首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the role of pH gradient and membrane potential in dipeptide transport in purified intestinal and renal brush-border membrane vesicles which were predominantly oriented right-side out. With an intravesicular pH of 7.5, changes in extravesicular pH significantly affected the transport of glycyl-L-proline and L-carnosine, and optimal dipeptide transport occurred at an extravesicular pH of 5.5-6.0 in both intestine and kidney. When the extravesicular pH was 5.5, glycyl-L-proline transport was accelerated 2-fold by the presence of an inward proton gradient. A valinomycin-induced K+ diffusion potential (interior-negative) stimulated glycyl-L-proline transport, and the stimulation was observed in the presence and absence of Na+. A carbonyl cyanide p-trifluoromethoxyphenylhydrazone-induced H+ diffusion potential (interior-positive) reduced dipeptide transport. It is suggested that glycyl-L-proline and proton(s) are cotransported in intestinal and renal brush-border membrane vesicles, and that the process results in a net transfer of positive charge.  相似文献   

2.
The effect of ionic strength on the fluidity of rabbit intestinal brush-border membranes has been studied using two fluorescence probes, pyrene and 1-anilino-8-naphthalene sulfonate (ANS). The imposition of a potential gradient on the pyrene-probed membrane vesicles (out greater than in) with increasing NaCl concentration in the medium resulted in a marked enhancement of the excimer formation efficiency, accompanied by a decrease in the ratio of fluorescence intensities of the probe at 392 and 375 nm. Fluorescence polarization of the pyrene-membrane complex is independent of temperature in the absence of salts, while it is dependent on temperature from 10 to 47 degrees C in the presence of salts, as shown by the thermal Perrin plots of polarization. It has been demonstrated that there is a linear relationship between the changes in the pyrene excimer formation efficiency in the membranes and of the values of the binding parameters of ANS for the membranes. From these results, it is suggested that the lipid phase of the membranes becomes more fluid by shielding negatively charged groups of the membrane surface and that there is a fairly close correlation between the membrane organization and the membrane surface charge density.  相似文献   

3.
The effect of ionic strength on the fluidity of rabbit intestinal brush-border membranes has been studied using two fluorescence probes, pyrene and 1-anilino-8-naphthalene sulfonate (ANS). The imposition of a potential gradient on the pyrene-probed membrane vesicles (out > in) with increasing NaCl concentration in the medium resulted in a marked enhancement of the excimer formation efficiency, accompanied by a decrease in the ratio of fluorescence intensities of the probe at 392 and 375 nm. Fluorescence polarization of the pyrene-membrane complex is independent of temperature in the absence of salts, while it is dependent on temperature from 10 to 47°C in the presence of salts, as shown by the thermal Perrin plots of polarization. It has been demonstrated that there is a linear relationship between the changes in the pyrene excimer formation efficiency in the membranes and of the values of the binding parameters of ANS for the membranes. From these results, it is suggested that the lipid phase of the membranes becomes more fluid by shielding negatively charged groups of the membrane surface and that there is a fairly close correlation between the membrane organization and the membrane surface charge density.  相似文献   

4.
The effect of neuraminidase treatment on the lipid fluidity of the porcine intestinal brush-border membranes was studied using two fluorescence dyes, pyrene and 1,6-diphenyl-1,3,5-hexatriene. By treatment of the membranes with neuraminidase, the fluorescence parameters of pyrene-labeled membranes changed; i.e., a shift of thermal transition temperature, an increase in the fluorescence quenching rate for Tl+ and a decrease in the fluorescence lifetime. These results suggest that the environmental properties around the dye molecules in the membranes change sensitively upon neuraminidase treatment. Perturbation of the lipid domain in the membranes associated with neuraminidase treatment is also demonstrated by a stimulated solubilization of diphenylhexatriene molecules in the membrane lipids, an increased quenching efficiency with Tl+ and a decreased rotational correlation time of diphenylhexatriene-labeled membranes. Based on these results, we conclude that the lipid organization of the membranes is susceptible to neuraminidase treatment and that the membrane lipid fluidity increases by desialylation by the enzyme treatment.  相似文献   

5.
Transport of [3H]tetraethylammonium, an organic cation, has been studied in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. Some characteristics of carrier-mediated transport for tetraethylammonium were demonstrated in brush-border and basolateral membrane vesicles; the uptake was saturable, was stimulated by the countertransport effect, and showed discontinuity in an Arrhenius plot. In brush-border membrane vesicles, the presence of an H+ gradient ( [H+]i greater than [H+]o) induced a marked stimulation of tetraethylammonium uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was completely inhibited by HgCl2. In contrast, the uptake of tetraethylammonium by basolateral membrane vesicles was unaffected by an H+ gradient. Tetraethylammonium uptake by basolateral membrane vesicles was significantly stimulated by a valinomycin-induced inside-negative membrane potential, while no effect of membrane potential was observed in brush-border membrane vesicles. These results suggest that tetraethylammonium transport across brush-border membranes is driven by an H+ gradient via an electroneutral H+-tetraethylammonium antiport system, and that tetraethylammonium is transported across basolateral membranes via a carrier-mediated system and this process is stimulated by an inside-negative membrane potential.  相似文献   

6.
Prior studies by our laboratory have suggested that a relationship may exist between rat colonic brush-border membrane vesicular fluidity and Na+-H+ exchange. To further explore this possible relationship, in the present studies the effects of ethinyl estradiol (17 alpha-ethinyl-1,3,5-estratriene-3,17-beta-diol) administration subcutaneously (5 mg/kg body wt. per day) for 5 days, on rat colonic brush-border membrane fluidity and Na+-H+ exchange were examined. This treatment regimen has previously been shown to decrease the lipid fluidity of rat hepatic and rabbit small intestinal plasma membranes. In agreement with these prior studies, the present results demonstrate that this agent decreases the lipid fluidity of treated-rat colonic brush-border membranes compared to control membranes, as assessed by steady-state fluorescence polarization techniques using three different fluorophores. An increase in the cholesterol content and cholesterol/phospholipid molar ratio of treated-membranes appear to, at least partially, be responsible for the fluidity differences. Furthermore, examination of the kinetic parameters for amiloride-sensitive sodium-stimulated proton efflux in treated and control membrane vesicles, utilizing the pH-sensitive fluorescent dye, Acridine orange, revealed that ethinyl estradiol administration decreased the Vmax for this exchange mechanism, expressed in arbitrary fluorescence units, by approx. 25% but did not influence its Km for sodium. These data, therefore, lend further support to the contention that alterations in fluidity may modulate Na+-H+ exchange in rat colonic brush-border membrane vesicles.  相似文献   

7.
The effect of treatment of the porcine intestinal brush-border membranes with malondialdehyde (MDA) on their lipid fluidity was examined using a fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene (DPH). When the membranes were treated with MDA, the fluorescence anisotropy of DPH-labeled membranes increased and the amount of DPH molecules incorporated into the membranes decreased from 3.25 to 2.23 nmol/mg protein. In addition, the response of the fluorescence anisotropy of DPH-labeled membranes to benzyl alcohol, a well-known fluidizer, was markedly suppressed by treatment of the membranes with MDA. These results suggest that treatment of the membranes with MDA causes a decrease of the membrane lipid fluidity. This interpretation was further supported by the increase observed in the fluorescence anisotropy of DPH-labeled liposomes prepared from the extracted lipids of MDA-treated membranes. The results of SDS-polyacrylamide gel electrophoresis suggested that the formation of high-molecular-weight aggregates of the membrane proteins is not involved in the increase of the fluorescence anisotropy of DPH-labeled membranes by treatment with MDA. On the basis of these results, changes in the physical properties of the intestinal brush-border membranes by treatment with MDA are discussed.  相似文献   

8.
Transport of GSH was studied in isolated rat kidney cortical brush-border membrane vesicles in which gamma-glutamyltransferase had been inactivated by a specific affinity labeling reagent, L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125). Transport of intact 2-3H-glycine-labeled GSH occurred into an osmotically active intravesicular space of AT-125-treated membranes. The initial rate of transport followed saturation kinetics with respect to GSH concentrations; an apparent Km of 0.21 mM and Vmax of 0.23 nmol/mg protein X 20 were calculated at 25 degrees C with a 0.1 M NaCl gradient (vesicle inside less than vesicle outside). Sodium chloride in the transport medium could be replaced with KCl without affecting transport activity. The rate of GSH uptake was enhanced by replacing KCl in the transport medium with K2SO4, providing a less permeant anion, and was reduced by replacing KCl with KSCN, providing a more permeant anion. The rate of GSH transport markedly decreased in the absence of a K+ gradient across the vesicular membranes and was enhanced by a valinomycin-induced K+ diffusion potential (vesicle-inside-positive). These results indicate that GSH transport is dependent on membrane potential and involves the transfer of negative charge. The rate of GSH transport was inhibited by S-benzyl glutathione but not by glycine, glutamic acid, and gamma-glutamyl-p-nitroanilide. When incubated with [2-3H]glycine-labeled GSH, intact untreated vesicles also accumulated radioactivity; the rate of uptake was significantly higher in a Na+ gradient than in a K+ gradient. Sodium-dependent transport, but not sodium-independent uptake, was almost completely inhibited by a high concentration of unlabeled glycine. At equilibrium, most of the radioactivity which accumulated in the intravesicular space was accounted for by free glycine. These results suggest that GSH which is secreted into the tubular lumen by a specific translocase in the lumenal membranes or filtered by the glomerulus may be degraded in situ by membranous gamma-glutamyltransferase and peptidase activities which hydrolyze peptide bonds of cysteinylglycine and its derivatives. The resulting free amino acids can be reabsorbed into tubule cells by sodium-dependent transport systems in renal cortical brush-border membranes.  相似文献   

9.
The effect of membrane potential on the uptake of tryptamine, an organic cation, by rat intestinal brush-border membrane vesicles was studied. In the presence of an outwardly directed H(+)-gradient, the initial uptake of tryptamine was stimulated remarkably and the overshoot phenomenon was observed. In contrast, the uptake was depressed by an inwardly-directed H(+)-gradient. The effect of H(+)-gradient on the uptake of tryptamine was maintained in the presence of FCCP, whereas it vanished when voltage-clamped vesicles were used. Moreover, the uptake of tryptamine was linearly augmented with increase of the valinomycin-induced inside-negative K+ diffusion potential. These results suggest that tryptamine is taken up into intestinal brush-border membrane vesicles depends upon the ionic diffusion potential. The effect of several indole derivatives and amine compounds on the uptake of tryptamine was also examined. The uptake of tryptamine was inhibited by all amine compounds used, but anionic and zwitterionic compounds had no effect, suggesting that these amines interact on brush-border membrane and cause an inhibitory effect.  相似文献   

10.
W.S. Chow  J. Barber 《BBA》1980,589(2):346-352
1. When suspended in a low cation-containing medium, chloroplast thylakoid membranes and carboxymethyl-cellulose particles quench the fluorescence from 9-aminoacridine (Searle, G.F.W. and Barber, J. (1978) Biochim. Biophys. Acta 502, 309–320).2. Relief of this quenching is achieved by adding cations to the suspension medium with the order of effectiveness being C3+ > C2+ > C+, indicating that the fluorescence acts as an indicator of the surface electrical potential.3. Using the Gouy-Chapman theory, the differential effect of divalent (methyl viologen) and monovalent (K+) cations has been used to calculate surface charge densities.4. The calculations indicate that the surface charge density on the thylakoids significantly increases when cations are added to the low cation-containing medium. Under the same conditions the surface charge density of glutaralde-hyde-fixed thylakoids and carboxymethyl-cellulose particles remained essentially constant.5. It is argued that the 9-aminoacridine technique is able to probe localized areas on the membrane surface and that the variability of the surface charge density of untreated thylakoids may be due to redistribution of charges associated with membrane stacking as suggested by Barber and Chow (Barber, J. and Chow, W.S. (1979) FEBS Lett. 105, 5–10).  相似文献   

11.
The transport characteristics of aminocephalosporin antibiotics, possessing an alpha-amino group and a carboxyl group, in brush-border membranes isolated from rabbit small intestine have been studied by a rapid filtration technique. The uptake of cephradine by brush-border membrane vesicles was stimulated by the countertransport effect of dipeptides, which indicates the existence of a common carrier transport system. An inward H+ gradient ([pH]i = 7.5 to 8.4, [pH]o = 6.0) stimulated cephradine uptake against a concentration gradient (overshoot phenomenon), and this stimulation was reduced when the H+ gradient was subjected to rapid dissipation by the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, a protonophore. A valinomycin-induced K+ diffusion potential (interior-negative) stimulated H+ gradient-dependent cephradine uptake without altering the equilibrium value. The uptake of other aminocephalosporins (cefadroxil, cefaclor, cephalexin) was also stimulated in the presence of an inward H+ gradient, while the uptake of cephalosporins without the alpha-amino group (cefazolin, cefotiam) was not changed in the presence or absence of the H+ gradient. These results suggest that the transport of aminocephalosporins can be driven actively by an inward H+ gradient via the dipeptide transport system in the intestinal brush-border membranes, and that the process results in the transfer of a positive charge.  相似文献   

12.
A test to determine quantitatively the lectin binding sites in brush-border membranes has been developed. Highly purified bovine small intestinal brush-border membranes were prepared, and subsequently coated directly to the bottom of a microtiter plate. Soybean agglutinin conjugated with peroxidase was coupled to its binding sites in the brush-border membranes and the peroxidase activity was determined in a spectrophotometer. The number of soybean agglutinin binding sites in the brush-border membranes has been established by means of iterized computer fit analysis of the data, indicating values for maximal binding of 7.10(-7) M soybean agglutinin per mg of brush-border membrane protein and a dissociation constant of 1.5.10(-5) M.  相似文献   

13.
Photoaffinity labeling of small intestinal brush-border membrane vesicles with photolabile bile salt derivatives was performed to identify bile salt-binding polypeptides in these membranes. The derivatives used in this study were the sodium salts of 7,7-azo-3 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oic acid, 3 beta-azido-7 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oic acid, their respective taurine conjugates, and (11 xi-azido-12-oxo-3 alpha, 7 alpha-dihydroxy-5 beta-cholan-24-oyl)-2-aminoethanesulfonic acid. With ileal brush-border membrane vesicles, photoaffinity labeling resulted in the identification of 5 polypeptides with apparent molecular weights of 125,000, 99,000, 83,000, 67,000, and 43,000. The extent of labeling depended on the photolabile derivative employed. In jejunal brush-border membrane vesicles, polypeptides with apparent molecular weights of 125,000, 94,000, 83,000, 67,000, and 43,000 were labeled. The results indicate that the binding polypeptides involved in bile salt transport in ileal brush-border membrane vesicles are 1) similar with one exception to those concerned with bile salt transport in jejunal brush-border membranes, and 2) markedly different from those previously shown to be concerned with bile salt transport in plasma membranes of hepatocytes.  相似文献   

14.
The sensitivity of the fluorescent dye, 3,3′-diethylthiadicarbocyanine (DiS-C2(5)), was too low for the detection of membrane potential changes in rat small intestinal membrane vesicles. Only after adding LaCl3 or after fractionation of the intestinal membranes by free-flow electrophoresis could the dye be used to monitor electrogenic Na+-dependent transport systems. It is concluded that the response of this potential-sensitive dye is influenced by the negative surface charge density of the vesicles.  相似文献   

15.
Proton pathways in rat renal brush-border and basolateral membranes   总被引:7,自引:0,他引:7  
The quenching of acridine orange fluorescence was used to monitor the formation and dissipation of pH gradients in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. The fluorescence changes of acridine orange were shown to be sensitive exclusively to transmembrane delta pH and not to membrane potential difference. In brush-border membrane vesicles, an Na+ (Li+)-H+ exchange was confirmed. At physiological Na+ concentrations, 40-70% of Na+-H+ exchange was mediated by the electroneutral Na+-H+ antiporter; the remainder consisted of Na+ and H+ movements through parallel conductive pathways. Both modes of Na+-H+ exchange were saturable, with half-maximal rates at about 13 and 24 mM Na+, respectively. Besides a Na+ gradient, a K+ gradient was also able to produce an intravesicular acidification, demonstrating conductance pathways for H+ and K+ in brush-border membranes. Experiments with Cl- or SO2-4 gradients failed to demonstrate measurable Cl--OH- or SO2-4-OH- exchange by an electroneutral antiporter in brush-border membrane vesicles; only Cl- conductance was found. In basolateral membrane vesicles, neither Na+(Li+)-H+ exchange nor Na+ or K+ conductances were found. However, in the presence of valinomycin-induced K+ diffusion potential, H+ conductance of basolateral membranes was demonstrated, which was unaffected by ethoxzolamide and 4,4'-diisothiocyanostilbene-2,2-disulfonic acid. A Cl- conductance of the membranes was also found, but antiporter-mediated electroneutral Cl--OH- or SO2-4-OH- exchange could not be detected by the dye method. The restriction of the electroneutral Na+-H+ exchanger to the luminal membrane can explain net secretion of protons in the mammalian proximal tubule which leads to the reabsorption of bicarbonate.  相似文献   

16.
We have previously shown that anacardic acid has an uncoupling effect on oxidative phosphorylation in rat liver mitochondria using succinate as a substrate (Life Sci. 66 (2000) 229-234). In the present study, for clarification of the physicochemical characteristics of anacardic acid, we used a cyanine dye (DiS-C3(5)) and 9-aminoacridine (9-AA) to determine changes of membrane potential (DeltaPsi) and pH difference (DeltapH), respectively, in a liposome suspension in response to the addition of anacardic acid to the suspension. The anacardic acid quenched DiS-C3(5) fluorescence at concentrations higher than 300 nM, with the degree of quenching being dependent on the log concentration of the acid. Furthermore, the K(+) diffusion potential generated by the addition of valinomycin to the suspension decreased for each increase in anacardic acid concentration used over 300 nM, but the sum of the anacardic acid- and valinomycin-mediated quenching was additively increasing. This indicates that the anacardic acid-mediated quenching was not due simply to increments in the K(+) permeability of the membrane. Addition of anacardic acid in the micromolar range to the liposomes with DeltaPsi formed by valinomycin-K(+) did not significantly alter 9-AA fluorescence, but unexpectedly dissipated DeltaPsi. The DeltaPsi preformed by valinomycin-K(+) decreased gradually following the addition of increasing concentrations of anacardic acid. The DeltaPsi dissipation rate was dependent on the pre-existing magnitude of DeltaPsi, and was correlated with the logarithmic concentration of anacardic acid. Furthermore, the initial rate of DeltapH dissipation increased with logarithmic increases in anacardic acid concentration. These results provide the evidence for a unique function of anacardic acid, dissimilar to carbonylcyanide p-trifluoromethoxyphenylhydrazone or valinomycin, in that anacardic acid behaves as both an electrogenic (negative) charge carrier driven by DeltaPsi, and a 'proton carrier' that dissipates the transmembrane proton gradient formed.  相似文献   

17.
Biotin transport was studied using brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex. An inwardly directed Na+ gradient stimulated biotin uptake into brush-border membrane vesicles and a transient accumulation of the anion against its concentration gradient was observed. In contrast, uptake of biotin by basolateral membrane vesicles was found to be Na+-gradient insensitive. Generation of a negative intravesicular potential by valinomycin-induced K+ diffusion potentials or by the presence of Na+ salts of anions of different permeabilities enhanced biotin uptake by brush-border membrane vesicles, suggesting an electrogenic mechanism. The Na+ gradient-dependent uptake of biotin into brush-border membrane vesicles was saturable with an apparent Km of 28 microM. The Na+-dependent uptake of tracer biotin was significantly inhibited by 50 microM biotin, and thioctic acid but not by 50 microM L-lactate, D-glucose, or succinate. Finally, the existence in both types of membrane vesicles of a H+/biotin- cotransport system could not be demonstrated. These results are consistent with a model for biotin reabsorption in which the Na+/biotin- cotransporter in luminal membranes provides the driving force for uphill transport of this vitamin.  相似文献   

18.
Characteristics of succinate transport were determined in basolateral and brush-border membrane vesicles (BLMV and BBMV, respectively) isolated in parallel from rabbit renal cortex. The uptake of succinate was markedly stimulated by the imposition of an inwardly directed Na+ gradient, showing an "overshoot" phenomenon in both membrane preparations. The stimulation of succinate uptake by an inwardly directed Na+ gradient was not significantly affected by pH clamp or inhibition of Na(+)-H+ exchange. The Na(+)-dependent and -independent succinate uptakes were not stimulated by an outwardly directed pH gradient. The Na dependence of succinate uptake exhibited sigmoidal kinetics, with Hill coefficients of 2.17 and 2.38 in BLMV and BBMV, respectively. The Na(+)-dependent succinate uptake by BLMV and BBMV was stimulated by a valinomycin-induced inside-negative potential. The Na(+)-dependent succinate uptake by BLMV and BBMV followed a simple Michaelis-Menten kinetics, with an apparent Km of 22.20 +/- 4.08 and 71.52 +/- 0.14 microM and a Vmax of 39.0 +/- 3.72 and 70.20 +/- 0.96 nmol/(mg.min), respectively. The substrate specificity and the inhibitor sensitivity of the succinate transport system appeared to be very similar in both membranes. These results indicate that both the renal brush-border and basolateral membranes possess the Na(+)-dependent dicarboxylate transport system with very similar properties but with different substrate affinity and transport capacity.  相似文献   

19.
ACTH-lipid interactions were investigated by: (1) lipid-monolayer studies using several zwitterionic and anionic phospholipids and gangliosides, (2) permeability experiments by following the swelling rate of liposomes in isotonic glycerol solutions by light scattering, using liposomes of synthetic lipids and liposomes made of lipids extracted from light synaptic plasma membranes, and (3) by steady-state fluorescence anisotropy measurements on liposomes derived from light synaptic plasma membranes employing 1,6-diphenyl-1,3,5-hexatriene as fluorescent probe. (1) The monolayer experiments demonstrated an interaction with gangliosides GT1, GM1, dioleoylphosphatidic acid and phosphatidylserine, but little or no interaction with phosphatidylcholine or sphingomyelin. The interaction with monolayers of GT1 or phosphatidic acid decreased for ACTH1-13-NH2 and ACTH1-10. (2) The liposome experiments showed that 2 X 10(-5) M ACTH1-24 increased the glycerol permeability by 20% and decreased the activation energy only when liposomes derived from light synaptic plasma membranes were used. Treatment of the liposomes with neuraminidase abolished the ACTH-induced permeability increase. (3) Steady-state fluorescence depolarization measurements revealed that ACTH1-24, ACTH1-16-NH2 and ACTH1-10 did not change the fluidity of liposomes derived from light synaptic plasma membranes as sensed by diphenylhexatriene. It is concluded that ACTH1-24 can bind to negatively charged lipids and can form an amphipathic helix aligned parallel to the membrane surface involving the N-terminal residues 1 to 12, possibly to 16. Polysialogangliosides will favorably meet the condition of a high local surface charge density under physiological circumstances. It is suggested that ACTH-ganglioside interactions will participate in ACTH-receptor interactions.  相似文献   

20.
The uptake of the alpha-aminocephalosporin cephalexin into brush-border membrane vesicles from rat renal cortex was independent on an inward H+-gradient in contrast to the intestinal transport system. The transport system could be irreversibly inhibited by photoaffinity labeling. Two binding polypeptides for beta-lactam antibiotics and dipeptides with apparent molecular weights 130,000 and 95,000 were identified by photoaffinity labeling with [3H]benzylpenicillin and N-(4-azido[3,5-3H]benzoyl) derivatives of cephalexin and glycyl-L-proline. The uptake of cephalexin and the labeling of the respective binding proteins was inhibited by beta-lactam antibiotics and dipeptides as with intestinal brush-border membranes. These data indicate that the transport systems for beta-lactam antibiotics and dipeptides in the brush-border membrane from rat kidney and small intestine are similar but not identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号