首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
DNA-PK的活性与鼻咽癌细胞株CNE1/CNE2放射敏感性的关系   总被引:4,自引:0,他引:4  
He YX  Zhong PP  Yan SS  Liu L  Shi HL  Zeng MS  Xia YF 《生理学报》2007,59(4):524-533
本文主要研究DNA依赖的蛋白激酶(DNA-dependent protein kinase,DNA-PK)与鼻咽癌细胞放射敏感性之间的关系。克隆形成实验分析鼻咽癌细胞CNEI/CNE2的剂量存活曲线,Signa TECT DNA-PK试剂盒检测DNA-PK活性,免疫荧光及激光显微共聚焦分析放疗前及放疗后15min、1h、6h、12h和24hCNE1/CNE2细胞中Kus及DNA-PKcs的亚细胞定位,Western blot分析两株细胞中Kus蛋白的表达。结果显示:CNE1细胞在每个剂量点的存活分数均高于CNE2细胞;同时发现放疗前后CNE1细胞中的DNA-PK活性也均高于CNE2细胞,但两株细胞中Ku70/Ku80蛋白表达无明显差异;放疗可使DNA-PK活性增加,且各个检测时间点CNE1细胞增加的幅度大于CNE2细胞;DNA-PK亚基可同时定位于胞浆和胞核,但主要位于胞核,细胞照射后Ku70、Ku80和DNA-PKcs从胞浆转运到胞核。结果表明:DNA-PK活性更高可能是CNE1细胞较CNE2细胞更能抵抗放射的原因之一;放疗所致DNA-PK活性增高可能与DNA-PK亚基从胞浆转运到胞核有关,而与Ku蛋白表达的总量无关。  相似文献   

2.
鼻咽癌对我国南部居民的健康造成严重的威胁.为了研究鼻咽癌的发病机理,本研究采用了蛋白质组学技术分析和比较了鼻咽癌细胞系(HNE1和CNE1)与永生化的鼻咽上皮细胞系的蛋白质表达谱.采用双向凝胶电泳分离提取的全细胞蛋白质,通过PDQuest软件分析找出在肿瘤中表达变化的蛋白质点,用基质辅助激光解析电离飞行时间串联质谱(MALDI- TOF/TOF-MS)进行鉴定.共得到了15个在肿瘤细胞系中表达上调和18个在肿瘤细胞系中表达下调的蛋白质,并对其中一些蛋白质的表达进行免疫印迹的验证.这些表达差异的蛋白质与细胞的增殖和调亡、癌症的转移,细胞骨架,信号传导等有关.本研究鉴定了一批可能作为鼻咽癌治疗的药物靶标的蛋白质,并对研究鼻咽癌发病机理提供了相关的线索.  相似文献   

3.
Sun Y  Yi H  Zhang PF  Li MY  Li C  Li F  Peng F  Feng XP  Yang YX  Yang F  Xiao ZQ  Chen ZC 《FEBS letters》2007,581(1):131-139
Although mutation of p53 tumor-suppressor gene is rare in nasopharyngeal carcinoma (NPC), NPC has a high frequency of overexpression of p53 protein. There seem to be complex mechanisms of inactivation and stabilization of p53 in NPC. To detect proteins associated with the function of p53 in high throughout screening, we succeeded in establishing p53 knockdown human NPC CNE2 cell line (CNE2sip53) using stable RNA interference, and compared the proteomic changes between CNE2sip53 and control cell line CNE2/pSUPER using two-dimensional gel electrophoresis. Twenty-two differentially expressed proteins between the two cell lines were identified by both matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and electrospray ionization tandem mass spectrometry, some of which are known to be associated with the p53 function (HSP27, hnRNP K, 14-3-3sigma, etc.), and others may be novel proteins associated with p53 function (eIF4B, TPT1, hnRNP H3, SFRS1 etc.). Furthermore, several differential proteins including HSP27, HSP70, GRP75 and GRP78 were verified as p53 interacting proteins in NPC by immunoprecipitation and Western blot analysis, and the suppression of HSP27 expression by HSP27 antisense oligonucleotides could decrease the p53 protein level. Our data suggest that these differential proteins may be associated with the function of p53 in NPC, and provide new clues to elucidate the mechanisms of inactivation and stabilization of p53 in NPC.  相似文献   

4.
Zeng GQ  Yi H  Li XH  Shi HY  Li C  Li MY  Zhang PF  Feng XP  Wan XX  Qu JQ  Xu Y  Sun Y  Chen ZC  Xiao ZQ 《Journal of Proteomics》2011,74(12):2723-2733
Radiotherapy is the primary treatment for nasopharyngeal cancer (NPC), and p53 is closely associated with the radiosensitivity of cancer, but the molecular mechanisms of p53-mediated radioresponse in NPC remains unclear. We previously established NPC CNE2sip53 cell line with p53 knockdown and paired control cell line CNE2/pSUPER, which provides a cell model system to investigate mechanisms of p53-mediated radioresponse in NPC. In this study, we first compared the radiosensitivity of CNE2sip53 and CNE2/pSUPER by a clonogenic survival assay, cell growth assay, and Hoechst 33258 staining and flow cytometry analysis of apoptotic cells. The results showed that the radiosensitivity of CNE2sip53 was significantly lower than that of CNE2/pSUPER, indicating that p53 plays a role in mediating NPC radiosensitivity. To search for the proteins associated with the p53-mediated radioresponse in NPC, a proteomic approach was performed to identify the radioresponsive proteins in CNE2sip53 and CNE2p/SUPER, respectively, and then the difference of radioresponsive proteins in CNE2sip53 and CNE2p/SUPER was compared. As a result, 14 differential radioresponsive proteins were identified in the two cell lines, 4 proteins of which were conformed by Western blot. Among them, 9 and 5 proteins were identified solely from CNE2p/SUPER and CNE2sip53, respectively. Furthermore, protein-protein interaction analysis showed that 7 differential radioresponsive proteins identified only in CNE2p/SUPER were related to p53 protein. Our results suggest that the differential radioresponsive proteins unique to CNE2p/SUPER may be involved in p53-mediated radioresponse in NPC, which will be helpful for elucidating the mechanisms of p53-mediated NPC cellular response to radiotherapy.  相似文献   

5.
Ai MD  Li LL  Zhao XR  Wu Y  Gong JP  Cao Y 《Cell research》2005,15(10):777-784
Latent membrane protein 1 (LMP1), an important protein encoded by Epstein Barr virus (EBV), has been implied to link with the pathogenesis of nasopharyngeal carcinoma (NPC). Its dual effects of increasing cell proliferation and inhibiting cell apoptosis have been confirmed. In this study, we showed that the expression of Survivin and CDK4 protein in CNE-LMP1, a LMP1 positive NPC epithelial cell line, is higher than in LMP1 negative NPC epithelial cell line- CNE1, and the expression is LMP1 dosage-dependent. Although it was reported that Survivin specifically expressed in cell cycle G2/M phase, our studies suggested that LMP1 could promote the expression of Survivin in G0/G1, S and G2/ M phase. It also showed that Survivin and CDK4 could be accumulated more in the nuclei triggered by LMP1. More interestingly, Survivin and CDK4 could form a protein complex in the nuclei of CNE-LMP1 rather than in that of CNE1, which demonstrated that the interaction between these two proteins could be promoted by LMPI. These results strongly suggested that the role of LMP1 in the regulation of Survivin and CDK4 may also shed some light on the mechanism research of LMP1 in NPC.  相似文献   

6.
Radiation resistance and recurrent have become the major factors resulting in poor prognosis in the clinical treatment of patients with nasopharyngeal carcinoma (NPC). New strategies to enhance the efficacy of radiotherapy have been focused on the development of radiosensitizers and searching for directly targets that modulated tumor radiosensitivity. A novel potential radiosensitizer 1,8-Dihydroxy −3-(2′-(4″-methylpiperazin-1″-yl) ethyl-9,10-anthraquinone −3-carboxylate (RP-4) was designed and synthesized based on molecular docking technology, which was expected to regulate the radiosensitivity of tumor cells through targeting Rac1. In order to assess the radiosensitization activity of RP-4 on NPC cells, the highly differentiated CNE1 and poorly differentiated CNE2 cells NPC lines were employed. According to the results, RP-4 showed higher binding affinity toward the interaction with Rac1 than lead compounds. We found that RP-4 could inhibit cell viability and proliferation in CNE1 and CNE2 cells and significantly induced apoptosis after non-toxic concentration of RP-4 combined with 2Gy irradiation. RP-4 could effectively modulated the radiosensitivity both CNE1 cells and CNE2 cells through activating Rac1/NADPH signaling pathway and its downstream JNK/AP-1 pathway. What's more, Rac1/NADPH signaling pathway were significantly activated in Rac1-overexpressed CNE1 and CNE2 cells after treated with RP-4. Taken together, Rac1 and its downstream pathway may probably be the direct targets of RP-4 in regulating radiosensitivity of NPC cells, our finding provided a novel strategy for the development of therapeutic agents in response to tumorous radiation resistance.  相似文献   

7.
Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer.  相似文献   

8.
ATP-binding cassette (ABC) efflux transporters are expressed in the human placenta where they are thought to help protect the fetus from xenobiotics. To evaluate models for analysis of ABC transporter function and regulation in the placenta, we have characterized the expression and activity of multidrug resistance (MDR) 1/P glycoprotein (Pgp), MDR3/Pgp, breast cancer resistance protein (BCRP), and multidrug resistance proteins 1 and 2 (MRPs 1, 2) in differentiating primary trophoblast cells and BeWo and Jar cell lines. Real-time PCR and immunoblotting were used for analysis of mRNA and protein expression, respectively. Functional activity was measured using selective inhibitors of efflux of fluorescent substrates, calcein-AM (Pgp and MRPs) and Hoechst 33342 (BCRP). The levels of MDR1 mRNA and protein expression were much higher in trophoblast than in Jar and especially BeWo cells. Expression of MDR3 protein was also lower in BeWo cells. Levels of MDR3 expression were markedly higher than MDR1 levels in all tested cell types. Levels of both MDR1 and MDR3 expression decreased during trophoblast differentiation/syncytialization. BCRP was highly expressed in all cell types and increased with trophoblast differentiation. MRP1 expression was much lower in trophoblasts compared with both cell lines. In contrast to its abundant mRNA expression, MRP2 protein was practically undetectable in BeWo and Jar cells and was present only at very low levels in trophoblast. Functional studies confirmed the presence of active Pgp and BCRP in all studied cell types, whereas MRP functional activity was detected only in BeWo and Jar cells. Both cell lines may be useful models for studying various aspects of placental ABC transporter expression and function, but also have significant limitations. With respect to their ABC protein expression profile, Jar cells are more similar to nondifferentiated cytotrophoblast, whereas BeWo appear to more closely reflect differentiated syncytiotrophoblast.  相似文献   

9.
不同分化程度的鼻咽癌细胞系质膜差异蛋白质组分析   总被引:1,自引:0,他引:1  
本研究以CNE1和CNE2为材料,采用亚细胞蛋白质组研究方法研究不同分化程度鼻咽癌细胞系的差异蛋白质.首先用Percoll密度梯度离心法获得高纯度质膜,通过双向凝胶电泳分离、PDQuest软件分析后找出在肿瘤细胞中表达变化的蛋白质点,再用基质辅助激光解析电离飞行时间串联质谱(MALDI-TOF/TOF-MS)进行鉴定,共鉴定到9个具有2倍或2倍以上差异的蛋白质.这些表达差异的蛋白质参与了细胞分化、代谢及细胞信号传导过程.我们对其中5个蛋白质进行了实时定量PCR分析,对其中4个蛋白质的表达进行了免疫印迹验证.本试验为研究不同分化程度的鼻咽癌提供了一种蛋白质组研究方法,并且找到了galectin-1、annexin Ⅱ等一些可能与分化相关的蛋白质.这些数据对于研究鼻咽癌的生物学特性具有非常重要的意义.  相似文献   

10.
应用蛋白质组学技术筛选胃癌耐药相关蛋白质   总被引:4,自引:1,他引:3  
胃癌多药耐药性是临床胃癌化疗失败最主要的原因之一,但其分子机制仍然不太清楚.为了寻找新的胃癌耐药相关的蛋白质,揭示胃癌多药耐药的分子机制,以胃癌细胞SGC7901和长春新碱诱导的耐药胃癌细胞SGC7901/VCR为研究对象,应用二维凝胶电泳(two-dimensionalelectrophoresis,2-DE)技术分离两种细胞的总蛋白质,图像分析识别差异表达的蛋白质点,基质辅助激光解吸电离飞行时间质谱(matrix-assistedlaserdesorption/ionizationtimeofflightmassspectrometry,MALDI-TOF-MS)及电喷雾电离串联质谱(electrosprayionizationtandemmassspectrometry,ESI-Q-TOF)对差异表达的蛋白质点进行鉴定,蛋白质印迹和实时RT-PCR验证部分差异蛋白质在两株细胞中的表达水平,反义核酸转染技术分析HSP27(heatshockprotein27,HSP27)高表达与SGC7901/VCR耐药的相关性.得到了分辨率较高、重复性较好的两株细胞系的二维凝胶电泳图谱,质谱分析共鉴定了24个差异蛋白质点,蛋白质印迹和实时RT-PCR验证了部分差异蛋白的表达水平,反义寡核苷酸抑制HSP27表达能增加SGC7901/VCR对长春新碱的敏感性.研究结果不仅提示这些差异蛋白质如HSP27,Sorcin等可能与胃癌的多药耐药相关,而且为揭示胃癌细胞的多药耐药性产生机制提供了线索.  相似文献   

11.
CNE1、CNE2鼻咽癌细胞株中ATM/PI3K区基因突变的检测   总被引:2,自引:0,他引:2  
  相似文献   

12.
13.
Multidrug resistance (MDR) has been related to two members of the ABC-superfamily of transporters, P-glycoprotein (Pgp) and Multidrug Resistance-associated Protein (MRP). We have described a 110 kD protein termed the Lung Resistance-related Protein (LRP) that is overexpressed in several non-Pgp MDR cell lines of different histogenetic origin. Reversal of MDR parallels a decrease in LRP expression. In a panel of 61 cancer cell lines which have not been subjected to laboratory drug selection, LRP was a superior predictor forin vitro resistance to MDR-related drugs when compared to Pgp and MRP, and LRP's predictive value extended to MDR unrelated drugs, such as platinum compounds. LRP is widely distributed in clinical cancer specimens, but the frequency of LRP expression inversely correlates with the known chemosensitivity of different tumour types. Furthermore, LRP expression at diagnosis has been shown to be a strong and independent prognostic factor for response to chemotherapy and outcome in acute myeloid leukemia and ovarian carcinoma (platinum-based treatment) patients. Recently, LRP has been identified as the human major protein. Vaults are novel cellular organelles broadly distributed and highly conserved among diverse eukaryotic cells, suggesting that they play a role in fundamental cell processes. Vaults localise to nuclear pore complexes and may be the central plug of the nuclear pore complexes. Vaults structure and localisation support a transport function for this particle which could involve a variety of substrates. Vaults may therefore play a role in drug resistance by regulating the nucleocytoplasmic transport of drugs.Abbreviations LRP Lung Resistance-related Protein - MVP Major Vault Protein - MDR Multidrug resistance - MRP Multidrug resistance-associated Protein - NPC Nuclear Pore Complex - Pgp P-glycoprotein  相似文献   

14.
Nasopharyngeal carcinoma (NPC) is a malignancy with high incidence in Southern China and South-East Asia. Etiology studies indicate that chemical carcinogen promoters, such as 12-O-tetradecanoylphorbol-13-acetate (TPA), are important factors causing NPC development. However, the mechanism of the TPA effect on NPC remains unclear. In the present study, cells from a poorly differentiated squamous cell carcinoma NPC cell line, CNE2, were stimulated by TPA and proteomics technology was carried out to find protein discrepancies between control and TPA-treated cells. Results revealed that TPA treatment in CNE2 cells could upregulate the expression of ““““triosephosphate isomerase““““ and ““““14-3-3 protein sigma““““ and downregulate the expression of ““““reticulocalbin 1 precursor““““, ““““nucleophosmin““““, ““““mitochondrial matrix protein pl precursor““““, and ““““stathmin““““. The changes in the expression of these genes suggested that TPA induced CNE2 cells to antiproliferation and to apoptosis, which was confirmed by subsequent apoptosis detection. Therefore, the effects of TPA on nasopharyngeal carcinoma cells were distinct from the effects on primary epithelial cells and we suggest reasons for these differences.  相似文献   

15.
The present study aimed to investigate the effects and mechanisms of PLAC8 on the epithelial-mesenchymal transition (EMT) of Nasopharyngeal carcinoma (NPC). The expression of PLAC8 in NPC and nasopharyngitis (NPG) tissues from 150 patients was determined using immunohistochemistry. The levels of PLAC8 in five NPC cell lines and nasopharyngeal permanent epithelial cell line were measured using western blotting. We then knocked out or overexpressed PLAC8 in CNE2 cells. Cell proliferation, wound healing, migration, and invasion assays were used to analyze the effects of PLAC8 on the proliferation, migration, and invasion in vivo and vitro. The results showed that the expression of PLAC8 was much higher in NPC tissues than in NPG tissues. The expression of PLAC8 was higher in all the cell lines than in the nasopharyngeal permanent epithelial cells. PLAC8 knockout resulted in significant decreases in cell proliferation, migration, and invasion; associated with lower protein levels of N-cadherin; and increased levels of E-cadherin. Overexpression of PLAC8 had the opposite effect. Furthermore, knockout of PLAC8 inactivated TGF-β/SMAD signaling pathway and suppressed the growth of NPC xenografts. PLAC8 may promote the carcinogenesis and EMT of NPC via the TGF-β/Smad pathway, which suggests that PLAC8 may be a potential biomarker for NPC.  相似文献   

16.
Themetastasis-associated gene 1 (MTA1) oncogene hasbeen suggested to be involved in the regulation of cancer progression. However, there is still no direct evidence that MTA1 regulates cisplatin (CDDP) resistance, as well as cancer stem cell properties. In this study, we found that MTA1 was enriched in CNE1/CDDP cells. Knock down of MTA1 in CNE1/CDDP cells reversed CSCs properties and CDDP resistance. However, ectopic expression of MTA1 in CNE1 cells induced CSCs phenotypes and CDDP insensitivity. Interestingly, ectopic overexpression of MTA1-induced CSCs properties and CDDP resistance were reversed in CNE1 cells after inhibition of PI3K/Akt by LY294002. In addition, MTA1 expression and Akt activity in CNE1/CDDP cells was much higher than that in CNE1 cells. These results suggested that MTA1 may play a critical role in promoting CDDP resistance in NPC cells by regulatingcancer stem cell properties via thePI3K/Akt signaling pathway. Our findings suggested that MTA1 may be a potential target for overcoming CDDP resistance in NPC therapy.  相似文献   

17.
Recent studies have shown that tumour necrosis factor‐α–induced protein 8 like‐1(TIPE1) plays distinct roles in different cancers. TIPE1 inhibits tumour proliferation and metastasis in a variety of tumours but acts as an oncogene in cervical cancer. The role of TIPE1 in nasopharyngeal carcinoma (NPC) remains unknown. Interestingly, TIPE1 expression was remarkably increased in NPC tissue samples compared to adjacent normal nasopharyngeal epithelial tissue samples in our study. TIPE1 expression was positively correlated with that of the proliferation marker Ki67 and negatively correlated with patient lifespan. In vitro, TIPE1 inhibited autophagy and induced cell proliferation in TIPE1‐overexpressing CNE‐1 and CNE‐2Z cells. In addition, knocking down TIPE1 expression promoted autophagy and decreased proliferation, whereas overexpressing TIPE1 increased the levels of pmTOR, pS6 and P62 and decreased the level of pAMPK and the LC3B. Furthermore, the decrease in autophagy was remarkably rescued in TIPE1‐overexpressing CNE‐1 and CNE‐2Z cells treated with the AMPK activator AICAR. In addition, TIPE1 promoted tumour growth in BALB/c nude mice. Taken together, results indicate that TIPE1 promotes NPC progression by inhibiting autophagy and inducing cell proliferation via the AMPK/mTOR signalling pathway. Thus, TIPE1 could potentially be used as a valuable diagnostic and prognostic biomarker for NPC.  相似文献   

18.
Zeng  Quan  Wang  Zhihai  Liu  Chuan  Gong  Zhitao  Yang  Li  Jiang  Liang  Ma  Zuxia  Qian  Yi  Yang  Yucheng  Kang  Houyong  Hong  Suling  Bu  Youquan  Hu  Guohua 《Molecular and cellular biochemistry》2016,413(1-2):137-143

Nasopharyngeal carcinoma (NPC) is a rare but highly invasive cancer that is prevalent among people of southern Chinese ancestry in southern China and Southeast Asia. Radiotherapy and cisplatin (CDDP)-based chemotherapy are the main treatment options. Unfortunately, disease response to concurrent chemoradiotherapy varies among patients with NPC, and many cases are resistant to CDDP and radiotherapy. NFBD1 functions in cell cycle checkpoint activation and DNA repair following DNA damage. In this study, we identified the NFBD1 as a tractable molecular target to chemosensitize NPC cells. NFBD1 expression in NPC CNE1 cell lines was depleted using lentivirus-mediated short hairpin RNA, and the elevated sensitivity of these NFBD1-inhibited NPC cells to therapeutic reagent CDDP and 5-fluorouracil (5-FU) was evaluated using MTS assays. Flow cytometry analysis also showed that NFBD1 knockdown led to an obvious induction of apoptosis in CDDP- or 5-FU-treated CNE1 cells. Furthermore, we implicated the involvement of NFBD1 in Rad51 and DNA-PKcs foci formation following CDDP or 5-FU chemotherapy. In conclusion, NFBD1 knockdown improves the chemosensitivity of NPC cells by inhibiting cell growth and promoting apoptosis through the impairment of DNA damage repair, suggesting NFBD1 as a novel therapeutic target for NPC.

  相似文献   

19.
J Sun  CA Yeung  NN Co  TY Tsang  E Yau  K Luo  P Wu  JC Wa  KP Fung  TT Kwok  F Liu 《PloS one》2012,7(8):e40720
Multidrug resistance(MDR)is one of the major reasons for failure in cancer chemotherapy and its suppression may increase the efficacy of therapy. The human multidrug resistance 1 (MDR1) gene encodes the plasma membrane P-glycoprotein (P-gp) that pumps various anti-cancer agents out of the cancer cell. R-HepG2 and MES-SA/Dx5 cells are doxorubicin induced P-gp over-expressed MDR sublines of human hepatocellular carcinoma HepG2 cells and human uterine carcinoma MES-SA cells respectively. Herein, we observed that clitocine, a natural compound extracted from Leucopaxillus giganteus, presented similar cytotoxicity in multidrug resistant cell lines compared with their parental cell lines and significantly suppressed the expression of P-gp in R-HepG2 and MES-SA/Dx5 cells. Further study showed that the clitocine increased the sensitivity and intracellular accumulation of doxorubicin in R-HepG2 cells accompanying down-regulated MDR1 mRNA level and promoter activity, indicating the reversal effect of MDR by clitocine. A 5'-serial truncation analysis of the MDR1 promoter defined a region from position -450 to -193 to be critical for clitocine suppression of MDR1. Mutation of a consensus NF-κB binding site in the defined region and overexpression of NF-κB p65 could offset the suppression effect of clitocine on MDR1 promoter. By immunohistochemistry, clitocine was confirmed to suppress the protein levels of both P-gp and NF-κB p65 in R-HepG2 cells and tumors. Clitocine also inhibited the expression of NF-κB p65 in MES-SA/Dx5. More importantly, clitocine could suppress the NF-κB activation even in presence of doxorubicin. Taken together; our results suggested that clitocine could reverse P-gp associated MDR via down-regulation of NF-κB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号