首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The distribution of the cytosolic glyceraldehyde-3-phosphate dehydrogenase gene family (Gpc) in the maize genome was investigated; a genetic variant of glyceraldehyde-3-phosphate dehydrogenase activity is also described. Restriction fragment length polymorphism analysis of an F2 population shows that the variant is not linked to the three known Gpc genes. However, this trait is linked to one of two genomic DNA fragments that hybridize to a fragment of the Gpc3 coding region, implying the existence of a fourth Gpc gene. Antibodies and cDNA clones were used to investigate the organ-specific expression of the Gpc genes. Results were compared with the expression of the alcohol dehydrogenase 1 (Adh1) gene. RNA and protein levels were examined in seedling roots and shoots, as well as the leaves, developing endosperm and embryo, and the aleurone. In general, it was found that Gpc3 expression behaves in parallel with Adh1 in these organs, and protein levels closely parallel that of RNA for each gene examined. Both Gpc3 and Adh1 show a marked increase in expression during endosperm development, reaching a maximum 15 days after pollination, but no expression is detected in the leaf. Gpc1 expression is similar to that of Gpc2, with an overall decrease in the level of RNA during endosperm development. This expression is discussed in terms of the common sequences found upstream of genes expressed in the developing maize seed.  相似文献   

2.
3.
Summary The nuclei of plant cells harbor genes for two types of glyceraldehyde-3-phosphate dehydrogenases (GAPDH) displaying a sequence divergence corresponding to the prokaryote/eukaryote separation. This strongly supports the endosymbiotic theory of chloroplast evolution and in particular the gene transfer hypothesis suggesting that the gene for the chloroplast enzyme, initially located in the genome of the endosymbiotic chloroplast progenitor, was transferred during the course of evolution into the nuclear genome of the endosymbiotic host. Codon usage in the gene for chloroplast GAPDH of maize is radically different from that employed by present-day chloroplasts and from that of the cytosolic (glycolytic) enzyme from the same cell. This reveals the presence of subcellular selective pressures which appear to be involved in the optimization of gene expression in the economically important graminaceous monocots.  相似文献   

4.
5.
6.
7.
Hypoxic regulation of endothelial glyceraldehyde-3-phosphate dehydrogenase   总被引:2,自引:0,他引:2  
The glycolytic enzyme glyceraldehyde-3-phosphatedehydrogenase (GAPDH) is induced by hypoxia in endothelial cells (EC).To define the mechanisms by which GAPDH is regulated by hypoxia, ECwere exposed to cobalt, other transition metals, carbon monoxide (CO),deferoxamine, or cycloheximide in the presence or absence of hypoxia for 24 h, and GAPDH protein and mRNA levels were measured. GAPDH was induced in cells by the transition metals cobalt, nickel, andmanganese and by deferoxamine, and GAPDH mRNA induction by hypoxia wasblocked by cycloheximide. GAPDH induction by hypoxia, unlike that ofother hypoxia-regulated genes, was not inhibited by CO or by4,6-dioxoheptanoic acid, an inhibitor of heme synthesis. GAPDHinduction was not altered by mediators of protein phosphorylation, acalcium channel blocker, a calcium ionophore, or alterations in redoxstate. GAPDH induction by hypoxia or transitional metals was partiallyblocked by sodium nitroprusside but was not altered by the inhibitor ofnitric oxide synthaseN -nitro-L-arginine. Thesefindings suggest that GAPDH induction by hypoxia in EC occurs viamechanisms other than those involved in other hypoxia-responsivesystems.

  相似文献   

8.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.12),a key enzyme ofcarbon metabolism,was purified and characterized to homogeneity from skeletal muscle of Camelusdromedarius.The protein was purified approximately 26.8 folds by conventional ammonium sulphatefractionation followed by Blue Sepharose CL-6B chromatography,and its physical and kinetic propertieswere investigated.The native protein is a homotetramer with an apparent molecular weight of approximately146 kDa.Isoelectric focusing analysis showed the presence of only one GAPDH isoform with an isoelectricpoint of 7.2.The optimum pH of the purified enzyme was 7.8.Studies on the effect of temperature onenzyme activity revealed an optimal value of approximately 28-32 ℃ with activation energy of 4.9 kcal/mol.The apparent K_m values for NAD~ and DL-glyceraldehyde-3-phophate were estimated to be 0.025±0.040mM and 0.21±0.08 mM, respectively. The V_(max) of the purified protein was estimated to be 52.7±5.9 U/mg.These kinetic parameter values were different from those described previously, reflecting protein differencesbetween species.  相似文献   

9.
10.
The catalytic interaction of glyceraldehyde-3-phosphate dehydrogenase with glyceraldehyde 3-phosphate has been examined by transient-state kinetic methods. The results confirm previous reports that the apparent Km for oxidative phosphorylation of glyceraldehyde 3-phosphate decreases at least 50-fold when the substrate is generated in a coupled reaction system through the action of aldolase on fructose 1,6-bisphosphate, but lend no support to the proposal that glyceraldehyde 3-phosphate is directly transferred between the two enzymes without prior release to the reaction medium. A theoretical analysis is presented which shows that the kinetic behaviour of the coupled two-enzyme system is compatible in all respects tested with a free-diffusion mechanism for the transfer of glyceraldehyde 3-phosphate from the producing enzyme to the consuming one.  相似文献   

11.
12.
Two cDNA clones for maize cytosolic glyceraldehyde-3-phosphate dehydrogenase are described. One is about 97% similar in coding capacity to a previously published clone [Brinkmann et al. (1987). J. Mol. Evol. 26, 320-328], while the other shows only 88% similarity. Evidence points toward the three cDNAs being the products of three genes, to be called Gpc1, Gpc2, and Gpc3. When the least similar clone, corresponding to Gpc3, was used to analyze RNA gel blots, anaerobic treatment for 6 hours induced RNA accumulation in the shoots 15.6-fold, while a 1-hour shift from 28 degrees C to 40 degrees C increased accumulation 5.1-fold. Roots had a higher basal level of expression, leading to a 6.0-fold anaerobic induction, and a 2.4-fold heat stress induction. RNA gel blot analysis using the clone corresponding to Gpc2 showed decreased RNA accumulation within 6 hours of anaerobiosis, while analysis with the previously published clone, corresponding to Gpc1, showed a decrease within 24 hours. Neither Gpc1 nor Gpc2 showed heat stress induction, while some other known anaerobic genes did. Through the use of hybrid selection, in vitro translation, and immune precipitation, the relative expression of the three genes is shown. The role of the observed changes in gene expression is discussed in relation to stress physiology.  相似文献   

13.
14.
球毛壳菌甘油醛-3-磷酸脱氢酶基因克隆及特性分析   总被引:9,自引:0,他引:9  
刘志华  杨谦 《微生物学报》2005,45(6):885-889
用粗糙脉孢菌(Neurospora crassa,XP_327967)和菜豆炭疽病菌(Colletotrichum lindemuthianu,P35143)的甘油醛_3_磷酸脱氢酶基因(Glyceraldehyde 3_phosphatedehydrogenase,GAPDH)氨基酸序列对球毛壳菌(Chaetomium globosum)菌丝ESTs序列本地数据库进行tBlastn检索,获得了球毛壳菌GAPDH全长cDNA序列。该序列长1240bp,开放阅读框1014bp,编码337个氨基酸组成的多肽,蛋白分子量为36.1kD。用PCR方法克隆了该基因的DNA序列,序列长为1556bp,由2个内含子和3个外显子组成。BlastP同源性分析表明该基因与鹅掌柄孢壳(Podosporaanserine)同源性最高为95%;与米曲霉(Aspergillusoryzae)同源性最低为87%。GAPDH酵母转化子生物功能分析表明转化子对Na2CO3和高温有高的耐受性,证明GAPDH为抗胁迫基因。该基因的cDNA序列、DNA序列及推测的氨基酸序列在GenBank登录(登录号分别为AY522719,AY593253,AAS01412)。  相似文献   

15.
A cDNA library of Ganoderma lucidum has been constructed using a Zap Express cloning vector. A glyceraldehyde-3-phosphate dehydrogenase gene (gpd) was isolated from this library by hybridization of the recombinant phage clones with a gpd-specific gene probe generated by PCR. By comparison of the cDNA and the genomic DNA sequences, it was found that the complete nucleotide sequence encodes a putative polypeptide chain of 338 amino acids interrupted by 6 introns. The predicted amino acid sequence of this gene shows a high degree of sequence similarity to the GPD proteins from yeast and filamentous fungi. The promoter region contains a CT-rich stretch, two CAAT boxes, and a consensus TATA box. The possibility of using the gpd promoter in the construction of new transformation vectors is discussed.  相似文献   

16.
We have characterized cis-acting elements involved in light regulation of the nuclear gene (GapA) encoding the A subunit of chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in Arabidopsis thaliana. Our results show that a 1.1-kb promoter fragment of the GapA gene is sufficient to confer light inducibility and organ specificity in transgenic Nicotiana tabacum (tobacco) plants, using the beta-glucuronidase gene of Escherichia coli as the reporter gene. Deletion analysis indicates that the -359 to -110 bp region of the GapA gene is necessary for light responsiveness. Within this region there are three copies of a decamer repeat (termed the Gap box) having the consensus sequence 5'-CAAATGAA(A/G)A-3', which has not been characterized in the promoter regions of other light-regulated genes. A deletion (to -247) producing loss of one copy of these elements from the GapA promoter reduces light induction by two- to threefold compared with a promoter deletion (to -359) with all three Gap boxes present, while deletion of all three Gap boxes (to -110) abolishes light induction completely. Gel mobility shift experiments using tobacco nuclei as the source of nuclear proteins show that GapA promoter fragments that contain these repeats bind strongly to a factor in the nuclear extract and that binding can be abolished by synthetic competitors consisting only of a monomer or dimer of the Gap box. Furthermore, a trimer, dimer, and monomer of the Gap box show binding activity and, like the authentic GapA promoter-derived probes, show binding activities that are correlated with Gap box copy number. These results strongly suggest that these repeats play important roles in light regulation of the GapA gene of A. thaliana.  相似文献   

17.
PCR-mediated recombination describes the process of in vitro chimera formation from related template sequences present in a single PCR amplification. The high levels of genetic redundancy in eukaryotic genomes should make recombination artifacts occur readily. However, few evolutionary biologists adequately consider this phenomenon when studying gene lineages. The cytosolic glyceraldehyde-3-phosphate dehydrogenase gene (GapC), which encodes a NADP-dependent nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase in the cytosol, is a classical low-copy nuclear gene marker and is commonly used in molecular evolutionary studies. Here, we report on the occurrence of PCR-mediated recombination in the GapC gene family of Hibiscus tiliaceus. The study suggests that recombinant areas appear to be correlated with DNA template secondary structures. Our observations highlight that recombination artifacts should be considered when studying specific and allelic phylogenies. The authors suggest that nested PCR be used to suppress PCR-mediated recombination.  相似文献   

18.
19.
20.
We found an autoimmune serum, K199, that strongly suppresses nuclear membrane assembly in a cell-free system involving a Xenopus egg extract. Four different antibodies that suppress nuclear assembly were affinity-purified from the serum using Xenopus egg cytosol proteins. Three proteins recognized by these antibodies were identified by partial amino acid sequencing to be glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fructose-1,6-bisphosphate aldolase, and the regulator of chromatin condensation 1. GAPDH is known to be a fusogenic protein. To verify the participation of GAPDH in nuclear membrane fusion, authentic antibodies against human and rat GAPDH were applied, and strong suppression of nuclear assembly at the nuclear membrane fusion step was observed. The nuclear assembly activity suppressed by antibodies was recovered on the addition of purified chicken GAPDH. A peptide with the sequence of amino acid residues 70-94 of GAPDH, which inhibits GAPDH-induced phospholipid vesicle fusion, inhibited nuclear assembly at the nuclear membrane fusion step. We propose that GAPDH plays a crucial role in the membrane fusion step in nuclear assembly in a Xenopus egg extract cell-free system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号