首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of cGMP signaling elements in the Grueneberg ganglion   总被引:1,自引:0,他引:1  
The Grueneberg ganglion (GG) is a cluster of neurons localized to the vestibule of the anterior nasal cavity. Based on axonal projections to the olfactory bulb of the brain, as well as expression of olfactory receptors and the olfactory marker protein, it is considered a chemosensory subsystem. Recently, it was observed that in mice, GG neurons respond to cool ambient temperatures. In mammals, coolness-induced responses in highly specialized neuronal cells are supposed to rely on the ion channel TRPM8, whereas in thermosensory neurons of the nematode worm Caenorhabditis elegans, detection of environmental temperature is mainly mediated by cyclic guanosine monophosphate (cGMP) pathways, in which cGMP is generated by transmembrane guanylyl cyclases. To unravel the molecular mechanisms underlying coolness-induced responses in GG neurons, potential expression of TRPM8 in the murine GG was investigated; however, no evidence was found that this ion channel is present in the GG. By contrast, a substantial number of GG neurons was observed to express the transmembrane guanylyl cyclase subtype GC-G. In the nose, GC-G expression appears to be confined to the GG since it was not detectable in other nasal compartments. In the GG, coolness-stimulated responses are only observed in neurons characterized by the expression of the olfactory receptor V2r83. Interestingly, expression of GC-G in the GG was found in this V2r83-positive subpopulation but not in other GG neurons. In addition to GC-G, V2r83-positive GG cells also co-express the phosphodiesterase PDE2A. Thus, in summary, coolness-sensitive V2r83-expressing GG neurons are endowed with a cGMP cascade which might underlie thermosensitivity of these cells, similar to the cGMP pathway mediating thermosensation in neurons of C. elegans. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. J. Fleischer and K. Mamasuew contributed equally to this work.  相似文献   

2.
Based on a variety of recent findings, the Grueneberg ganglion (GG) in the vestibule of the nasal cavity is considered as an olfactory compartment. However, defined chemical substances that activate GG neurons have not been identified. In this study, the responsiveness of murine GG cells to odorants was examined by monitoring the expression of the activity-dependent gene c-Fos. Testing a number of odorous compounds, cells in the GG were found to respond to dimethylpyrazine (DMP) and a few related substances. These responses were dose-dependent and restricted to early postnatal stages. The DMP-responsive GG cells belonged to the subset of GG neurons that coexpress the signaling elements V2r83, GC-G, and CNGA3. These cells have been previously reported to respond to cool ambient temperatures as well. In fact, cool temperatures enhanced DMP-evoked responses of GG cells. These findings support the concept that the GG of neonatal mice operates as a dual sensory organ that is stimulated by both the odorous compound DMP and cool ambient temperatures.  相似文献   

3.
Neurons of the Grueneberg ganglion respond to cool temperatures as well as to distinct odorants and extend axonal processes to the olfactory bulb of the brain. Analyses of transgenic mice, in which Grueneberg ganglion neurons and their axons are labeled, revealed that these axons innervated nine distinct glomeruli distributed in a characteristic topographical pattern in dorsal, lateral, ventral, and medial regions of rather posterior areas in the bulb. To assess activation of these glomeruli (hereinafter designated as Grueneberg glomeruli) upon stimulation of Grueneberg ganglion neurons, mice were exposed to the odorant 2,3-dimethylpyrazine (2,3-DMP) and the expression of the activity-dependent marker c-Fos in juxtaglomerular cells of the relevant glomeruli was monitored. It was found that all of these glomeruli were activated, irrespective of their localization in the bulb. To verify that the activation of juxtaglomerular cells in Grueneberg glomeruli was indeed based on stimulation of Grueneberg ganglion neurons, the 2,3-DMP-induced responses in these glomeruli were investigated in mice lacking the cyclic nucleotide-gated channel CNGA3 which is critical for chemo- and thermosensory signal transduction in Grueneberg ganglion neurons. This approach revealed that elimination of CNGA3 led to a reduction of the odorant-induced activity in Grueneberg glomeruli, indicating that the activation of these glomeruli is based on a preceding stimulation of the Grueneberg ganglion. Analyzing whether Grueneberg glomeruli in the bulb might also process thermosensory information, it was found that upon exposure to coolness, Grueneberg glomeruli were activated. Investigating mice lacking CNGA3, the activation of these glomeruli by cool temperatures was attenuated.  相似文献   

4.
Cyclic AMP is the primary second messenger mediating odorant signal transduction in mammals. A number of studies indicate that cyclic GMP is also involved in a variety of other olfactory signal transduction processes, including adaptation, neuronal development, and long-term cellular responses in the setting of odorant stimulation. However, the mechanisms that control the production and degradation of cGMP in olfactory sensory neurons (OSNs) remain unclear. Here, we investigate these mechanisms using primary cultures of OSNs. We demonstrate that odorants increase cGMP levels in intact OSNs in vitro. Different from the rapid and transient cAMP responses to odorants, the cGMP elevation is both delayed and sustained. Inhibition of soluble guanylyl cyclase and heme oxygenase blocks these odorant-induced cGMP increases, whereas inhibition of cGMP PDEs (phosphodiesterases) increases this response. cGMP PDE activity is increased by odorant stimulation, and is sensitive to both ambient calcium and cAMP concentrations. Calcium stimulates cGMP PDE activity, whereas cAMP and protein kinase A appears to inhibit it. These data demonstrate a mechanism by which odorant stimulation may regulate cGMP levels through the modulation of cAMP and calcium level in OSNs. Such interactions between odorants and second messenger systems may be important to the integration of immediate and long-term responses in the setting odorant stimulation.  相似文献   

5.
Thirty-nine missense mutations, which had been identified in rod monochromacy or related disorders, in the CNGA3 subunit of cone photoreceptor cGMP-gated channels were analyzed. HEK293 cells were transfected with cDNA of the human CNGA3 subunit harboring each of these mutations in an expression vector. Patch-clamp recordings demonstrated that 32 of the 39 mutants did not show cGMP-activated current, suggesting that these 32 mutations cause a loss of function of the channels. From the remaining 7 mutants that showed cGMP-activated current, two mutations in the cyclic nucleotide-binding domain, T565M or E593K, were further studied. The half-maximal activating concentration (K(1/2)) for cGMP in the homomeric CNGA3-T565M channels (160microM) was 17.8-fold higher than that of the homomeric wild-type CNGA3 channels (9.0microM). Conversely, the K(1/2) for cGMP in the homomeric CNGA3-E593K channels (3.0microM) was 3-fold lower than that of the homomeric wild-type CNGA3 channels. These results suggest that the T565M and E593K mutations alter the apparent affinity for cGMP of the channels to cause cone dysfunction, resulting in rod monochromacy.  相似文献   

6.
Transmembrane guanylyl cyclases (GCs), with activity regulated by peptide ligands and/or calcium-binding proteins, are essential for various physiological and sensory processes. The mode of activation of the GC subtype GC-G, which is expressed in neurons of the Grueneberg ganglion that respond to cool temperatures, has been elusive. In searching for appropriate stimuli to activate GC-G, we found that its enzymatic activity is directly stimulated by cool temperatures. In this context, it was observed that dimerization/oligomerization of GC-G, a process generally considered as critical for enzymatic activity of GCs, is strongly enhanced by coolness. Moreover, heterologous expression of GC-G in cultured cells rendered these cells responsive to coolness; thus, the protein might be a sensor for cool temperatures. This concept is supported by the observation of substantially reduced coolness-induced response of Grueneberg ganglion neurons and coolness-evoked ultrasonic vocalization in GC-G-deficient mouse pups. GC-G may be a novel thermosensory protein with functional implications for the Grueneberg ganglion, a sensory organ responding to cool temperatures.  相似文献   

7.
The olfactory epithelium of fish is heterogeneous both with respect to the types of receptor cells (ORNs) present and the families of odorant receptors expressed in these cells. As a consequence of this diversity, the transduction cascade(s) activated by odorants has yet to be unambiguously established. In the current study, electrophysiological and activity-dependent labeling techniques were used to assess the role of the cyclic nucleotide-gated channel in zebrafish olfactory transduction. Both amino acid and bile salt odorants elicited robust electrophysiological responses, however, activity-dependent labeling of ORNs could be stimulated only by the amino acid odorants. An adenylate cyclase (AC) activator (forskolin) and a phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine, IBMX) also elicited robust electrophysiological responses; generally larger than the responses elicited by either the amino acid or bile salt odorants. However, neither forskolin alone or a mixture of forskolin and IBMX stimulated activity-dependent labeling. Bathing the olfactory epithelium with forskolin, which presumably increased the intracellular concentration of cAMP, reduced the responses to bile salt odorants to a significantly greater extent than amino acid odorants. Collectively, these findings suggest that the transduction of amino acid input does not rely primarily on cyclic nucleotide-gated (CNG) channel activation and that CNG channel activation may be required for the transduction of bile salt input. Copyright Copyright 1999 S. Karger AG, Basel  相似文献   

8.
《Biophysical journal》2019,116(12):2411-2422
A highly specific molecular interaction of diffusible ligands with their receptors belongs to the key processes in cellular signaling. Because an appropriate method to monitor the unitary binding events is still missing, most of our present knowledge is based on ensemble signals recorded from a big number of receptors, such as ion currents or fluorescence changes of suitably labeled receptors, and reasoning from these data to the ligand binding. To study the binding process itself, appropriately tagged ligands are required that fully activate the receptors and report the binding at the same time. Herein, we tailored a series of 18 novel fluorescent cyclic nucleotide derivatives by attaching 6 different dyes via different alkyl linkers to the 8-position of the purine ring of cGMP or cAMP. The biological activity was determined in inside-out macropatches containing either homotetrameric (CNGA2), heterotetrameric (CNGA2:CNGA4:CNGB1b), or hyperpolarization-activated cyclic nucleotide-modulated (HCN2) channels. All these novel fluorescent ligands are efficient to activate the channels, and the potency of most of them significantly exceeded that of the natural cyclic nucleotides cGMP or cAMP. Moreover, some of them showed an enhanced brightness when bound to the channels. The best of our derivatives bear great potential to systematically analyze the activation mechanism in CNG and HCN channels, at both the level of ensemble and single-molecule analyses.  相似文献   

9.
Progressive cone dystrophies are a genetically heterogeneous group of disorders characterized by early deterioration of visual acuity and color vision, together with psychophysical and electrophysiological evidence of abnormal cone function and cone degeneration. Recently, three mutations in the gene encoding the CNGA3 subunit of cone photoreceptor cyclic nucleotide-gated (CNG) channels have been linked to progressive cone dystrophy in humans. To investigate the functional consequences of these mutations, we expressed mutant human CNGA3 subunits in Xenopus oocytes, alone or together with human CNGB3, and studied these channels using patch-clamp recording. Compared with wild-type channels, homomeric and heteromeric channels containing CNGA3-N471S or CNGA3-R563H subunits exhibited an increase in apparent affinity for cGMP and an increase in the relative agonist efficacy of cAMP compared with cGMP. In contrast, R277C subunits did not form functional homomeric or heteromeric channels. Cell surface expression levels, determined using confocal microscopy of green fluorescent protein-tagged subunits and patch-clamp recording, were significantly reduced for both R563H and R277C but unchanged for N471S. Overall, these results suggest that the plasma membrane localization and gating properties of cone CNG channels are altered by progressive cone dystrophy-associated mutations, providing evidence that supports the pathogenicity of these mutations. phosphodiesterase  相似文献   

10.
Cyclic nucleotide-gated (CNG) channels open in response to direct binding of cyclic nucleotide messengers. Every subunit in a tetrameric CNG channel contains a cytoplasmic ligand-binding domain (BD) that includes a beta-roll (flanked by short helices) and a single C-terminal helix called the C-helix that was previously found to control efficacy (maximal open probability) and selectivity for cGMP versus cAMP. We constructed a series of chimeric CNG channel subunits, each containing a distinct BD sequence (chosen from among six phylogenetically divergent isoforms) fused to an invariant non-BD sequence. We assayed these "BD substitution" chimeras as homomeric CNG channels in Xenopus oo-cytes to compare their functions and found that the most efficient activation by both cAMP and cGMP derived from the BD of the catfish CNGA4 olfactory modulatory subunit (fCNGA4). We then tested the effects of replacing subregions of the bovine CNGA1 BD with corresponding fCNGA4 sequence and hence identified parts of the fCNGA4 BD producing efficient activation. For instance, replacing either the "hinge" that connects the roll and C-helix subdomains or the BD sequence N-terminal to the hinge greatly enhanced cAMP efficacy. Replacing the "loop-beta 8" region (the C-terminal end of the beta-roll) improved agonist sensitivity for cGMP selectively over cAMP. Our results thus identify multiple BD elements outside the C-helix that control selective ligand interaction and channel gating steps by distinct mechanisms. This suggests that the purine ring of the cyclic nucleotide may interact with both the beta-roll and the C-helix at different points in the mechanism.  相似文献   

11.
Human olfaction comprises the opposing actions of excitation and inhibition triggered by odorant molecules. In olfactory receptor neurons, odorant molecules not only trigger a G-protein-coupled signaling cascade but also generate various mechanisms to fine tune the odorant-induced current, including a low-selective odorant inhibition of the olfactory signal. This wide-range olfactory inhibition has been suggested to be at the level of ion channels, but definitive evidence is not available. Here, we report that the cyclic nucleotide-gated (CNG) cation channel, which is a key element that converts odorant stimuli into electrical signals, is inhibited by structurally unrelated odorants, consistent with the expression of wide-range olfactory inhibition. Interestingly, the inhibitory effect was small in the homo-oligomeric CNG channel composed only of the principal channel subunit, CNGA2, but became larger in channels consisting of multiple types of subunits. However, even in the channel containing all native subunits, the potency of the suppression on the cloned CNG channel appeared to be smaller than that previously shown in native olfactory neurons. Nonetheless, our results further showed that odorant suppressions are small in native neurons if the subsequent molecular steps mediated by Ca(2+) are removed. Thus, the present work also suggests that CNG channels switch on and off the olfactory signaling pathway, and that the on and off signals may both be amplified by the subsequent olfactory signaling steps.  相似文献   

12.
In response to pathogen infection, the host innate immune system activates microbial killing pathways and cellular stress pathways that need to be balanced because insufficient or excessive immune responses have deleterious consequences. Recent studies demonstrate that two G protein-coupled receptors (GPCRs) in the nervous system of Caenorhabditis elegans control immune homeostasis. To investigate further how GPCR signaling controls immune homeostasis at the organismal level, we studied arrestin-1 (ARR-1), which is the only GPCR adaptor protein in C. elegans. The results indicate that ARR-1 is required for GPCR signaling in ASH, ASI, AQR, PQR, and URX neurons, which control the unfolded protein response and a p38 mitogen-activated protein kinase signaling pathway required for innate immunity. ARR-1 activity also controlled immunity through ADF chemosensory and AFD thermosensory neurons that regulate longevity. Furthermore, we found that although ARR-1 played a key role in the control of immunity by AFD thermosensory neurons, it did not control longevity through these cells. However, ARR-1 partially controlled longevity through ADF neurons.  相似文献   

13.
Rod and cone photoreceptor cyclic nucleotide-gated (CNG) channels play pivotal roles in phototransduction. This work investigates the functional significance of photoreceptor CNG channel association with membrane microdomains enriched in raft lipids, cholesterol and sphingolipids. The primary subunits of cone and rod CNG channels, CNGA3 and CNGA1, respectively, were heterologously expressed in HEK 293 cells, and channel activity was determined by ratiometric measurement of [Ca (2+)] i in response to cyclic guanosine monophosphate (cGMP) stimulation. CNGA3 was found to be largely insoluble following Triton X-100 extraction and cofractionationed with biochemically isolated membrane domains enriched in caveolin-1. Cofractionation of both natively expressed CNGA3 and CNGB1 (the modulatory subunit of the rod CNG channel) with the low buoyant density, caveolin-1-enriched membranes was also confirmed in mouse retinas. The functional significance of this association was established by the observed negative effects of depletion of raft lipids on the channel activity. Treatment with the cholesterol depleting agent, methyl-beta-cyclodextrin (MCD), significantly inhibited CNGA3 and CNGA1 activation in response to cGMP stimulation. MCD treatment lowered cellular cholesterol levels by approximately 45% without altering fatty acid composition, suggesting that the inhibition of channel activity by MCD treatment is not due to perturbation of other membrane lipids. Treatment with the sphingolipid biosynthesis inhibitor myriocin resulted in impaired activation and cytosolic redistribution of CNGA3, suggesting that the integrity of the membrane domains is critical for the channel cellular processing and plasma membrane localization. This study demonstrates the association of photoreceptor CNG channels with membrane domains enriched in raft lipids and indicates, for the first time, that raft lipids modulate the plasma membrane localization and functional activity of photoreceptor CNG channels.  相似文献   

14.
Neurons of the Grueneberg ganglion (GG) residing in the vestibule of the murine nose are activated by cool ambient temperatures. Activation of thermosensory neurons is usually mediated by thermosensitive ion channels of the transient receptor potential (TRP) family. However, there is no evidence for the expression of thermo-TRPs in the GG, suggesting that GG neurons utilize distinct mechanisms for their responsiveness to cool temperatures. In search for proteins that render GG neurons responsive to coolness, we have investigated whether TREK/TRAAK channels may play a role; in heterologous expression systems, these potassium channels have been previously found to close upon exposure to coolness, leading to a membrane depolarization. The results of the present study indicate that the thermosensitive potassium channel TREK-1 is expressed in those GG neurons that are responsive to cool temperatures. Studies analyzing TREK-deficient mice revealed that coolness-evoked responses of GG neurons were clearly attenuated in these animals compared with wild-type conspecifics. These data suggest that TREK-1 channels significantly contribute to the responsiveness of GG neurons to cool temperatures, further supporting the concept that TREK channels serve as thermoreceptors in sensory cells. Moreover, the present findings provide the first evidence of how thermosensory GG neurons are activated by given temperature stimuli in the absence of thermo-TRPs.  相似文献   

15.
We expressed rod-type homotetrameric cyclic nucleotide-gated (CNGA1) channels in Xenopus oocytes and studied activation by photolysis-induced jumps of the 3',5'-cyclic guanosine monophosphate (cGMP) concentration and by voltage steps. cGMP jumps to increasing concentrations up to the EC50 value of 46.5 microM decelerate the activation gating, indicative that even at concentrations of cGMP < EC50 binding is not rate limiting. Above the EC50 value, activation by cGMP jumps is again accelerated to the higher concentrations. At the same cGMP concentration, the speed of the activation gating by depolarizing voltage steps is roughly similar to that by cGMP jumps. Permeating ions passing the pore more slowly (Rb+ > K+ > Na+) slow down the activation time course. At the single-channel level, cGMP jumps to high concentrations cause openings directly to the main open level without passing sublevels. From these results it is concluded that at both low and high cGMP the gating of homotetrameric CNGA1 channels is not rate-limited by the cGMP binding but by conformational changes of the channel which are voltage dependent and include movements in the pore region.  相似文献   

16.
In the rat pineal gland, alpha 1-adrenergic agonists, which stimulate arachidonic acid release, also potentiate vasoactive intestinal peptide (VIP)- or beta-adrenergic-stimulated cyclic AMP (cAMP) and cyclic GMP (cGMP) accumulation. In this study, the possible involvement of the arachidonic acid pathway in the potentiation mechanism was examined in dispersed rat pinealocytes using two inhibitors of the arachidonic acid cascade, indomethacin and nordihydroguaiaretic acid. These two inhibitors appeared to have differential effects on the alpha 1-adrenergic potentiation of VIP- or beta-adrenergic-stimulated cAMP and cGMP responses. Whereas nordihydroguaiaretic acid was effective in suppressing both the alpha 1-adrenergic potentiation of VIP- or beta-adrenergic-stimulated cAMP and cGMP responses, indomethacin inhibited selectively the VIP-mediated cAMP and cGMP responses. The role of arachidonic acid metabolites was further determined using several prostaglandins--A2, I2, E2, and F2 alpha--and leukotrienes--B4, C4, and D4. Of the seven compounds tested, prostaglandins E2 and F2 alpha stimulated basal cAMP but not cGMP accumulation. The prostaglandin E2- and F2 alpha-stimulated cAMP responses were additive to those stimulated by VIP or beta-adrenergic receptors. The other five compounds had no effects on basal or VIP- or beta-adrenergic-stimulated cAMP or cGMP accumulation. Taken together, these findings indicate that the arachidonic acid cascade is likely involved in the alpha 1-adrenergic potentiation of VIP- or beta-adrenergic-stimulated cAMP and cGMP accumulation. However, the specific arachidonic acid metabolite involved in the potentiation mechanisms of VIP- versus beta-adrenergic-stimulated cyclic nucleotide responses may be different.  相似文献   

17.
Photoreceptor cyclic nucleotide-gated (CNG) channels are the principal ion channels responsible for transduction of the light-induced change in cGMP concentration into an electrical signal. The ligand sensitivity of photoreceptor CNG channels is subject to regulation by intracellular signaling effectors, including calcium-calmodulin, tyrosine kinases and phosphoinositides. Little is known, however, about regulation of channel activity by modification to extracellular regions of CNG channel subunits. Extracellular proteases MMP9 and -2 are present in the interphotoreceptor matrix adjacent to photoreceptor outer segments. Given that MMPs have been implicated in retinal dysfunction and degeneration, we hypothesized that MMP activity may alter the functional properties of photoreceptor CNG channels. For heterologously expressed rod and cone CNG channels, extracellular exposure to MMPs dramatically increased the apparent affinity for cGMP and the efficacy of cAMP. These changes to ligand sensitivity were not prevented by destabilization of the actin cytoskeleton or by disruption of integrin mediated cell adhesion, but could be attenuated by inhibition of MMP catalytic activity. MMP-mediated gating changes exhibited saturable kinetic properties consistent with enzymatic processing of the CNG channels. In addition, exposure to MMPs decreased the abundance of full-length expressed CNGA3 subunits, with a concomitant increase in putative degradation products. Similar gating effects and apparent proteolysis were observed also for native rod photoreceptor CNG channels. Furthermore, constitutive apparent proteolysis of retinal CNGA1 and retinal MMP9 levels were both elevated in aged mice compared with young mice. Together, these results provide evidence that MMP-mediated proteolysis can regulate the ligand sensitivity of CNG channels.  相似文献   

18.
Photoreceptor cyclic nucleotide-gated (CNG) channels are the principal ion channels responsible for transduction of the light-induced change in cGMP concentration into an electrical signal. The ligand sensitivity of photoreceptor CNG channels is subject to regulation by intracellular signaling effectors, including calcium-calmodulin, tyrosine kinases and phosphoinositides. Little is known, however, about regulation of channel activity by modification to extracellular regions of CNG channel subunits. Extracellular proteases MMP9 and -2 are present in the interphotoreceptor matrix adjacent to photoreceptor outer segments. Given that MMPs have been implicated in retinal dysfunction and degeneration, we hypothesized that MMP activity may alter the functional properties of photoreceptor CNG channels. For heterologously expressed rod and cone CNG channels, extracellular exposure to MMPs dramatically increased the apparent affinity for cGMP and the efficacy of cAMP. These changes to ligand sensitivity were not prevented by destabilization of the actin cytoskeleton or by disruption of integrin mediated cell adhesion, but could be attenuated by inhibition of MMP catalytic activity. MMP-mediated gating changes exhibited saturable kinetic properties consistent with enzymatic processing of the CNG channels. In addition, exposure to MMPs decreased the abundance of full-length expressed CNGA3 subunits, with a concomitant increase in putative degradation products. Similar gating effects and apparent proteolysis were observed also for native rod photoreceptor CNG channels. Furthermore, constitutive apparent proteolysis of retinal CNGA1 and retinal MMP9 levels were both elevated in aged mice compared with young mice. Together, these results provide evidence that MMP-mediated proteolysis can regulate the ligand sensitivity of CNG channels.  相似文献   

19.
M S Kim  A Repp  D P Smith 《Genetics》1998,150(2):711-721
The molecular mechanisms mediating chemosensory discrimination in insects are unknown. Using the enhancer trapping approach, we identified a new Drosophila mutant, lush, with odorant-specific defects in olfactory behavior. lush mutant flies are abnormally attracted to high concentrations of ethanol, propanol, and butanol but have normal chemosensory responses to other odorants. We show that wild-type flies have an active olfactory avoidance mechanism to prevent attraction to concentrated alcohol, and this response is defective in lush mutants. This suggests that the defective olfactory behavior associated with the lush mutation may result from a specific defect in chemoavoidance. lush mutants have a 3-kb deletion that produces a null allele of a new member of the invertebrate odorant-binding protein family, LUSH. LUSH is normally expressed exclusively in a subset of trichoid chemosensory sensilla located on the ventral-lateral surface of the third antennal segment. LUSH is secreted from nonneuronal support cells into the sensillum lymph that bathes the olfactory neurons within these sensilla. Reintroduction of a cloned wild-type copy of lush into the mutant background completely restores wild-type olfactory behavior, demonstrating that this odorant-binding protein is required in a subset of sensilla for normal chemosensory behavior to a subset of odorants. These findings provide direct evidence that odorant-binding proteins are required for normal chemosensory behavior in Drosophila and may partially determine the chemical specificity of olfactory neurons in vivo.  相似文献   

20.
Olfactory receptors are the largest group of orphan G protein-coupled receptors with an infinitely small number of agonists identified out of thousands of odorants. The de-orphaning of olfactory receptor (OR) is complicated by its combinatorial odorant coding and thus requires large scale odorant and receptor screening and establishing receptor-specific odorant profiles. Here, we report on the stable reconstitution of OR-specific signaling in HeLa/Olf cells via G protein alphaolf and adenylyl cyclase type-III to the Ca2+ influx-mediating olfactory cyclic nucleotide-gated CNGA2 channel. We demonstrate the central role of Galphaolf in odorant-specific signaling out of OR. The employment of the non-typical G protein alpha15 dramatically altered the odorant specificities of 3 of 7 receptors that had been characterized previously by different groups. We further show for two OR that an odorant may be an agonist or antagonist, depending on the G protein used. HeLa/Olf cells proved suitable for high-throughput screening in fluorescence-imaging plate reader experiments, resulting in the de-orphaning of two new OR for the odorant (-)citronellal from an expression library of 93 receptors. To demonstrate the G protein dependence of its odorant response pattern, we screened the most sensitive (-)citronellal receptor Olfr43 versus 94 odorants simultaneously in the presence of Galpha15 or Galphaolf. We finally established an EC50-ranking odorant profile for Olfr43 in HeLa/Olf cells. In summary, we conclude that, in heterologous systems, odorants may function as agonists or antagonists, depending on the G protein used. HeLa/Olf cells provide an olfactory model system for functional expression and de-orphaning of OR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号