首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene associated with cystic fibrosis (CF) encodes a membrane-associated, N-linked glycoprotein called CFTR. Mutations were introduced into CFTR at residues known to be altered in CF chromosomes and in residues believed to play a role in its function. Examination of the various mutant proteins in COS-7 cells indicated that mature, fully glycosylated CFTR was absent from cells containing delta F508, delta 1507, K464M, F508R, and S5491 cDNA plasmids. Instead, an incompletely glycosylated version of the protein was detected. We propose that the mutant versions of CFTR are recognized as abnormal and remain incompletely processed in the endoplasmic reticulum where they are subsequently degraded. Since mutations with this phenotype represent at least 70% of known CF chromosomes, we argue that the molecular basis of most cystic fibrosis is the absence of mature CFTR at the correct cellular location.  相似文献   

2.
Human UDP-galactose transporter (hUGT1) and CMP-sialic acid transporter (hCST) are related Golgi proteins with eight putative transmembrane helices predicted by computer analysis. We constructed chimeric molecules in which segments of various lengths from the C- or N-terminus of hUGT1 were replaced by corresponding portions of hCST. The chimeras were transiently expressed in UGT-deficient mutant Lec8 cells, and their UGT activity was assessed by the binding of GS-II lectin to the transfected cells. The replacement of either the N- or C-terminal cytoplasmic segment by that of hCST did not affect the expression or activity of hUGT1. A chimera in which the eighth helix and the C-terminal tail were replaced also retained the UGT activity, indicating that this helix is not involved in the determination of substrate specificity. In contrast, three types of chimeras, in which the first helix, the first and the second helices, and a segment from the seventh helix to the C-terminus were replaced, respectively, were expressed very infrequently in the transfected cells, and had no UGT activity. They are likely folded incorrectly and degraded by a quality-control system, since the amounts of their mRNAs were normal and the proteins were mainly localized in the ER. The first and the seventh helices are important for the stability of the transporter protein.  相似文献   

3.
A temperature-sensitive mutant (ts3) of Newcastle disease virus was physiologically characterized. All major viral structural proteins were synthesized at the permissive (37 degrees C) and nonpermissive (42 degrees C) temperatures, but the fusion (F) glycoprotein was not cleaved at 42 degrees C. In immunocytochemical electron microscopy, the F protein was abundant in the rough endoplasmic reticulum but not in cytoplasmic membrane at 42 degrees C. Noninfectious hemagglutinating virus particles containing all major structural proteins except the F protein were released at 42 degrees C from infected cells. We concluded that the defect in ts3 resides in the intracellular processing of the F protein.  相似文献   

4.
Defects in human leukocyte antigen class I antigen processing machinery (APM) component expression can have a negative impact on the clinical course of tumors and the response to T cell-based immunotherapy. Since brain metastases of breast cancer are of increasing clinical significance, the APM component expression levels and CD8(+) T cell infiltration patterns were analyzed in primary breast and metastatic brain lesions of breast cancer by immunohistochemistry. Comparison of unpaired 50 primary and 33 brain metastases showed lower expression of β2-microglobulin, transporter associated with antigen processing (TAP) 1, TAP2 and calnexin in the brain lesions. Although no significant differences were found in APM component scores between primary breast and brain lesions in 15 paired cases, primary breast lesions of which patients eventually developed brain metastases showed lower levels of β2-microglobulin, TAP1 and calnexin compared with breast lesions without known brain metastases. The extent of CD8(+) T cell infiltration was significantly higher in the lesions without metastasis compared with the ones with brain metastases, and was positively associated with the expression of TAP1 and calnexin. Furthermore, mouse tumor cells stably transfected with silencing hairpin (sh)RNA for TAP1 demonstrated a decreased susceptibility to cytotoxic T lymphocytes in vitro and enhanced spontaneous brain metastasis in vivo. These data support the functional significance of TAP1 expression in tumor cells. Taken together, our data suggest that patients with low or defective TAP1 or calnexin in primary breast cancers may be at higher risks for developing brain metastasis due to the defects in T cell-based immunosurveillance.  相似文献   

5.
The cystic fibrosis transmembrane conductance regulator (CFTR) is transported to the plasma membrane from endoplasmic reticulum (ER) through the Golgi. Crucial to these trafficking events is the role of not only the proteinous factors but also the membrane lipids. However, the involvement of lipids, such as phospholipids, on the regulation of CFTR trafficking has been largely unexplored. Here, we show that the inhibition of phospholipase D (PLD)-mediated phosphatidic acid (PA) formation by 1-butanol inhibited the maturation and export of CFTR from the ER. Exogenously added PA reversed these effects. Moreover, knock down of PLD1 by small interfering RNA decreased the expression of mature CFTR. Interestingly, sustaining the level of PA, by the addition of excess PA in the presence of PA phosphatase inhibitor, attenuated the transport of CFTR from the Golgi to plasma membrane and the retrograde transport of DeltaF508 CFTR to the cytoplasm, a necessary step for the ER-associated degradation of DeltaF508 CFTR. These results indicated that the metabolism of PA modulated the intracellular dynamics and trafficking of CFTR.  相似文献   

6.
《The Journal of cell biology》1994,125(6):1225-1237
We have compared the intracellular transport and subcellular distribution of MHC class II-invariant chain complexes in a wild-type HLA-DR3 homozygous cell line and a mutant cell line, T2.DR3. The latter has a defect in antigen processing and accumulates HLA-DR3 molecules associated with an invariant chain-derived peptide (CLIP) rather than the normal complement of peptides derived from endocytosed proteins. We find that in the wild-type cells, CLIP is transiently associated with HLA-DR3 molecules, suggesting that the peptide is a normal class II- associated intermediate generated during proteolysis of the invariant chain. In the mutant cell line proteolysis of the invariant chain is less efficient, and HLA-DR3/CLIP complexes are generated much more slowly. Examination of the mutant cell line by immunoelectronmicroscopy shows that class II-invariant chain complexes accumulate intracellularly in large acidic vesicles which contain lysosomal markers, including beta-hexosaminidase, cathepsin D, and the lysosomal membrane protein CD63. The markers in these vesicles are identical to those seen in the class II-containing vesicles (MIICs) seen in the wild- type cells but the morphology is drastically different. The vesicles in the mutant cells are endocytic, as measured by the internalization of BSA-gold conjugates. The implication of these findings for antigen processing in general and the nature of the mutation in particular are discussed.  相似文献   

7.
Emerging porcine models of cystic fibrosis (CF) are expected to mimic the human disease more closely than current mouse models do. However, little is known of the tissue and cellular expression patterns of the porcine CF transmembrane conductance regulator (pCFTR) and possible differences from human CFTR (hCFTR). Here, the expression pattern of pCFTR was systematically established on the mRNA and protein levels. Using specific anti-pCFTR antibodies, the majority of the protein was immunohistochemically detected on paraffin-embedded sections and on cryostate sections in the apical cytosol of intestinal crypt epithelial cells, nasal, tracheal, and bronchial epithelial cells, and other select, mostly glandular epithelial cells. Confocal laser scanning microscopy with co-localization of the Golgi marker 58K localized the protein in the cytosol between the Golgi apparatus and the apical cell membrane with occasional punctate or diffuse staining of the apical membrane. The tissue and cellular distribution patterns were confirmed by RT-PCR from whole tissue lysates or select cells after laser capture microdissection. Thus, expression of pCFTR was found to largely resemble that of hCFTR except for the kidney, brain, and cutaneous glands, which lack expression in pigs. Species-specific differences between pCFTR and hCFTR may become relevant for future interpretations of the CF phenotype in pig models. (J Histochem Cytochem 58:785–797, 2010)  相似文献   

8.
9.
M J Gething  K McCammon  J Sambrook 《Cell》1986,46(6):939-950
The hemagglutinin of influenza virus is synthesized as a monomeric subunit that is cotranslationally translocated across the membrane of the rough endoplasmic reticulum. We show that folding and assembly of hemagglutinin monomers into trimeric structures takes approximately 7-10 min and is completed before the protein leaves the endoplasmic reticulum. Mutants of hemagglutinin that fail to be transported from the endoplasmic reticulum are blocked at different stages of the folding pathway. Unfolded molecules of hemagglutinin are associated with a cellular protein of 77 kd that has been shown previously to bind to IgG heavy chain in the endoplasmic reticulum of certain myelomas. We discuss why assembly of native structures is required for transport of proteins through the exocytotic pathway.  相似文献   

10.
Martynova MIu  Isaev DA  Koniukhov BV 《Genetika》2002,38(11):1511-1517
The mutant gene wellhaaring (we) confers the waved coat in mice, which is most pronounced in homozygotes at 10 to 21 days of postnatal development. Abnormal hair growth and structure in the we/we mutant mice results from defective cell differentiation in the inner root sheath of a hair follicle. To localize the site of the we gene action, we obtained ten chimeric mice by aggregation of the early C57BL/6-2we/we and BALB/c embryos. The chimera coat was waved, shaggy, or almost normal depending on the percentage of the mutant component. In the we/we +/+ chimeric animals of the first generation (G1) aged 21 days, both mutant and normal hair phenotypes were observed, which was especially discernible in zigzag hair. Note that none of the chimeras exhibited the alternating patterns of transversely oriented stripes or patches of either mutant or normal hair; i.e., they had a mixed parental hair phenotype. We also did not observe the animals with an intermediate phenotype, which suggests a discontinuous hair formation in chimeras according to the "all or nothing" principle. The data obtained indicate that the dermal papilla cells of a hair follicle are the sites for the we gene action. During the embryonic development, dermal cells are strongly mixed, which accounts for the lack of the clear-cut transverse stripes of either mutant or normal hair. The mutant gene we is probably responsible for a disrupted induction signal from the dermal papilla towards ectodermal cells of a hair follicle.  相似文献   

11.
The influence of N-glycosylation and subcellular compartmentation on various characteristics of a vacuolar glycoprotein is described. One member of the patatin gene family was investigated as a model system. Different glycosylation mutants obtained by destroying the consensus site Asn-X-Ser/Thr by oligonucleotide-directed mutagenesis were expressed in leaves of transgenic tobacco plants under the control of a light-inducible promoter. The various patatin glycomutants retained their properties in comparison with the wild-type protein with respect to protein stability, subcellular compartmentation, enzymatic activity, and various physicochemical properties studied showing the N-glycosylation not to be essential for any of these characteristics. To test the importance of the cotranslational transport and the subcellular (vacuolar) location for the properties of the patatin protein, another mutant was constructed in which the signal peptide was deleted, leading to its synthesis and accumulation in the cytosol. Biochemical analysis of this protein in comparison with its vacuolar form again revealed no significant differences with respect to its enzymatic activity or its stability in normal vegetative cells. During seed development, however, the cytoplasmic form was more stable than the vacuolar form, indicating the appearance of proteases specific for the protein bodies of developing seeds.  相似文献   

12.
A variety of signalling molecules has been implicated over the past 8 years in the regulation of intracellular transport pathways. Those molecules include heterotrimeric GTP binding proteins, members of the protein kinase C family, and members of the Rho subfamily of small GTPases. Until recently, no common theme among the three classes of regulators was apparent. The finding that all three can influence the activity of phospholipase D (PLD), and the fact that members of the Arf subfamily of GTPases (with established roles in intracellular transport) are potent activators of PLD suggests the hypothesis that PLD is a focal point for integration of cellular responses to hormone signalling and for membrane homeostasis. Work during the past 2 years is beginning to uncover some transport pathways where PLD involvement is inferred. It is proposed that, if signalling is required to monitor and adjust transport rates to and from the various membrane organelles, the most economical way to achieve this would be to regulate recycling and allow the concentration of cargo receptors to determine forward transport. BioEssays 20 :495–504, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

13.
14.
Medullary cystic kidney disease/familial juvenile hyperuricemic nephropathy (MCKD/FJHN) are autosomal dominant renal disorders characterized by tubulo-interstitial fibrosis, hyperuricemia and medullary cysts. They are caused by mutations in the gene encoding uromodulin, the most abundant protein in urine. Uromodulin (or Tamm-Horsfall protein) is a glycoprotein that is exclusively expressed by epithelial tubular cells of the thick ascending limb of Henle's loop and distal convoluted tubule. To date, 37 different uromodulin mutations have been described in patients with MCKD/FJHN. Interestingly, 60% of them involve one of the 48 conserved cysteine residues. We have previously shown that cysteine-affecting mutations could lead to partial endoplasmic reticulum (ER) retention. In this study, as a further step in understanding uromodulin biology in health and disease, we provide the first extensive study of intracellular trafficking and subcellular localization of wild-type and mutant uromodulin isoforms. We analyzed a set of 12 different uromodulin mutations that were representative of the different kind of mutations identified so far by different experimental approaches (immunofluorescence, electron microscopy, biochemistry and in vivo imaging) in transiently transfected HEK293 and Madin-Darby canine kidney cells. We assessed protein processing in the secretory pathway and could demonstrate that although to different extent, all uromodulin mutations lead to defective ER to Golgi protein transport, suggesting a common pathogenetic mechanism in MCKD/FJHN.  相似文献   

15.
Proteasome degradation of endoplasmic reticulum (ER)-misfolded proteins requires retrograde transport from ER to the cytosol. To date, it is not clear whether this event constitutes the exclusive ER degradation process for non-native membrane proteins. Here we describe the role of GTP in the degradation of DeltaF508-CFTR and the alpha subunit of the T-cell receptor (TCRalpha), representative misfolded ER membrane proteins. Selective intracellular GTP depletion extended the DeltaF508-CFTR half-life sixfold, whereas ATP depletion accelerated its turnover and inhibited only 80% of the proteasome activity that was not affected by GTP depletion. AlF(4)(-), a well-known inhibitor of heterotrimeric G proteins, but not of AlF(3), delayed the mutant CFTR turnover in vivo, in semi-intact cells and in ER-enriched microsomes, without affecting ER to Golgi cargo transport. DeltaF508-CFTR degradation was also inhibited by alkaline stripping of ER-associated membrane proteins. We propose that at the ER, GTP may participate in the disposal of misfolded membrane proteins through activation of heterotrimeric G proteins.  相似文献   

16.
17.
To determine how changing forms of class II major histocompatibility complex proteins and associated Ii molecules in intracellular compartments of human B lymphocytes might regulate or catalyze antigen processing or presentation, we analyzed immunoprecipitates of such molecules from subcellular fractions of [35S]methionine pulse-chase-labeled, 3-day-activated B lymphocytes after homogenization and distribution in Percoll density gradients. Two-dimensional gel electrophoresis of immunoprecipitates of subcellular fractions demonstrated: 1) progressive sialic acid addition to class II major histocompatibility complex beta chains and Ii but not to gamma 2, gamma 2', gamma 3, gamma 3' (p35), or p41 and its satellites; 2) association of p35 and p41 with class II complexes at 30-60 min after pulse labeling; 3) cleavage of an immature form of Ii without sialic acid at 15-30 min after pulse labeling to a COOH-terminal, 25,000-dalton fragment, p25, with a 60-90-min half-life; 4) the presence of Ii-related p29 at only 30-min chase times; 5) an effect of chloroquine or monensin, at maximal nontoxic doses, to increase (a) the time for associations of p35 and p41 with class II complexes and (b) the half-life of p25, which was then formed from Ii at reduced levels. In addition, while the half-lives of class II alpha and beta chains and Ii were comparable within intracellular fractions of any one density, in intracellular fractions of intermediate densities the complexes appeared to be longer lived (much greater than 6 h) than in lighter fractions (2-3-h half-lives).  相似文献   

18.
Parasites of the Leishmania genus are the causative agents of a complex disease called leishmaniasis. Many activities of infected cells including their responses to a range of stimuli are modulated by Leishmania parasites. This review will profile some of the parasite molecules that target host cell processes for which there has been recent progress.  相似文献   

19.
The production of recombinant antibodies has been generally recognized as time-consuming and labor-intensive. The aim of our study is to construct mammalian expression vectors containing the cDNA encoding the human constant regions and murine variable regions to massively and cost-effectively produce full-length chimeric antibodies. Unique restriction sites flanking the Ig variable region were designed to allow for the replacement of variable regions generated by PCR. Western blot analysis of the chimeric antibodies revealed that the expressed products were of the predicted size, structure and specificity. The usefulness of the vectors was confirmed by construction of human-mouse chimeric antibody-HCAb which secretes murine antibody against the human colorectal cancer. Selected in medium containing gradually increasing methotrexate (MTX), clones with increased expression of the product gene can be efficiently generated. The secretion of recombinant chimeric antibody-HCAb yielded 30 pg cell(-1) day(-1) at 10(-6 )M MTX. With this high-level expression from pools, the convenient and rapid production of over 100 milligram amounts per liter of recombinant antibodies may be achieved, which indicates the significant roles of pYR-GCEVH and pYR-GCEVL in the production of chimeric antibodies.  相似文献   

20.
Expression vectors for streptavidin-containing chimeric proteins   总被引:8,自引:0,他引:8  
We have constructed expression vectors for streptavidin-containing chimeric proteins. These vectors carry the DNA sequence corresponding to the core region of the streptavidin molecule, and have several unique cloning sites which facilitate construction of gene fusions of streptavidin with a target protein. A chimeric protein of streptavidin and the target protein should be expressible in Escherichia coli by using the T7 expression system. Because of the strong and specific biotin-binding affinity of the streptavidin moiety, such streptavidin-containing chimeric proteins should extensively expand the applications of the streptavidin-biotin system, and offer a variety of applications as new biological tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号