAc, or those of the tetrasaccharides Gal1-4GlcNAc1-6Gal1-4GlcNAc and Gal1-4GlcNAc1-6Gal1-4Glc. The isomeric glycans which contained the GlcNAc1-3Gal1-4GlcNAc/Glc sequence were readily cleaved.Abbreviations GlcNAc 2-acetamido-2-deoxy-d-glucose - Lact lactose - MT maltotriose - MTet maltotetraose - R MTet chromatographic migration rate in relation to that of maltotetraose  相似文献   

12.
A defined set of oligosaccharides and glycopeptides containing -linked fucose were used to examine the specificity of the immobilized fucose-binding lectin Lotus tetragonolobus agglutinin (LTA1), also known as lotus lectin. Glycans containing the Lewis x determinant (Lex) Gal1-4[Fuc1-3]GlcNAc1-3-R were significantly retarded in elution from high density LTA-Emphaze columns. The lectin also bound the fucosylated lacdiNAc trisaccharide GalNAc1-4[Fuc1-3]GlcNAc. The lectin did not bind glycans containing either sialylLex or VIM-2 determinants, nor did it bind the isomeric Lea, Gal1-3[Fuc1-4]GlcNAc-R. Although 2-fucosyllactose Fuc1-2Gal1-4Glc) was retarded in elution from the columns, larger glycans containing the H-antigen Fuc1-2Gal1-3(4)GlcNAc-R interacted poorly with immobilized LTA. Our results demonstrate that immobilized LTA is effective in isolating glycans containing the Lex antigen and is useful in analyzing specific fucosylation of glycoconjugates. Abbreviations: LTA, Lotus tetragonolobus agglutinin; UEA-1, Ulex europaeus agglutinin-I; LNT, AAL, Aleuria aurantia agglutinin; Gal1-3GlcNAc1-3Gal1-3Glc; LNnT, Gal1-4GlcNAc1-3Gal1-3Glc; Lex, Lewis x antigen; Lea, Lewis a antigen; GDPFuc, guanosine 5-diphosphate--L-fucose  相似文献   

13.
For the structural analysis of the carbohydrate chains ofN-,O-glycoproteins a straightforward strategy was developed based on the cleavage of theN-linked chains with immobilized peptide-N 4-(N-acetyl--glucosaminyl) asparagine amidase-F (PN-Gase-F) fromFlavobacterium meningosepticum, followed by alkaline borohydride treatment of the remainingO-glycoprotein material. This methodology was applied to the isolation of the Asn- and Ser-linked carbohydrate chains of human chorionic gonadotrophin. The structures of the isolated oligosaccharides were verified by 500-MHz1H-NMR spectroscopy. The Asn-linked sugar chains were shown to be: NeuAc2-3Gal1-4GlcNAc1-2Man1-6[NeuAc2-3Gal1-4GlcNAc1-2Man1-3]Man 1-4GlcNAc1-4[Fuc1-6]0-1GlcNAc and Man1-6[NeuAc2-3Gal1-4GlcNAc1-2Man 1-3]Man1-4GlcNAc1-4GlcNAc. Also some minor constituents occurred. The structures of the Ser-linked oligosaccharides were established in the form of their oligosaccharide-alditols as: NeuAc2-3Gal1-3[NeuAc2-6]GalNAc, NeuAc2-3Gal 1-3GalNAc and NeuAc2-3Gal1-3[NeuAc2-3Gal1-4GlcNAc1-6]GalNAc.Abbreviations hCG human chorionic gonadotrophin - hCG- -subunit - hCG- -subunit - ElA enzyme immunoassay - PNGase-F peptide-N 4-(N-acetyl--glucosaminyl)asparagine amidase-F (EC 3.5.1.52) - SDS sodium dodecyl sulphate - GalNAc N-acetylgalactosamine - GlcNAc N-acetylglucosamine - NeuAc N-acetylneuraminic acid - Man mannose - Gal galactose - Fuc fucose  相似文献   

14.
Summary Two specific -N-acetylglucosaminyltransferases involved in the branching and elongation of mucin oligosaccharide chains, namely, a 1,6 N-acetylglucosaminylsaminyltransferase that transfers N-acetylglucosamine from UDP-N-acetylglucosamine to Gal3GalNAc-Mucin to yield Gal3(GlcNAc6)GalNAc-Mucin and a 3-N-acetylglucosaminyl transferase that transfers N-acetylglucosamine from UDP-N-acetylglucosamine to Gal3(GlcNAC6)GalNAc-mucin to yield GlcNAc3Gal3 (GlcNAc6)GalNAc-Mucin were purified from the microsomal fraction of swine trachea epithelium. The 1,6-N-acetylglucosaminyltransferase was purified about 21,800-fold by procedures which included affinity chromatography on DEAE columns containing bound asialo Cowper's gland mucin glycoprotein with Gal1,3GalNAc side chains. The apparent molecular weight estimated by gel filtration was found to be about 60 Kd. The purified enzyme showed a high specificity for Gal1,3GalNAc chains and the most active substrates were mucin glycoproteins containing these chains. The apparent Km of the 6-glucosaminyltrans-ferase for Cowper's gland mucin glycoprotein containing Gal1,3GalNAc chains was 0.53 µM; for UDP-N-acetylglucosamine, 12 µM; and for Gal 1,3GalNAc NO2ø, 4 mM. The activity of the 6-glucosaminyltransferase was dependent on the extent of glycosylation of the Gal3GalNAc chains in Cowper's gland mucin glycoprotein.The best substrate for the partially purified 3-Glucosaminyltransferase was Cowper's gland mucin glycoprotein containing Gal1,3(GlcNAc6)GalNAc side chains. This enzyme showed little or no activity with intact sialylated Cowper's gland mucin glycoprotein or derivatives of this glycoprotein containing GalNAc or Gal1,3GalNAc side chains.The radioactive oligosaccharides formed by these enzymes in large scale reaction mixtures were released from the mucin glycoproteins by treatment with alkaline borohydride, isolated by gel filtration on Bio-Gel P-6 and characterized by methylation analysis and sequential digestion with exoglycosidases. The oligosaccharide products formed by the 6- and 3-glucosaminyltransferases were shown to be Gal3(GlcNAC6) GalNAc and GlcNAc3 Gal3(GlcNAC6)GalNAc respectively.Taken collectively, these results demonstrate that swine trachea epithelium contains two specific N-acetylglucosaminyltransferases which catalyze the initial branching and elongation reactions involved in the synthesis of O-linked oligosaccharide chains in respiratory mucin glycoproteins. The first enzyme a 6-glucosaminyltransferase converts Gal3GalNAc chains in mucin glycoproteins to Gal3(GlcNAc6)GalNAc chains. This product is the substrate for a second 3-glucosaminyltransferase which converts the Gal3(GlcNAc6)GalNAc chains to GlcNAc3Gal(GlcNAc6)GalNAc chains in the glycoprotein. The 3-glucosaminyltransferase did not utilize Gal3GalNAc chains as a substrate and this results in an ordered sequence of addition of N-acetylglucosamine residues to growing oligosaccharide chains in tracheal mucin glycoproteins.Abbreviations NeuNAc N-acetylneuraminic acid - GalNAcol N-acetylgalactosaminitol - CGMG Cowper's gland mucin glycoprotein - GalNAc-CGMG Cowper's gland mucin glycoprotein containing GalNAc side chains O-glycosidically linked to serine or threonine - Gal3GalNAc-CGMC Cowper's gland mucin glycoprotein containing Gal3GalNAc side chains - MES 2-(N-morpholino) Ethane Sulfonic acid - PBS Phosphate Buffered Saline  相似文献   

15.
When 7721 human hepatocarcinoma cells were treated with 100nm phorbol-12-myristate-13-acetate (PMA), the activity ofN-acetylglucosaminyltransferase V(GnT-V) in the cells varied in accordance with the activity of membranous protein kinase C (PKC), but not with that of cytosolic PKC. Quercetin, a non-specific inhibitor of Ser/Thr protein kinase, andd-sphingosine and staurosporine, two specific inhibitors of PKC, blocked the activation of membranous PKC and GnT-V by PMA. Among the three inhibitors, quercetin was least effective. The inhibitory rates of quercetin and staurosporine toward membranous PKC and GnT V were proportional to the concentrations of the two inhibitors. The activities of GnT V and membranous protein kinase A (PKA) were also induced in parallel by dibutyryl cAMP (db-cAMP) and this induction was blocked by a specific PKA inhibitor. When cell free preparations of 7721 cells and human kidney were treated with alkaline phosphatase (ALP) to remove the phosphate groups, the GnT V activities were decreased. These results suggest that GnT V may be activated by membranous PKC or PKA, indirectly or directly, via phosphorylation of Ser/Thr residues.Abbreviations UDP uridine diphospho- - GnT N-acetylglucosaminyltransferase - GlcNAc Gn N-acetylglucosamine - M mannose - PMA phorbol-12-myristate-13-acetate - PKC protein kinase C - PKA protein kinase A - cAMP adenosine 3, 5-cyclic monophosphate - db-cAMP dibutyryl cAMP - TPK tyrosine protein kinase - MES 2-[N-morpholino]ethanesulfonic acid - DTT dithiothreitol - PMSF phenylmethylsulfonyl fluoride - EDTA ethylene diamine tetraacetic acid - EGTA glycol-bis-(-aminoethyl) etherN,N,N,N-tetraacetic acid - PA 2-aminopyridine - ALP alkaline phosphatase - C2C2 GlcNAc1-2 Man1-6(GlcNAc1-2Man1-3)ManR - C2,4C2 GlcNAc1-2Man1-6(GlcNAc1-4[GlcNAc1-2]Man1-3)ManR - C2C2,6 GlcNAc1-6[GlcNAc1-2]Man1-6(GlcNAc1-2Man1-3)ManR - C2,4C2,6 GlcNAc1-6[GlcNAc1-2]Man1-6(GlcNAc1-4[GlcNAc1-2]Man1-3)ManR where R=1-4GlcNAc1-4GlcNAcAsnX - Gn2M3Gn2-PA C2C2 where R=1-4GlcNAc1-4GlcNAc-PA - Gn3M3Gn2-PA C2C2,6 where R=1-4GlcNAc1-4GlcNAc-PA  相似文献   

16.
Poly-N-acetyllactosamines provide backbone structures for functional modifications such as sialyl Lewis X. To understand how the biosynthesis of poly-N-acetyllactosamines is regulated, two branched oligosaccharides of the structure Gal1,4GlcNAc1, 6(Gal1,4GlcNAc1,2)-Man1,6Man-octyl 1 and 2 were synthesized in which one of the terminal galactose units was selectively radiolabeled. Hexasaccharides 1 and 2 were assembled from the chemically synthesized pentasaccharide precursors GlcNAc1,6(Gal1,4GlcNAc1,2)-Man1,6Man-octyl3 and Gal1,4GlcNAc1,6(GlcNAc1, 2) - Man1,6 Man-octyl 4 respectively, through treatment with UDP-1-[3H]-Gal and 1,4 galactosyltransferase. Compounds 1 and 2 were subsequently incubated with UDP-GlcNAc and the UDP-GlcNAc: Gal1-4Glc(NAc)1,3-N-acetylglucosaminyltransferase (i-GlcNAc transferase) resulting in a partial conversion to a mixture of heptasaccharides which were purified by HPLC. The branch selectivity of the addition of N-acetylglucosamine to compounds 1 and 2 was then characterized by endo--galactosidase digestion of the heptasaccharides, followed by isolation of the resultant pentasaccharides on C18 reverse-phase silica cartridges. Comparison of the amount of radiolabel to a control reaction lacking endo--galactosidase indicated the favored site of GlcNAc addition to be the lower 1,2-branch over the 1,6-branch by a 3:1 ratio.  相似文献   

17.
The carbohydrate-binding specificity ofPseudomonas aeruginosa lectin I (PA-I) in iodinated or biotinylated form was studied. A large number of glycosphingolipids, as well as some glycoproteins and neoglycoproteins were used as ligands. Also, inhibition by free saccharides of PA-I binding to glycosphingolipids was tested. It was found that the lectin binds most strongly to terminal and nonsubstituted Gal3Gal- or Gal4Gal-structures.Abbreviations PA-I Pseudomonas aeruginosa lectin I - Cer ceramide - lactosylceramide Gal4GlcCer - iso globotriaosylcerami Gal3Gal4GlcCer - globotriaosylceramide Gal4Gal4GlcCer - globoside or globotetraosylceramide GalNAc3Gal4Gal4GlcCer - Forssman glycolipid GalNAc3GalNAc3Gal4Gal4GlcCer - P1 glycolipid Gal4Gal4GlcNAc3Gal4GlcCer - lactoneotetraosylceramide Gal4GlcNAc3Gal4GlcCer - B5 glycolipid Gal3Gal4GlcNAc3Gal4GlcCer - gangliotetraosylceramide Gal3GalNAc4Gal4GlcCer - GM1 Gal3GalNAc4(NeuAc3)Gal4GlcCer - RBC red blood cells - BSA bovine serum albumin - PBS phosphate-buffered saline - SDS sodium dodecyl sulfate - TLC thin-layer chromatography - HPLC high pressure liquid chromatography - MS mass spectrometry - FAB fast-atom bombardment - EI electron impact  相似文献   

18.
We report here the in vivo production of type 2 fucosylated-N-acetyllactosamine oligosaccharides in Escherichia coli. Lacto-N-neofucopentaose Gal1-4GlcNAc1-3Gal1-4(Fuc1-3)Glc, lacto-N-neodifucohexaose Gal1-4(Fuc1-3)Glc-NAc1-3Gal1-4(Fuc1-3)Glc, and lacto-N-neodifucooctaose Gal1-4GlcNAc1-3Gal1-4(Fuc1-3)GlcNAc1-3Gal1-4(Fuc1-3)Glc were produced from lactose added in the culture medium. Two of them carry the Lewis X human antigen. High cell density cultivation allowed obtaining several grams of fucosylated oligosaccharides per liter of culture. The fucosylation reaction was catalyzed by an -1,3 fucosyltransferase of Helicobacter pylori overexpressed in E. coli with the genes lgtAB of N. meningitidis. The strain was genetically engineered in order to provide GDP-fucose to the system, by genomic inactivation of gene wcaJ involved in colanic acid synthesis and overexpression of RcsA, positive regulator of the colanic acid operon.To prevent fucosylation at the glucosyl residue, lactulose Gal1-4Fru was assayed in replacement of lactose. Lactulose-derived oligosaccharides carrying fucose were synthesized and characterized. Fucosylation of the fructosyl residue was observed, indicating a poor acceptor specificity of the fucosyltransferase of H. pylori.  相似文献   

19.
Cinnamomin is a plant type II ribosome-inactivating protein (RIP) isolated from the seeds of Cinnamomum camphora. It consists of two nonidentical polypeptide chains (A- and B-chain) held together through one disulfide linkage. Its A- and B-chain contain 0.3% and 3.9% sugars respectively. The B-chain of cinnamomin was digested by pronase E and then the liberated glycopeptides were separated from non-glycopeptides by gel filtration chromatography on a Bio-Gel P-4 column. Three crude glycopeptides were obtained by continuing chromatography over anion-exchange resin (AG1-X2) in the buffer of 2% pyridine-acetic acid (pH 8.3) with a polygradient elution system. Through further purification by the gel filtration chromatography and HPLC, three major glycopeptides, GP1, GP2 and GP3 were obtained. Mainly by two-dimensional Nuclear Magnetic Resonance (NMR) including TOCSY, DQF-COSY, NOESY, HMQC and HMBC, their primary structures were analyzed as: Man1,3Man1,6(Man1,3)(Xyl1,2)Man1,4GlcNAc1,4GlcNAc1-(Gly-)Asn-Asn-Thr(GP1), Man1,6(Man1,3)(Xyl1,2)Man1,4GlcNAc1,4(Fuc1,3)GlcNAc1-Asn-Ala-Thr(GP2),Man1,6(Man1,3)Man1,6(Man1,2 Man1,3)Man1,4GlcNAc1,4GlcNAc1-(Ala-)Asn-Gly-Thr(GP3).  相似文献   

20.
The specificity of perch (Perca fluviatilis) roe fucolectin was studied using the protein dot blot technique, followed by detection with colloidal gold–labeled neoglycoproteins bearing human milk oligosaccharides. The strongest binding was noted with the H type 1 pentasaccharide lacto-N-fucopentaose (Fuc1-2Gal1-3GlcNAc1-3Gal1-4Glc); the interaction with the H type 6 trisaccharide 2"-fucosyllactose (Fuc1-2Gal1-4Glc) was weaker. Binding of the perch lectin to the Lewis antigens (associated with tumors and embryonic tissues) was also studied. It was found that the lectin weakly interacted with the hexasaccharide lacto-N-difucohexaose I, Leb (Fuc1-2Gal1-3[Fuc1-4]GlcNAc1-3Gal1-4Glc), but not with Lea, Lec, or Lex antigens. Thus, the perch roe lectin exhibited pronounced differences in carbohydrate specificity from other fucolectins—a feature that may be used in structural studies and isolation of fucose-containing glycoconjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号