首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An approach for the design of high-power, broadband 180° pulses and mixing sequences for generating dipolar and scalar coupling mediated 13C–13C chemical shift correlation spectra of isotopically labelled biological systems at fast magic-angle spinning frequencies without 1H decoupling during mixing is presented. Considering RF field strengths in the range of 100–120 kHz, as typically available in MAS probes employed at high spinning speeds, and limited B 1 field inhomogeneities, the Fourier coefficients defining the phase modulation profile of the RF pulses were optimised numerically to obtain broadband inversion and refocussing pulses and mixing sequences. Experimental measurements were carried out to assess the performance characteristics of the mixing sequences reported here.  相似文献   

2.
Due to practical limitations in available 15N rf field strength, imperfections in 15N 180° pulses arising from off-resonance effects can result in significant sensitivity loss, even if the chemical shift offset is relatively small. Indeed, in multi-dimensional NMR experiments optimized for protein backbone amide groups, cross-peaks arising from the Arg guanidino 15Nε (~85 ppm) are highly attenuated by the presence of multiple INEPT transfer steps. To improve the sensitivity for correlations involving Arg Nε–Hε groups, we have incorporated 15N broadband 180° pulses into 3D 15N-separated NOE-HSQC and HNCACB experiments. Two 15N-WURST pulses incorporated at the INEPT transfer steps of the 3D 15N-separated NOE-HSQC pulse sequence resulted in a ~1.5-fold increase in sensitivity for the Arg Nε–Hε signals at 800 MHz. For the 3D HNCACB experiment, five 15N Abramovich-Vega pulses were incorporated for broadband inversion and refocusing, and the sensitivity of Arg1Hε-15Nε-13Cγ/13Cδ correlation peaks was enhanced by a factor of ~1.7 at 500 MHz. These experiments eliminate the necessity for additional experiments to assign Arg 1Hε and 15Nε resonances. In addition, the increased sensitivity afforded for the detection of NOE cross-peaks involving correlations with the 15Nε/1Hε of Arg in 3D 15N-separated NOE experiments should prove to be very useful for structural analysis of interactions involving Arg side-chains.  相似文献   

3.
Summary We have developed an improved isotope-filtered pulse scheme in combination with a double-tuned filter, a hyperbolic secant inversion pulse, and a z-filter with a pulsed field gradient. These filtering pulse schemes have been incorporated into several one-, two-, and three-dimensional experiments, which were applied to the 13C/15N uniformly labeled N-terminal SH3 domain of Grb2 complexed with the unlabeled Sos-derived peptide. The proton resonances of the Sos-derived peptide were unambiguously assigned using isotope-filtered DQF-COSY, TOCSY and NOESY spectra. Furthermore, in the isotope-filtered, isotope-edited 3D NOESY spectrum, intermolecular NOEs between the labeled protein and the unlabeled peptide could be identified. Through these applications, we demonstrate the high filtering efficiency of the presented pulse scheme.  相似文献   

4.
We have explored the design of broadband scalar coupling mediated 13C–13C and cross-relaxation suppressed 1H–1H TOCSY sequences employing phase/amplitude modulated inversion pulses. Considering a variety of supercycles, pulsewidths and a RF field strength of 10 kHz, the Fourier coefficients defining the amplitude and phase modulation profiles of the 180° pulses were optimised numerically so as to obtain efficient magnetisation transfer within the desired range of resonance offsets. The coherence transfer characteristics of the mixing schemes were assessed via numerical simulations and experimental measurements and were compared with commonly used sequences based on rectangular RF pulses. The efficacies of the clean 1H–1H TOCSY sequences were also examined via numerical simulations for application to weakly oriented systems and sequences with efficient, broadband and clean dipolar transfer characteristics were identified. In general, the amplitude and phase modulated TOCSY sequences presented here have moderately better performance characteristics than the sequences currently employed in biomolecular NMR spectroscopy.  相似文献   

5.
We show that adiabatic fast passage (AFP) pulses are robust refocusing elements of transverse 13C magnetization in multidimensional NMR experiments. A pair of identical AFP pulses can refocus selected parts or a complete 13 C chemical shift range in 13C spectra. In the constant time 13C-1H HSQC, replacement of attenuated rectangular pulses by selective AFP pulses results in a sensitivity enhancement of up to a factor of 1.8. In the 3D CBCA(CO)NH the signal-to-noise ratio is increased by a factor of up to 1.6.  相似文献   

6.
Summary NMR pulse sequences for measuring coupling constants in 13C, 15N-labeled proteins are presented. These pulse sequences represent improvements over earlier experiments with respect to resolution and number of radiofrequency pulses. The experiments are useful for measuring JNH , JNCO, JNC , JH N CO and JH N H . Applications to chymotrypsin inhibitor 2 (CI-2) are shown.  相似文献   

7.
Three improved 13C-spinlock experiments for side chain assignments of isotope labelled proteins in liquid state are presented. These are based on wide bandwidth spinlock techniques that have become possible with contemporary cryogenic probes. The first application, the H(CaliCaro)H-TOCSY, is an HCCH-TOCSY in which all CHn moieties of a protein are detected in a single experiment, including the aromatic ones. This enables unambiguous assignment of aromatic and aliphatic amino acids in a single, highly sensitive experiment. In the second application, the 13C-detected Call-TOCSY, magnetization transfer comprises all carbons—aliphatic, aromatic as well as the carbonyl carbons—making the complete carbon assignment possible using one spectrum only. Thirdly, the frequently used HC(CCO)NH experiment was redesigned by replacing the long C-carbonyl refocused INEPT transfer step by direct 13C–13C-TOCSY magnetization transfer from side chain carbons to the backbone carbonyls. The resulting HC(CCO)NH experiment minimizes relaxation losses because it is shorter and represents a more sensitive alternative particularly for larger proteins. The performance of the experiments is demonstrated on isotope labeled proteins up to the size of 43 kDa.  相似文献   

8.
Simple pulse schemes are presented for the measurement of methyl 13C and 1H CSA values from 1H–13C dipole/13C CSA and 1H–13C dipole/1H CSA cross-correlated relaxation. The methodology is applied to protein L and malate synthase G. Average 13C CSA values are considerably smaller for Ile than Leu/Val (17 vs 25 ppm) and are in good agreement with previous solid state NMR studies of powders of amino acids and dipeptides and in reasonable agreement with quantum-chemical DFT calculations of methyl carbon CSA values in peptide fragments. Small averaged 1H CSA values on the order of 1 ppm are measured, consistent with a solid state NMR determination of the methyl group 1H CSA in dimethylmalonic acid.  相似文献   

9.
Summary Three-dimensional 1H-TOCSY-relayed ct-[13C,1H]-HMQC is a novel experiment for aromatic spin system identification in uniformly 13C-labeled proteins, which is implemented so that it correlates the chemical shift of a given aromatic proton with those of the directly attached carbon and all vicinal protons. The ct-HMQC scheme is used both for overlay of the indirect 1H and 13C chemical shift evolution periods and for the generation of 1H-1H antiphase magnetization to accelerate the 1H-TOCSY magnetization transfer at short mixing times. As an illustration, data recorded for the 18 kDa protein cyclophilin A are presented. Since transverse relaxation of 13C-1H zero-quantum and double-quantum coherences is to first order insensitive to 13C-1H heteronuclear dipolar relaxation, the new experiment should work also for proteins with molecular weights above 20 kDa.  相似文献   

10.
Animals with high metabolic rates are believed to have high rates of carbon and nitrogen isotopic incorporation. We hypothesized that (1) chronic exposure to cold, and hence an increase in metabolic rate, would increase the rate of isotopic incorporation of both 13C and 15N into red blood cells; and (2) that the rate of isotopic incorporation into red blood cells would be allometrically related to body mass. Two groups of sparrows were chronically exposed to either 5 or 22°C and switched from a 13C-depleted C3-plant diet to a more 13C-enriched C4-plant one. We used respirometry to estimate the resting metabolic rate of birds exposed chronically to our two experimental temperatures. The allometric relationship between the rate of 13C incorporation into blood and body mass was determined from published data. The of birds at 5°C was 1.9 times higher than that of birds at 22°C. Chronic exposure to a low temperature did not have an effect on the rate of isotopic incorporation of 15N save for a very small effect on the incorporation of 13C. The isotopic incorporation rate of 13C was 1.5 times faster than that of 15N. The fractional rate of 13C incorporation into avian blood was allometrically related to body mass with an exponent similar to −1/4. We conclude that the relationship between metabolic rate and the rate of isotopic incorporation into an animal’s tissues is indirect. It is probably mediated by protein turnover and thus more complex than previous studies have assumed.  相似文献   

11.
An approach for the efficient implementation of RN n ν symmetry-based pulse schemes that are often employed for recoupling and decoupling of nuclear spin interactions in biological solid state NMR investigations is demonstrated at high magic-angle spinning frequencies. RF pulse sequences belonging to the RN n ν symmetry involve the repeated application of the pulse sandwich {R ϕ R −ϕ}, corresponding to a propagator U RF = exp(−i4ϕI z), where ϕ = πν/N and R is typically a pulse that rotates the nuclear spins through 180° about the x-axis. In this study, broadband, phase-modulated 180° pulses of constant amplitude were employed as the initial ‘R’ element and the phase-modulation profile of this ‘R’ element was numerically optimised for generating RN n ν symmetry-based pulse schemes with satisfactory magnetisation transfer characteristics. At representative MAS frequencies, RF pulse sequences were implemented for achieving 13C–13C double-quantum dipolar recoupling and through bond scalar coupling mediated chemical shift correlation and evaluated via numerical simulations and experimental measurements. The results from these investigations are presented here. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Carbon (C) and nitrogen (N) metabolism of the hermatypic coral Acropora pulchra and its symbiotic algae (zooxanthellae) was investigated using 13C and 15N isotope tracers. A. pulchra was incubated in seawater containing 13C-labeled bicarbonate and 15N-labeled nitrate (NO3) for 24 h (pulse period), and subsequently 13C and 15N isotopic ratios of the host coral and the zooxanthellae were followed in 13C- and 15N-free seawater for 2 weeks (chase period). Under our experimental condition of NO3 (12 μM), C and N were absorbed by the coral-algal symbiotic system with the C:N ratio of 23 during the pulse period. Taking account of concentration dependence of NO3 uptake rates determined by a separate experiment, C:N uptake ratios under supposed in situ NO3 conditions (< 1.0 μM) would be > 3.0 times higher, if the photosynthetic rate did not change. During the pulse period, more than half of the absorbed 13C and 15N appeared in the host fraction in organic forms. 13C:15N ratio at the end of the pulse period was similar between the host and the algal fraction, suggesting that algal photosynthetic products were translocated to the host. It is also implied that C:N ratios of the translocated products change depending on N availability for the zooxanthellae. During the chase period, atom % excess (APE) 15N of the zooxanthellae constantly declined, while that of the host slightly increased. Consequently, APE 15N of the both fractions appeared to approach a common steady state value, suggesting that 15N was recycled within the coral-algal symbiotic system. As for C, > 86% of C photosynthetically fixed by the zooxanthellae accumulated in the host at the end of the pulse period, and had a turnover time of ca. 20 days for the host C pool during the following chase period. C:N ratios of organic matter newly synthesized with NO3 exponentially declined and converged into 5.7 and 4.5 for the host and the zooxanthellae, respectively. This suggests that organic compounds of high C:N ratios such as lipids and carbohydrates were selectively consumed more rapidly than those of low C:N ratios such as proteins and nucleic acids.  相似文献   

13.
CO2 applied for Free-Air CO2 Enrichment (FACE) experiments is strongly depleted in 13C and thus provides an opportunity to study C turnover in soil organic matter (SOM) based on its δ 13C value. Simultaneous use of 15N labeled fertilizers allows N turnover to be studied. Various SOM fractionation approaches (fractionation by density, particle size, chemical extractability etc.) have been applied to estimate C and N turnover rates in SOM pools. The thermal stability of SOM coupled with C and N isotopic analyses has never been studied in experiments with FACE. We tested the hypothesis that the mean residence time (MRT) of SOM pools is inversely proportional to its thermal stability. Soil samples from FACE plots under ambient (380 ppm) and elevated CO2 (540 ppm; for 3 years) treatments were analyzed by thermogravimetry coupled with differential scanning calorimetry (TG-DSC). Based on differential weight losses (TG) and energy release or consumption (DSC), five SOM pools were distinguished. Soil samples were heated up to the respective temperature and the remaining soil was analyzed for δ 13C and δ 15N by IRMS. Energy consumption and mass losses in the temperature range 20–200°C were mainly connected with water volatilization. The maximum weight losses occurred from 200–310°C. This pool contained the largest amount of carbon: 61% of the total soil organic carbon in soil under ambient treatment and 63% in soil under elevated CO2, respectively. δ 13C values of SOM pools under elevated CO2 treatment showed an increase from −34.3‰ of the pool decomposed between 20–200°C to −18.1‰ above 480°C. The incorporation of new C and N into SOM pools was not inversely proportional to its thermal stability. SOM pools that decomposed between 20–200 and 200–310°C contained 2 and 3% of the new C, with a MRT of 149 and 92 years, respectively. The pool decomposed between 310–400°C contained the largest proportion of new C (22%), with a MRT of 12 years. The amount of fertilizer-derived N after 2 years of application in ambient and elevated CO2 treatments was not significantly different in SOM pools decomposed up to 480°C having MRT of about 60 years. In contrast, the pool decomposed above 480°C contained only 0.5% of new N, with a MRT of more than 400 years in soils under both treatments. Thus, the separation of SOM based on its thermal stability was not sufficient to reveal pools with contrasting turnover rates of C and N. Responsible Editor: Bernard Nicolardot.  相似文献   

14.
Carbon isotopic composition of soils subjected to C3–C4 vegetation change can be used to estimate C turnover in bulk soil and in soil organic matter (SOM) pools with fast and intermediate turnover rates. We hypothesized that the biological availability of SOM pools is inversely proportional to their thermal stability, so that thermogravimetry can be used to separate SOM pools with contrasting turnover rates. Soil samples from a field plot cultivated for 10.5 years with the perennial C4 plant Miscanthus×gigantheus were analyzed by thermogravimetry coupled with differential scanning calorimetry (DSC). Three SOM fractions were distinguished according to the differential weight losses and exothermic or endothermic reactions measured by DSC. The δ13C and δ15N values of these three fractions obtained by gradual soil heating were measured by IRMS. The weight losses up to 190 °C mainly reflected water evaporation because no significant C and N losses were detected and δ13C and δ15N values of the residual SOM remained unchanged. The δ13C values (−16.4‰) of SOM fraction decomposed between 190 and 390 °C (containing 79% of total soil C) were slightly closer to that of the Miscanthus plant tissues (δ13C = −11.8‰) compared to the δ13C values (−16.8‰) of SOM fraction decomposed above 390 °C containing the residual 21% of SOM. Thus, the C turnover in the thermally labile fraction was faster than that in thermally stable fractions, but the differences were not very strong. Therefore, in this first study combining TG-DSC with isotopic analysis, we conclude that the thermal stability of SOM was not very strongly related to biological availability of SOM fractions. In contrast to δ13C, the δ15N values strongly differed between SOM fractions, suggesting that N turnover in the soil was different from C turnover. More detailed fractionation of SOM by thermal analysis with subsequent isotopic analysis may improve the resolution for δ13C.  相似文献   

15.
Analysis of 2D [13C,1H]-HSQC spectra of biosynthetic fractionally 13C labeled proteins is a reliable, straightforward means to obtain stereospecific assignments of Val and Leu methyl sites in proteins. Herein we show that the same fractionally labeled protein sample facilitates observation and identification of Phe and Tyr aromatic signals. This is the case, in part, because the fractional 13C labeling yields aromatic rings in which some of the 13C-13C J-couplings, present in uniformly labeled samples, are absent. Also, the number of homonuclear J-coupling partners differs for the -, - and -carbons. This enabled us to vary their signal intensities in distinctly different ways by appropriately setting the 13C constant-time period in 2D [13C,1H]-HSQC spectra. We illustrate the application of this approach to an 18 kDa protein, c-VIAF, a modulator of apoptosis. In addition, we show that cancellation of the aromatic 13C CSA and 13C-1H dipolar interactions can be fruitfully utilized in the case of the fractionally labeled sample to obtain high resolution 13C constant-time spectra with good sensitivity.  相似文献   

16.
Methodological problems, such as unwanted shifts in plant carbon allocation patterns following large isotopic labeling pulses, have hindered accurate quantification of belowground carbon movement in plant–soil systems. These problems must be addressed before we can understand the factors regulating carbon movement between plants and soils and the importance of this movement to the global carbon cycle. We studied the effects of pulse-label size on carbon allocation and transfer between ectomycorrhizal paper birch (Betula papyrifera Marsh.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings using increasing pulse levels of either 13C or 14C in two separate laboratory experiments. Our specific objectives were: (1) to determine the minimum pulse of 13CO2 or 14CO2 for detecting carbon movement between plants through belowground transfer pathways, (2) to determine whether carbon allocation patterns within these plants change when exposed to short pulses of elevated carbon dioxide and, (3) to determine whether carbon allocation patterns are similar when using two different carbon isotopes. We detected carbon movement between plants at each 13C and 14C pulse level. There was a tendency for the amount of interplant carbon transfer to increase with increasing 13C pulse level, but the same amount of transfer occurred at all 14C pulses between 0.19 and 0.56 MBq. Carbon allocation patterns did not change with pulse level but they were affected by the choice of carbon isotope. We conclude that at least 8 ml of 13C or 0.19 MBq of 14C is sufficient to detect belowground carbon transfer in small seedlings growing in close proximity.  相似文献   

17.
Summary Relaxation times of 13C carbons of uniformly 13C/15N-enriched probes have been investigated. The relaxation behaviour was analyzed in terms of a multispin system. Pulse sequences for the determination of T1, T2 and the heteronuclear NOE of 13C in uniformly 13C/15N-enriched ribonuclease T1 are presented. The experiments performed in order to obtain T1 and the heteronuclear NOE were similar to those of the corresponding 15N experiments published previously. The determination of T2 for the C-carbon in a completely labeled protein is more complicated, since the magnetization transfer during the T2 evolution period owing to the scalar coupling of C–C must be suppressed. Various different pulse sequences for the T2 evolution period were simulated in order to optimize the bandwidth for which reliable T2 relaxation times can be obtained. A proof for the quality of these pulse sequences is given by fitting the intensity decay of individual 1H–13C cross peaks, in a series of (1H, 13C)-ct-HSQC spectra with a modified CPMG sequence as well as a T1p sequence for the transverse relaxation time, to a single exponential using a simplex algorithm.  相似文献   

18.
M. Werth  Y. Kuzyakov 《Plant and Soil》2006,284(1-2):319-333
Coupling 13C natural abundance and 14C pulse labelling enabled us to investigate the dependence of 13C fractionation on assimilate partitioning between shoots, roots, exudates, and CO2 respired by maize roots. The amount of recently assimilated C in these four pools was controlled by three levels of nutrient supply: full nutrient supply (NS), 10 times diluted nutrient supply (DNS), and deionised water (DW). After pulse labelling of maize shoots in a 14CO2 atmosphere, 14C was traced to determine the amounts of recently assimilated C in the four pools and the δ13C values of the four pools were measured. Increasing amounts of recently assimilated C in the roots (from 8% to 10% of recovered 14C in NS and DNS treatments) led to a 0.3‰ 13C enrichment from NS to DNS treatments. A further increase of C allocation in the roots (from 10% to 13% of recovered 14C in DNS and DW treatments) resulted in an additional enrichment of the roots from DNS to DW treatments by 0.3‰. These findings support the hypothesis that 13C enrichment in a pool increases with an increasing amount of C transferred into that pool. δ13C of CO2 evolved by root respiration was similar to that of the roots in DNS and DW treatments. However, if the amount of recently assimilated C in root respiration was reduced (NS treatment), the respired CO2 became 0.7‰ 13C depleted compared to roots. Increasing amounts of recently assimilated C in the CO2 from NS via DNS to DW treatments resulted in a 1.6‰ δ13C increase of root respired CO2 from NS to DW treatments. Thus, for both pools, i.e. roots and root respiration, increasing amounts of recently assimilated C in the pool led to a δ13C increase. In DW and DNS plants there was no 13C fractionation between roots and exudates. However, high nutrient supply decreased the amount of recently assimilated C in exudates compared to the other two treatments and led to a 5.3‰ 13C enrichment in exudates compared to roots. We conclude that 13C discrimination between plant pools and within processes such as exudation and root respiration is not constant but strongly depends on the amount of C in the respective pool and on partitioning of recently assimilated C between plant pools. Section Editor: H. Lambers  相似文献   

19.
A TROSY-based triple-resonance pulse scheme is described which correlates backbone 1H and 15N chemical shifts of an amino acid residue with the 15N chemical shifts of both the sequentially preceding and following residues. The sequence employs 1 J NC and 2 J NC couplings in two sequential magnetization transfer steps in an `out-and-back' manner. As a result, N,N connectivities are obtained irrespective of whether the neighbouring amide nitrogens are protonated or not, which makes the experiment suitable for the assignment of proline resonances. Two different three-dimensional variants of the pulse sequence are presented which differ in sensitivity and resolution to be achieved in one of the nitrogen dimensions. The new method is demonstrated with two uniformly 2H/13C/15N-labelled proteins in the 30-kDa range.  相似文献   

20.
TROSY-based triple resonance experiments are essential for protein backbone assignment of large biomolecular systems by solution NMR spectroscopy. In a survey of the current Bruker pulse sequence library for TROSY-based experiments we found that several sequences were plagued by artifacts that affect spectral quality and hamper data analysis. Specifically, these experiments produce sidebands in the 13C(t 1) dimension with inverted phase corresponding to 1HN resonance frequencies, with approximately 5% intensity of the parent 13C crosspeaks. These artifacts originate from the modulation of the 1HN frequency onto the resonance frequency of 13Cα and/or 13Cβ and are due to 180° pulses imperfections used for 1H decoupling during the 13C(t 1) evolution period. These sidebands can become severe for CAi, CAi?1 and/or CBi, CBi?1 correlation experiments such as TROSY-HNCACB. Here, we implement three alternative decoupling strategies that suppress these artifacts and, depending on the scheme employed, boost the sensitivity up to 14% on Bruker spectrometers. A class of comparable Agilent/Varian pulse sequences that use WALTZ16 1H decoupling can also be improved by this method resulting in up to 60–80% increase in sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号