首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin C homeostasis in skeletal muscle cells   总被引:3,自引:0,他引:3  
In skeletal muscle, vitamin C not only enhances carnitine biosynthesis but also protects cells against ROS generation induced by physical exercise. The ability to take up both ascorbic and dehydroascorbic acid from the extracellular environment, together with the ability to recycle the intracellular vitamin, maintains high cellular stores of ascorbate. In this study, we examined vitamin C transport and recycling, by using the mouse C2C12 and rat L6C5 muscle cell lines, which exhibit different sensitivity to oxidative stress and GSH metabolism. We found that: (1) both cell lines express SVCT2, whereas SVCT1 is expressed at very low levels only in proliferating L6C5 cells; furthermore L6C5 myoblasts are more efficient in ascorbic acid transport than C2C12 myoblasts; (2) C2C12 cells are more efficient in dehydroascorbic acid transport and ascorbyl free radical/dehydroascorbic acid reduction; (3) differentiation is paralleled by decreased ascorbic acid and dehydroascorbic acid transport and reduction and increased ascorbyl free radical reduction; (4) differentiated cells are more responsive to oxidative stress induced by glutathione depletion; indeed, myotubes showed increased SVCT2 expression and thioredoxin reductase-mediated dehydroascorbic acid reduction. From our data, SVCT2 and NADPH-thioredoxin-dependent DHA reduction appears to belong to an inducible system activated in response to oxidative stress.  相似文献   

2.
Two sodium-dependent vitamin C transporter isoforms (SVCT1 and SVCT2) were identified as ascorbic acid transporters, but their roles in skin have, as yet, not been elucidated. Here we analyze the expression and function of SVCTs in healthy human skin cells and skin tissues, and in UVB-induced cutaneous tissue injury. SVCT1 was primarily found in the epidermis expressed by keratinocytes, whereas SVCT2 expression was in the epidermis and dermis in keratinocytes, fibroblasts, and endothelial cells. Uptake experiments revealed that ascorbic acid affinity of SVCT1 was lower than SVCT2 (K(m)=75 muM and K(m)=44 muM, respectively), but maximal velocity was 9-times higher (36 nmol/min/well). In keratinocytes, SVCT1 was found to be responsible for vitamin C transport, although SVCT2 gene expression was higher. On UVB irradiation, SVCT1 mRNA expression in murine skin declined significantly in a time- and dose-dependent manner, whereas SVCT2 mRNA levels were unchanged. Furthermore, UVB irradiation of keratinocytes in vitro was accompanied by reduced ascorbic acid transport. In summary, these data indicate that the two vitamin C transporter isoforms fulfill specific functions in skin: SVCT1 is responsible for epidermal ascorbic acid supply, whereas SVCT2 mainly facilitates ascorbic acid transport in the dermal compartment. UVB-induced oxidative stress in mice resulted in depletion of SVCT1 mRNA levels and led to significantly decreased ascorbic acid uptake in keratinocytes, providing evidence on why ascorbic acid levels are decreased on UVB irradiation in vivo.  相似文献   

3.
4.
In this study, we examined whether ascorbic acid (AA) and dehydroascorbic acid (DHA), the oxidized form of AA, levels in tissues regulate the AA transporters, sodium-dependent vitamin C transporters (SVCT) 1 and SVCT2 and DHA transporters, glucose transporter (GLUT) 1, GLUT3, GLUT4 mRNA by using senescence marker protein-30 (SMP30)/gluconolactonase (GNL) knockout (KO) mice. These mice are incapable of synthesizing AA in vivo. AA depletion enhanced SVCT1 and SVCT2 mRNA expression in the liver and SVCT1 and GLUT4 mRNA expression in the small intestine, but not in the cerebrum or kidney. Next, we examined the actual impact of AA uptake by using primary cultured hepatocytes from SMP30/GNL KO mice. In the AA-depleted hepatocytes from SMP30/GNL KO mice, AA uptake was significantly greater than in matched cultures from wild-type mice. These results strongly affirm that intracellular AA is an important regulator of SVCT1 and SVCT2 expression in the liver.  相似文献   

5.
Kinetic analysis of vitamin C uptake has demonstrated that specialized cells take up ascorbic acid (AA), the reduced form of vitamin C, through sodium‐AA cotransporters. Recently, two different isoforms of sodium‐vitamin C cotransporters (SVCT 1, 2) that mediate high affinity Na+‐dependent l ‐ascorbic acid have been cloned. SVCT2 was detected mainly in choroid plexus cells and neurons, however, there are no evidences of SVCT2 expression in glial cells. High concentrations of vitamin C has been demonstrated in brain hypothalamic area. The hypothalamic glial cells, known as alpha and beta tanycytes, are specialized ependymal cells that bridge the cerebrospinal fluid and the portal blood of the median eminence. Our hypothesis postulates that tanycytes take up reduced vitamin C from the portal blood and cerebrospinal fluid generating an high concentration of this vitamin in brain hypothalamic area. In situ immunohistochemical analyses demonstrated that SVCT2 transporter is selectively expressed in apical region of tanycytes. A newly developed primary culture of mouse hypothalamic tanycytes was used to confirm the expression and function of SVCT2 isoform in these cells. Reduced vitamin C uptake was temperature and sodium dependent. Kinetic analysis showed an apparent Km of 20 μm and a Vmax of 45 pmol/min per million cells for the transport of ascorbic acid. The expression of SVCT2 was confirmed by immunoblots and RT–PCR. Tanycytes may perform a neuroprotective role concentrating the vitamin C in the hypothalamic area. Acknowledgements: Supported by Grands FONDECYT 1010843 and DIUC‐GIA 201.034.006‐1.4 from Concepción University.  相似文献   

6.
Despite the fundamental importance of the redox metabolism of mitochondria under normal and pathological conditions, our knowledge regarding the transport of vitamin C across mitochondrial membranes remains far from complete. We report here that human HEK-293 cells express a mitochondrial low-affinity ascorbic acid transporter that molecularly corresponds to SVCT2, a member of the sodium-coupled ascorbic acid transporter family 2. The transporter SVCT1 is absent from HEK-293 cells. Confocal colocalization experiments with anti-SVCT2 and anti-organelle protein markers revealed that most of the SVCT2 immunoreactivity was associated with mitochondria, with minor colocalization at the endoplasmic reticulum and very low immunoreactivity at the plasma membrane. Immunoblotting of proteins extracted from highly purified mitochondrial fractions confirmed that SVCT2 protein was associated with mitochondria, and transport analysis revealed a sigmoidal ascorbic acid concentration curve with an apparent ascorbic acid transport Km of 0.6 mM. Use of SVCT2 siRNA for silencing SVCT2 expression produced a major decrease in mitochondrial SVCT2 immunoreactivity, and immunoblotting revealed decreased SVCT2 protein expression by approximately 75%. Most importantly, the decreased protein expression was accompanied by a concomitant decrease in the mitochondrial ascorbic acid transport rate. Further studies using HEK-293 cells overexpressing SVCT2 at the plasma membrane revealed that the altered kinetic properties of mitochondrial SVCT2 are due to the ionic intracellular microenvironment (low in sodium and high in potassium), with potassium acting as a concentration-dependent inhibitor of SVCT2. We discarded the participation of two glucose transporters previously described as mitochondrial dehydroascorbic acid transporters; GLUT1 is absent from mitochondria and GLUT10 is not expressed in HEK-293 cells. Overall, our data indicate that intracellular SVCT2 is localized in mitochondria, is sensitive to an intracellular microenvironment low in sodium and high in potassium, and functions as a low-affinity ascorbic acid transporter. We propose that the mitochondrial localization of SVCT2 is a property shared across cells, tissues, and species.  相似文献   

7.
Kinetic analysis of vitamin C uptake has demonstrated that specialized cells take up ascorbic acid (AA), the reduced form of vitamin C, through sodium-AA cotransporters. Recently, two different isoforms of sodium-vitamin C cotransporters (SVCT 1, 2) that mediate high affinity Na+-dependent l -ascorbic acid have been cloned. SVCT2 was detected mainly in choroid plexus cells and neurons, however, there are no evidences of SVCT2 expression in glial cells. High concentrations of vitamin C has been demonstrated in brain hypothalamic area. The hypothalamic glial cells, known as alpha and beta tanycytes, are specialized ependymal cells that bridge the cerebrospinal fluid and the portal blood of the median eminence. Our hypothesis postulates that tanycytes take up reduced vitamin C from the portal blood and cerebrospinal fluid generating an high concentration of this vitamin in brain hypothalamic area. In situ immunohistochemical analyses demonstrated that SVCT2 transporter is selectively expressed in apical region of tanycytes. A newly developed primary culture of mouse hypothalamic tanycytes was used to confirm the expression and function of SVCT2 isoform in these cells. Reduced vitamin C uptake was temperature and sodium dependent. Kinetic analysis showed an apparent Km of 20 μ m and a Vmax of 45 pmol/min per million cells for the transport of ascorbic acid. The expression of SVCT2 was confirmed by immunoblots and RT–PCR. Tanycytes may perform a neuroprotective role concentrating the vitamin C in the hypothalamic area.
Acknowledgements:   Supported by Grands FONDECYT 1010843 and DIUC-GIA 201.034.006-1.4 from Concepción University.  相似文献   

8.
In this article, we focus on the fundamental role of vitamin C transporters for the normal delivery of vitamin C to germ cells in the adluminal compartment of seminiferous tubules. We argue that the redox status within spermatozoa or in semen is partly responsible for the etiology of infertility. In this context, antioxidant defence plays a critical role in male fertility. Vitamin C, a micronutrient required for a wide variety of metabolic functions, has long been associated with male reproduction. Two systems for vitamin C transport have been described in mammals. Facilitative hexose transporters (GLUTs), with 14 known isoforms to date, GLUT1-GLUT14, transport the oxidized form of vitamin C (dehydroascorbic acid) into the cells. Sodium ascorbic acid co-transporters (SVCTs), SVCT1 and SVCT2 transport the reduced form of vitamin C (ascorbic acid). Sertoli cells control germ cell proliferation and differentiation through cell-cell communication and form the blood-testis barrier. Because the blood-testis barrier limits direct access of molecules from the plasma into the adluminal compartment of the seminiferous tubule, one important question is the method by which germ cells obtain vitamin C. Some interesting results have thrown light on this matter. Expression of SVCT2 and some isoforms of GLUT transporters in the testis have previously been described. Our group has demonstrated that Sertoli cells express functionally active vitamin C transporters. Kinetic characteristics were described for both transport systems (SVCT and GLUT systems). Sertoli cells are able to transport both forms of vitamin C. These findings are extremely relevant, because Sertoli cells may control the amount of vitamin C in the adluminal compartment, as well as regulating the availability of this metabolite throughout spermatogenesis.  相似文献   

9.
The sodium-vitamin C co-transporters SVCT1 and SVCT2 transport the reduced form of vitamin C, ascorbic acid. High expression of the SVCT2 has been demonstrated in adult neurons and choroid plexus cells by in situ hybridization. Additionally, embryonic mesencephalic dopaminergic neurons express the SVCT2 transporter. However, there have not been molecular and kinetic analyses addressing the expression of SVCTs in cortical embryonic neurons. In this work, we confirmed the expression of a SVCT2-like transporter in different regions of the fetal mouse brain and in primary cultures of neurons by RT-PCR. Kinetic analysis of the ascorbic acid uptake demonstrated the presence of two affinity constants, 103 microM and 8 microM. A K(m) of 103 microM corresponds to a similar affinity constant reported for SVCT2, while the K(m) of 8 microM might suggest the expression of a very high affinity transporter for ascorbic acid. Our uptake analyses also suggest that neurons take up dehydroascorbic acid, the oxidized form of vitamin C, through the glucose transporters. We consider that the early expression of SVCTs transporters in neurons is important in the uptake of vitamin C, an essential molecule for the fetal brain physiology. Vitamin C that is found at high concentration in fetal brain may function in preventing oxidative free radical damage, because antioxidant radical enzymes mature only late in the developing brain.  相似文献   

10.
Vitamin C is a wide spectrum antioxidant essential for humans, which are unable to synthesize the vitamin and must obtain it from dietary sources. There are two biologically important forms of vitamin C, the reduced form, ascorbic acid, and the oxidized form, dehydroascorbic acid. Vitamin C exerts most of its biological functions intracellularly and is acquired by cells with the participation of specific membrane transporters. This is a central issue because even in those species capable of synthesizing vitamin C, synthesis is restricted to the liver (and pancreas) from which is distributed to the organism. Most cells express two different transproter systems for vitamin C; a transporter system with absolute specificity for ascorbic acid and a second system that shows absolute specificity for dehydroascorbic acid. The dehydroascorbic acid transporters are members of the GLUT family of facilitative glucose transporters, of which at least three isoforms, GLUT1, GLUT3 and GLUT4, are dehydroascorbic acid transporters. Ascorbic acid is transported by the SVCT family of sodium-coupled transporters, with two isoforms molecularly cloned, the transporters SVCT1 y SVCT2, that show different functional properties and differential cell and tissue expression. In humans, the maintenance of a low daily requirement of vitamin C is attained through an efficient system for the recycling of the vitamin involving the two families of vitamin C transporters.  相似文献   

11.
Ascorbic acid (AA) is best known for its role as an essential nutrient in humans and other species. As the brain does not synthesize AA, high levels are achieved in this organ by specific uptake mechanisms, which concentrate AA from the bloodstream to the CSF and from the CSF to the intracellular compartment. Two different isoforms of sodium–vitamin C co-transporters (SVCT1 and SVCT2) have been cloned. Both SVCT proteins mediate high affinity Na+-dependent l -AA transport and are necessary for the uptake of vitamin C in many tissues. In the adult brain the expression of SVCT2 was observed in the hippocampus and cortical neurons by in situ hybridization; however, there is no data regarding the expression and distribution of this transporter in the fetal brain. The expression of SVCT2 in embryonal mesencephalic neurons has been shown by RT-PCR suggesting an important role for vitamin C in dopaminergic neuronal differentiation. We analyze SVCT2 expression in human and rat developing brain by RT-PCR. Additionally, we study the normal localization of SVCT2 in rat fetal brain by immunohistochemistry and in situ hybridization demonstrating that SVCT2 is highly expressed in the ventricular and subventricular area of the rat brain. SVCT2 expression and function was also confirmed in neurons isolated from brain cortex and cerebellum. The kinetic parameters associated with the transport of AA in cultured neurons and neuroblastoma cell lines were also studied. We demonstrate two different affinity transport components for AA in these cells. Finally, we show the ability of different flavonoids to inhibit AA uptake in normal or immortalized neurons. Our data demonstrates that brain cortex and cerebellar stem cells, neurons and neuroblastoma cells express SVCT2. Dose-dependent inhibition analysis showed that quercetin inhibited AA transport in cortical neurons and Neuro2a cells.  相似文献   

12.
Sodium-dependent vitamin C transporter (SVCT) 2 facilitates reduced ascorbic acid (AA) transport in MC3T3-E1 osteoblasts. Our previous studies suggested that Zn-induced osteoblast differentiation and Ca2+-, PO4(3-)-stimulated osteopontin (OPN) expression might result from their up-regulation effect on SVCT2 expression and AA uptake. Here, we investigated the role of SVCT2 on osteoblast differentiation by using SVCT2-overexpressing cells. Two clones of SVCT2-introduced cells overexpressed SVCT2 mRNA by 2.8- and 3.1-fold those of control cells, which resulted in obvious increase of AA uptake by 2.1- and 2.4-fold in Vmax with no change in Km. Alkaline phosphatase activity, hydroxyproline content significantly increased in SVCT2-overexpressing cells, and the induction of OPN mRNA was through up-regulation of OPN promoter activity by SVCT2 overexpression. Moreover, SVCT2-overexpressing cells exhibited more ability to promote mineralization and increase calcium deposition under the stimulation of 5 mM beta-glycerophosphate. These findings indicate that SVCT2 stimulates osteoblast differentiation and mineralization.  相似文献   

13.
Vitamin C is essential for many enzymatic reactions and also acts as a free radical scavenger. Specific non-overlapping transport proteins mediate the transport of the oxidized form of vitamin C, dehydroascorbic acid, and the reduced form, L-ascorbic acid, across biological membranes. Dehydroascorbic acid uptake is via the facilitated-diffusion glucose transporters, GLUT 1, 3 and 4, but under physiological conditions these transporters are unlikely to play a major role in the uptake of vitamin C due to the high concentrations of glucose that will effectively block influx. L-ascorbic acid enters cells via Na+-dependent systems, and two isoforms of these transporters (SVCT1 and SVCT2) have recently been cloned from humans and rats. Transport by both isoforms is stereospecific, with a pH optimum of approximately 7.5 and a Na+:ascorbic acid stoichiometry of 2:1. SVCT2 may exhibit a higher affinity for ascorbic acid than SVCT1 but with a lower maximum velocity. SVCT1 and SVCT2 are predicted to have 12 transmembrane domains, but they share no structural homology with other Na+ co-transporters. Potential sites for phosphorylation by protein kinase C exist on the cytoplasmic surface of both proteins, with an additional protein kinase A site in SVCT1. The two isoforms also differ in their tissue distribution: SVCT1 is present in epithelial tissues, whereas SVCT2 is present in most tissues with the exception of lung and skeletal muscle.  相似文献   

14.
This study investigated whether the age-related decline in hepatic ascorbic acid (AA) levels in rats was due to altered AA uptake. AA concentrations were 68% lower in freshly isolated hepatocytes from old (24-26 months) versus young (3-5 months; p<0.0005) Fischer 344 rats. When incubated with 100 microM AA, cells from old as compared to young rats showed a 66% decline in both the rate of AA transport and the steady state intracellular levels. Sodium-free media significantly reduced AA uptake, suggesting that the sodium-dependent vitamin C transporter (SVCT) was largely responsible for declines in AA transport. Analysis of SVCT messenger RNA (mRNA) levels shows that one isoform of this transport protein, SVCT1, declines 45% with age, with no significant changes in SVCT2 mRNA levels.These results show for the first time that sodium-dependent AA transport declines during the aging process, which may account for much of the loss in tissue AA content.  相似文献   

15.
Vitamin C is essential for many enzymatic reactions and also acts as a free radical scavenger. Specific non-overlapping transport proteins mediate the transport of the oxidized form of vitamin C, dehydroascorbic acid, and the reduced form, Lascorbic acid, across biological membranes. Dehydroascorbic acid uptake is via the facilitated-diffusion glucose transporters, GLUT 1, 3 and 4, but under physiological conditions these transporters are unlikely to play a major role in the uptake of vitamin C due to the high concentrations of glucose that will effectively block influx. L-ascorbic acid enters cells via Na+-dependent systems, and two isoforms of these transporters (SVCT1 and SVCT2) have recently been cloned from humans and rats. Transport by both isoforms is stereospecific, with a pH optimum of ~ 7.5 and a Na+: ascorbic acid stoichiometry of 2 : 1. SVCT2 may exhibit a higher affinity for ascorbic acid than SVCT1 but with a lower maximum velocity. SVCT1 and SVCT2 are predicted to have 12 transmembrane domains, but they share no structural homology with other Na+ co-transporters. Potential sites for phosphorylation by protein kinase C exist on the cytoplasmic surface of both proteins, with an additional protein kinase A site in SVCT1. The two isoforms also differ in their tissue distribution: SVCT1 is present in epithelial tissues, whereas SVCT2 is present in most tissues with the exception of lung and skeletal muscle.  相似文献   

16.
Expression and transport activity of Sodium-dependent Vitamin C Transporter 2 (SVCT2) was shown in various tissues and organs. Vitamin C was shown to be cerebroprotective in several animal models of stroke. Data on expression, localization and transport activity of SVCT2 after cerebral ischemia, however, has been scarce so far. Thus, we studied the expression of SVCT2 after middle cerebral artery occlusion (MCAO) in mice by immunohistochemistry. We found an upregulation of SVCT2 after stroke. Co-stainings with Occludin, Von-Willebrand Factor and CD34 demonstrated localization of SVCT2 in brain capillary endothelial cells in the ischemic area after stroke. Time-course analyses of SVCT2 expression by immunohistochemistry and western blots showed upregulation in the subacute phase of 2-5 days. Radioactive uptake assays using (14)C-labelled ascorbic acid showed a significant increase of ascorbic acid uptake into the brain after stroke. Taken together, these results provide evidence for the expression and transport activity of SVCT2 in brain capillary endothelial cells after transient ischemia in mice. These results may lead to the development of novel neuroprotective strategies in stroke therapy.  相似文献   

17.
18.
Different studies have demonstrated the importance of micronutrients, such as vitamins, for normal adult brain function and development. Vitamin C is not synthesized in the brain, but high levels are detected in this organ because of the existence of specific uptake mechanisms, which concentrate ascorbic acid from the bloodstream to the cerebrospinal fluid and then into neurons and glial cells. Two different isoforms of sodium–vitamin C cotransporters (SVCT1 and SVCT2) have been cloned. SVCT2 expression has been observed in the adult hippocampus and cortical neurons by in situ hybridization. In addition, the localization of SVCT2 in the rat fetal brain has been studied by immunohistochemistry and in situ hybridization, demonstrating that SVCT2 is highly expressed in the ventricular and subventricular areas of the brain cortex. However, there are currently no immunohistochemical data regarding SVCT2 expression and function in the post‐natal brain. Therefore, we analyzed SVCT2 expression in the developing brain cortex of mice, and demonstrated an increase in SVCT2 mRNA in mice at 1–15 days of age. The expression of a short isoform, SVCT2sh, was also detected within the same period. SVCT2 expression was concentrated in neurons within the inner layer of the brain cortex. Both SVCT2 isoforms were coexpressed in N2a cells to obtain functional data. Fluorescence resonance energy transfer analysis revealed a molecular interaction between SVCT2wt and SVCT2sh. Finally, differences in transport ratios suggested that SVCT2sh expression inhibited ascorbic acid uptake in N2a cells when both isoforms were coexpressed.

  相似文献   


19.
Ascorbic acid (Vitamin C) has a critical role in bone formation and osteoblast differentiation, but very little is known about the molecular mechanisms of ascorbic acid entry into bone marrow stromal cells (BMSCs). To address this gap in knowledge, we investigated the identity of the transport system that is responsible for the uptake of ascorbic acid into bone marrow stromal cells (BMSCs). First, we examined the expression of the two known isoforms of the sodium-coupled ascorbic acid transporter, namely SVCT1 and SVCT2, in BMSCs (Lin ? ve Sca1 + ve) and bone at the mRNA level. Only SVCT2 mRNA was detected in BMSCs and bone. Uptake of ascorbic acid in BMSCs was Na+-dependent and saturable. In order to define the role of SVCT2 in BMSC differentiation into osteoblasts, BMSCs were stimulated with osteogenic media for different time intervals, and the activity of SVCT2 was monitored by ascorbic acid uptake. SVCT2 expression was up-regulated during the osteogenic differentiation of BMSCs; the expression was maximal at the earliest phase of differentiation. Subsequently, osteogenesis was inhibited in BMSCs upon knock-down of SVCT2 by lentivirus shRNA. We also found that the expression of the SVCT2 could be negatively or positively modulated by the presence of oxidant (Sin-1) or antioxidant (Ascorbic acid) compounds, respectively, in BMSCs. Furthermore, we found that this transporter is also regulated with age in mouse bone. These data show that SVCT2 plays a vital role in the osteogenic differentiation of BMSCs and that its expression is altered under conditions associated with redox reaction. Our findings could be relevant to bone tissue engineering and bone related diseases such as osteoporosis in which oxidative stress and aging plays important role.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号