首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
SET domain lysine methyltransferases (KMTs) are S-adenosylmethionine (AdoMet)-dependent enzymes that catalyze the site-specific methylation of lysyl residues in histone and non-histone proteins. Based on crystallographic and cofactor binding studies, carbon-oxygen (CH · · · O) hydrogen bonds have been proposed to coordinate the methyl groups of AdoMet and methyllysine within the SET domain active site. However, the presence of these hydrogen bonds has only been inferred due to the uncertainty of hydrogen atom positions in x-ray crystal structures. To experimentally resolve the positions of the methyl hydrogen atoms, we used NMR (1)H chemical shift coupled with quantum mechanics calculations to examine the interactions of the AdoMet methyl group in the active site of the human KMT SET7/9. Our results indicated that at least two of the three hydrogens in the AdoMet methyl group engage in CH · · · O hydrogen bonding. These findings represent direct, quantitative evidence of CH · · · O hydrogen bond formation in the SET domain active site and suggest a role for these interactions in catalysis. Furthermore, thermodynamic analysis of AdoMet binding indicated that these interactions are important for cofactor binding across SET domain enzymes.  相似文献   

3.
4.
Expression and methylation patterns of genes encoding DNA methyltransferases and their functionally related proteins were studied in organs of Arabidopsis thaliana plants. Genes coding for the major maintenance-type DNA methyltransferases, MET1 and CMT3, and the major de novo-type DNA methyltransferase, DRM2, are actively expressed in all organs. Similar constitutively active expression was observed for genes encoding their functionally related proteins, a histone H3K9 methyltransferase KYP and a catalytically non-active protein DRM3. Expression of the MET1 and CMT3 genes is significantly lower in developing endosperm compared with embryo. Vice versa, expression of the MET2a, MET2b, MET3, and CMT2 genes in endosperm is much more active compared with embryo. A special maintenance DNA methylation system seems to operate in endosperm. The DNMT2 and N6AMT genes encoding putative methyltransferases are constitutively expressed at low levels. CMT1 and DRM1 genes are expressed rather weakly in all investigated organs. Most of the studied genes have methylation patterns conforming to the “body-methylated gene” prototype. A peculiar feature of the MET family genes is methylation at all three possible site types (CG, CHG, and CHH). The most weakly expressed among genes of their respective families, CMT1 and DRM1, are practically unmethylated. The MET3 and N6AMT genes have unusual methylation patterns, promoter region, and most of the gene body devoid of any methylation, and the 3'-end proximal part of the gene body is highly methylated.  相似文献   

5.
Zhang X  Bruice TC 《Biochemistry》2007,46(51):14838-14844
Molecular dynamics (MD) simulations and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations have been carried out in an investigation of histone lysine methyltransferase (SET7/9). Proton dissociation (SET7/9.Lys4-NH3+.AdoMet --> SET7/9.Lys4-NH2.AdoMet + H+) must be prior to the methylation by S-adenosylmethionine (AdoMet). We find that a water channel is formed to allow escape of the proton to solvent. The water channel appears in the presence of AdoMet, but is not present in the species SET7/9.Lys4-NH3+ or SET7/9.Lys4-N(Me)H2+.AdoHcy. A water channel is not formed in the ground state of SET7/9.Lys4-N(Me)H2+.AdoMet, and the second methyl transfer does not occur. The structure of SET7/9.Lys4-N(Me)H2+.AdoMet includes a greater distance (6.1 +/- 0.3 A) between Cgamma(AdoMet) and N(MeLys4) than is present in SET7/9.Lys4-NH3+.AdoMet (5.7 +/- 0.2 A). The electrostatic interactions between the positive charges on AdoMet and SET7/9.Lys4-NH3+ decrease the pKa of the latter from 10.9 +/- 0.4 to 8.2 +/- 0.6, and this is not seen in the SET7/9.Lys4-N(Me)H2+.AdoMet species. The formation, or not, of a water channel, the distance between Sdelta(AdoMet) and N(Lys4), and the angle Sdelta(AdoMet)-Cgamma(AdoMet)-N(Lys4) determine whether methyl transfer can occur. By QM/MM, the calculated free energy barrier of the methyl transfer reaction in the SET7/9 [Lys4-NH2 + AdoMet --> Lys4-N(Me)H2+ + AdoHcy] complex is DeltaG++ = 19.0 +/- 1.6 kcal/mol. This DeltaG++ is in agreement with the value of 20.9 kcal/mol calculated from the experimental rate constant (0.24 min(-1)).  相似文献   

6.
7.
8.
Nuclear factor kappa-B (NF-kappaB)-regulated inflammatory genes, such as TNF-alpha (tumor necrosis factor-alpha), play key roles in the pathogenesis of inflammatory diseases, including diabetes and the metabolic syndrome. However, the nuclear chromatin mechanisms are unclear. We report here that the chromatin histone H3-lysine 4 methyltransferase, SET7/9, is a novel coactivator of NF-kappaB. Gene silencing of SET7/9 with small interfering RNAs in monocytes significantly inhibited TNF-alpha-induced inflammatory genes and histone H3-lysine 4 methylation on these promoters, as well as monocyte adhesion to endothelial or smooth muscle cells. Chromatin immunoprecipitation revealed that SET7/9 small interfering RNA could reduce TNF-alpha-induced recruitment of NF-kappaB p65 to inflammatory gene promoters. Inflammatory gene induction by ligands of the receptor for advanced glycation end products was also attenuated in SET7/9 knockdown monocytes. In addition, we also observed increased inflammatory gene expression and SET7/9 recruitment in macrophages from diabetic mice. Microarray profiling revealed that, in TNF-alpha-stimulated monocytes, the induction of 25% NF-kappaB downstream genes, including the histone H3-lysine 27 demethylase JMJD3, was attenuated by SET7/9 depletion. These results demonstrate a novel role for SET7/9 in inflammation and diabetes.  相似文献   

9.
10.
11.
Ge X  Yin L  Ma H  Li T  Chiang JY  Zhang Y 《Journal of lipid research》2011,52(8):1561-1568
Aldo-keto reductase 1B7 (AKR1B7) is proposed to play a role in detoxification of by-products of lipid peroxidation. In this article, we show that activation of the nuclear receptor farnesoid X receptor (FXR) induces AKR1B7 expression in the liver and intestine, and reduces the levels of malondialdehyde (MDA), the end product of lipid peroxidation, in the intestine but not in the liver. To determine whether AKR1B7 regulates MDA levels in vivo, we overexpressed AKR1B7 in the liver. Overexpression of AKR1B7 in the liver had no effect on hepatic or plasma MDA levels. Interestingly, hepatic expression of AKR1B7 significantly lowered plasma glucose levels in both wild-type and diabetic db/db mice, which was associated with reduced hepatic gluconeogenesis. Hepatic expression of AKR1B7 also significantly lowered hepatic triglyceride and cholesterol levels in db/db mice. These data reveal a novel function for AKR1B7 in lipid and glucose metabolism and suggest that AKR1B7 may not play a role in detoxification of lipid peroxides in the liver. AKR1B7 may be a therapeutic target for treatment of fatty liver disease associated with diabetes mellitus.  相似文献   

12.
13.
14.
15.
p53 is the central regulator of cell fate following genotoxic stress and oncogene activation. Its activity is controlled by several posttranslational modifications. Originally defined as a critical layer of p53 regulation in human cell lines, p53 lysine methylation by Set7/9 (also called Setd7) was proposed to fulfill a similar function in?vivo in the mouse, promoting p53 acetylation, stabilization, and activation upon DNA damage (Kurash et?al., 2008). We tested the physiological relevance of this circuit in an independent Set7/9 knockout mouse strain. Deletion of Set7/9 had no effect on p53-dependent cell-cycle arrest or apoptosis following sublethal or lethal DNA damage induced by radiation or genotoxic agents. Set7/9 was also dispensable for p53 acetylation following irradiation. c-myc oncogene-induced apoptosis was also independent of Set7/9, and analysis of p53 target genes showed that Set7/9 is not required for the p53-dependent gene expression program. Our data indicate that Set7/9 is dispensable for p53 function in the mouse.  相似文献   

16.
Feedback regulation of DNA methyltransferase gene expression by methylation.   总被引:10,自引:0,他引:10  
This paper tests the hypothesis that expression of the DNA methyltransferase, dnmt1, gene is regulated by a methylation-sensitive DNA element. Methylation of DNA is an attractive system for feedback regulation of DNA methyltransferase as the final product of the reaction, methylated DNA, can regulate gene expression in cis. We show that an AP-1-dependent regulatory element of dnmt1 is heavily methylated in most somatic tissues and in the mouse embryonal cell line, P19, and completely unmethylated in a mouse adrenal carcinoma cell line, Y1. dnmt1 is highly over expressed in Y1 relative to P19 cell lines. Global inhibition of DNA methylation in P19 cells by 5-azadeoxycytidine results in demethylation of the AP-1 regulatory region and induction of dnmt1 expression in P19cells, but not Y1 cells. We propose that this regulatory region of dnmt1 acts as a sensor of the DNA methylation capacity of the cell. These results provide an explanation for the documented coexistence of global hypomethylation and high levels of DNA methyltransferase activity in many cancer cells and for the carcinogenic effect of hypomethylating diets.  相似文献   

17.
18.
19.

Background  

UV irradiation activates the epidermal growth factor receptor, induces Egr1 expression and promotes apoptosis in a variety of cell types. We examined the hypothesis that Egr1 regulates genes that mediate this process by use of a chip-on-chip protocol in human tumorigenic prostate M12 cells.  相似文献   

20.
Gene silencing by targeted DNA methylation has potential applications in basic research and therapy. To establish targeted methylation in human cell lines, the catalytic domains (CDs) of mouse Dnmt3a and Dnmt3b DNA methyltransferases (MTases) were fused to different DNA binding domains (DBD) of GAL4 and an engineered Cys2His2 zinc finger domain. We demonstrated that (i) Dense DNA methylation can be targeted to specific regions in gene promoters using chimeric DNA MTases. (ii) Site-specific methylation leads to repression of genes controlled by various cellular or viral promoters. (iii) Mutations affecting any of the DBD, MTase or target DNA sequences reduce targeted methylation and gene silencing. (iv) Targeted DNA methylation is effective in repressing Herpes Simplex Virus type 1 (HSV-1) infection in cell culture with the viral titer reduced by at least 18-fold in the presence of an MTase fused to an engineered zinc finger DBD, which binds a single site in the promoter of HSV-1 gene IE175k. In short, we show here that it is possible to direct DNA MTase activity to predetermined sites in DNA, achieve targeted gene silencing in mammalian cell lines and interfere with HSV-1 propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号