首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
The Ihh (Indian Hedgehog) pathway plays an essential role in facilitating chondrocyte hypertrophy and bone formation during skeletal development. Nkx3.2 (NK3 homeobox 2) is initially induced in chondrocyte precursor cells, maintained in early-stage chondrocytes and down-regulated in terminal-stage chondrocytes. Consistent with these expression patterns, Nkx3.2 has been shown to enhance chondrocyte differentiation and cell survival, while inhibiting chondrocyte hypertrophy and apoptosis. Thus, in the present study, we investigated whether Nkx3.2, an early-stage chondrogenic factor, can be regulated by Ihh, a key regulator for chondrocyte hypertrophy. We show that Ihh signalling can induce proteasomal degradation of Nkx3.2. In addition, we found that Ihh can suppress levels of Lrp (low-density-lipoprotein-receptor-related protein) (Wnt co-receptor) and Sfrp (secreted frizzled-related protein) (Wnt antagonist) expression, which, in turn, may selectively enhance Lrp-independent non-canonical Wnt pathways in chondrocytes. In agreement with these findings, Ihh-induced Nkx3.2 degradation requires Wnt5a, which is capable of triggering Nkx3.2 degradation. Finally, we found that Nkx3.2 protein levels in chondrocytes are remarkably elevated in mice defective in Ihh signalling by deletion of either Ihh or smoothened. Thus these results suggest that Ihh/Wnt5a signalling may play a role in negative regulation of Nkx3.2 for appropriate progression of chondrocyte hypertrophy during chondrogenesis.  相似文献   

12.
13.
Wnt and Sonic Hedgehog (Shh) signals are known to pattern the somite into dermomyotomal, myotomal and sclerotomal cell fates. By employing explants of presomitic mesoderm cultured with constant levels of Wnt3a conditioned medium and increasing levels of Shh, we found that differing levels of Shh signaling elicit differing responses from somitic cells: the lowest level of Shh signaling allows dermomyotomal gene expression, intermediate levels induce loss of dermomyotomal markers and activation of myogenic differentiation, and higher levels induce loss of myotomal markers and activation of sclerotomal gene expression. In addition, we have found that in the presence of high levels of Wnt signaling, instead of inducing sclerotomal markers, Shh signals act to maintain the expression of dermomyotomal and myotomal markers. One of the sclerotomal genes induced by high levels of Shh signaling is Nkx3.2. Forced expression of Nkx3.2 blocks somitic expression of the dermomyotomal marker Pax3 both in vitro and in vivo. Conversely, forced expression of Pax3 in somites can block Shh-mediated induction of sclerotomal gene expression and chondrocyte differentiation in vitro. Thus we propose that varying levels of Shh signaling act in a morphogen-like manner to elicit differing responses from somitic cells, and that Pax3 and Nkx3.2 set up mutually repressing cell fates that promote either dermomyotome/myotome or sclerotome differentiation, respectively.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号