首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biorheology》1995,32(4):459-471
In vitro experiments were conducted to measure the oscillatory flow pressure gradient along an elastic tube in order to assess the recent nonlinear theory of Wang and Tarbell. According to this theory, in an elastic tube with oscillatory flow, the mean (time-averaged) pressure gradient cannot be calculated using Poiseuille's law. The effect of wall motion creates a nonlinear convective acceleration, and an induced mean pressure gradient is required to balance the convective acceleration. The induced mean pressure gradient depends on the diameter variation over a cycle, the pulsatility and unsteadiness of the flow, and the phase difference between the pressure wave form and the flow wave form. The amplitude of the pressure gradient also depends on these parameters and may deviate significantly from Womersley's rigid tube theory. A flow loop was constructed to produce oscillatory flow in an elastic tube. Flow wave forms were measured with an ultrasonic flow probe, and ultrasonic diameter crystals were used to measure wall movement. A special device for pressure drop measurement was constructed using Millar catheter tip transducers to obtain both forward and backward pressure drops that were then averaged. This averaging method eliminated the static error of the pressure transducers. The pressure-flow phase angle was varied by clamping a distal elastic section at various locations. Pressure gradients were obtained for a range of phase angles between −55 ° and +49 °. The mean and amplitude of the measured pressure gradient were compared to theoretical values. Both positive and negative induced mean pressure gradients were measured over the range of phase angles. The measured pressure gradient amplitudes were always lower than predicted by Womersley's rigid tube theory. The experimental means and amplitudes are in good agreement with the elastic tube theoretical values. Thus, the experiments verify the theory of Wang and Tarbell.  相似文献   

2.
Many studies have shown that a loading-induced (bio)physical signal regulates chondrocyte behavior. In a recent study our group has demonstrated the shear stress level- and frequency-dependent effect of sinusoidal oscillatory fluid flow on bovine articular chondrocyte (BAC) cytosolic calcium concentration ([Ca(2+)](i)), neglecting the fact that chondrocytes are not likely to see these ideal waveform in vivo or in vitro. Furthermore, possible overload of articular cartilage or excessive shear stress in chondrocyte cultures are more likely to be of a short nature. Therefore, in this study we choose to investigate a saw-tooth waveform oscillating fluid flow at varying exposure times in comparison to the established sinusoidal oscillatory waveform. [Ca(2+)](i), as an early signaling molecule, was quantified using the fluorescent dye fura-2. BAC were exposed to 1 Hz sinusoidal or saw-tooth waveform oscillating fluid flow at 2.2 Pa flow rates in a parallel plate flow chamber for 8 different loading times. As little as 5 cycles of oscillatory fluid flow were sufficient to increase [Ca(2+)](i) significantly over baseline. The number of responding cells could not be increased any further after a sufficient number of cycles (11), regardless of the waveform. Furthermore, a saw-tooth waveform appeared to be more stimulatory than regular sinusoidal oscillating flow at higher cycle numbers. BAC appear to be able to respond to these biophysical stimuli in a differentiated manner. This ability might give every single chondrocyte the capability to maintain its territory autonomously, since chondrocytes distributed in articular cartilage without the possibility to interact, e.g., via cell processes.  相似文献   

3.
4.
5.
The synchronized response of the compound eye of the horseshoe crab to uniform illumination arises from the integration of excitation with the strong lateral inhibition present in many specimens. At the higher levels of excitation, the steady production of nerve impulses by individual eccentric cells is often replaced by periodically recurring volleys of impulses. This behavior is shown here to be the result of the temporal behavior of the post-synaptic potentials responsible for lateral inhibition. For a broad class of inhibitory potentials, a simple condition is established which separates potentials which permit volleys at high excitation levels from those which support only the steady production of impulses throughout the physiological range of excitations.  相似文献   

6.
7.
Stimulus properties, attention, and behavioral context influence correlations between the spike times produced by a pair of neurons. However, the biophysical mechanisms that modulate these correlations are poorly understood. With a combined theoretical and experimental approach, we show that the rate of balanced excitatory and inhibitory synaptic input modulates the magnitude and timescale of pairwise spike train correlation. High rate synaptic inputs promote spike time synchrony rather than long timescale spike rate correlations, while low rate synaptic inputs produce opposite results. This correlation shaping is due to a combination of enhanced high frequency input transfer and reduced firing rate gain in the high input rate state compared to the low state. Our study extends neural modulation from single neuron responses to population activity, a necessary step in understanding how the dynamics and processing of neural activity change across distinct brain states.  相似文献   

8.
Patterning of the terminal regions of the Drosophila embryo relies on the gradient of phosphorylated ERK/MAPK (dpERK), which is controlled by the localized activation of the Torso receptor tyrosine kinase [1-4]. This model is supported by a large amount of data, but the gradient itself has never been quantified. We present the first measurements of the dpERK gradient and establish a new intracellular layer of its regulation. Based on the quantitative analysis of the spatial pattern of dpERK in mutants with different levels of Torso as well as the dynamics of the wild-type dpERK pattern, we propose that the terminal-patterning gradient is controlled by a cascade of diffusion-trapping modules. A ligand-trapping mechanism establishes a sharply localized pattern of the Torso receptor occupancy on the surface of the embryo. Inside the syncytial embryo, nuclei play the role of traps that localize diffusible dpERK. We argue that the length scale of the terminal-patterning gradient is determined mainly by the intracellular module.  相似文献   

9.
We propose a new hemodynamic index for the initiation of a cerebral aneurysm, defined by the temporal fluctuations of tension/compression forces acting on endothelial cells. We employed a patient-specific geometry of a human internal carotid artery (ICA) with an aneurysm, and reconstructed the geometry of the ICA before aneurysm formation by artificially removing the aneurysm. We calculated the proposed hemodynamic index and five other hemodynamic indices (wall shear stress (WSS) at peak systole, time-averaged WSS, time-averaged spatial WSS gradient, oscillatory shear index (OSI), and potential aneurysm formation indicator (AFI)) for the geometry before aneurysm formation using a computational fluid dynamics technique. By comparing the distribution of each index at the location of aneurysm formation, we discussed the validity of each. The results showed that only the proposed hemodynamic index had a significant correlation with the location of aneurysm formation. Our findings suggest that the proposed index may be useful as a hemodynamic index for the initiation of cerebral aneurysms.  相似文献   

10.
Sensitivity to corners in flow patterns   总被引:1,自引:0,他引:1  
Flow patterns are two-dimensional orientation structures that arise from the projection of certain kinds of surface coverings (such as fur) onto images. Detecting orientation changes within them is an important task, since the changes often correspond to significant events such as corners, occluding edges, or surface creases. We model such patterns as random-dot Moiré patterns, and examine sensitivity to change in orientation within them. We show that the amount of structure available from which orientation and curvature can be estimated is critical, and introduce a path-length parameter to model it. For short path lengths many discontinuities are smoothed over, which has further implications for computational modeling of orientation selectivity.  相似文献   

11.
Journal of Computational Neuroscience - Syndrome of oculopalatal tremor (OPT) causes pendular nystagmus of the eyes and its disabling consequence on the visual system. Classic pharmacotherapeutic...  相似文献   

12.
Drosophila wings are patterned by a morphogen, Decapentaplegic (Dpp), a member of the TGFbeta superfamily, which is expressed along the anterior and posterior compartment boundary. The distribution and activity of Dpp signaling is controlled in part by the level of expression of its major type I receptor, thickveins (tkv). The level of tkv is dynamically regulated by En and Hh. We have identified a novel gene, master of thickveins (mtv), which downregulates expression of tkv in response to Hh and En. mtv expression is controlled by En and Hh, and is complementary to tkv expression. In this report, we demonstrate that mtv integrates the activities of En and Hh that shape tkv expression pattern. Thus, mtv plays a key part of regulatory mechanism that makes the activity gradient of the Dpp morphogen.  相似文献   

13.
The secreted signaling protein Wingless acts as a morphogen to pattern the imaginal discs of Drosophila. Here we report identification of a secreted repressor of Wingless activity, which we call Notum. Loss of Notum function leads to increased Wingless activity by altering the shape of the Wingless protein gradient. When overexpressed, Notum blocks Wingless activity. Notum encodes a member of the alpha/beta-hydrolase superfamily, with similarity to pectin acetylesterases. We present evidence that Notum influences Wingless protein distribution by modifying the heparan sulfate proteoglycans Dally-like and Dally. High levels of Wingless signaling induce Notum expression. Thus, Wingless contributes to shaping its own gradient by regulating expression of a protein that modifies its interaction with cell surface proteoglycans.  相似文献   

14.
 Intrinsic oscillators are the basic building blocks of central pattern generators, which model the neural circuits underlying pattern generation. Coupled intrinsic oscillators have been shown to synchronize their oscillatory frequencies and to maintain a characteristic pattern of phase relationships. Recently, oscillatory neurons have also been identified in sensory systems that are involved in decoding phase information. It has been hypothesized that the neural oscillators are part of neural circuits that implement phase-locked loops (PLLs), which are well-known electrical circuits for temporal decoding. Thus, there is evidence that intrinsic neural oscillators participate in both temporal pattern generation and temporal pattern decoding. The present paper investigates the dynamics underlying forced oscillators and forced PLLs, using a single framework, and compares both their stability and sensitivity characteristics. In particular, a method for assessing whether an oscillatory neuron is forced directly or indirectly, as part of a PLL, is developed and applied to published data. Received: 17 July 2000 / Accepted in revised form: 14 March 2001  相似文献   

15.
A new property of visual neurons: their sensitivity to orientation and the vector brightness gradient, was revealed and described. Receptive fields of the lateral geniculate body neurons in the cat have preferred orientation maximum reaction (average mean of orientation sensitivity coefficient--0.55 +/- 0.20). The preferred orientation mainly has a radial or tangential trend in the visual field. Temporal characteristics of the neuronal responses were analysed. A role of inhibition processes in the orientation sensitivity is discussed.  相似文献   

16.
17.
18.
The study of a concerted allosteric model for an enzyme activated by the reaction product shows that this system can generate sustained metabolic oscillations regardless of the number of protomers constituting the enzyme. The analysis extends the results previously obtained in a dimeric model for the phosphofructokinase reaction which produces glycolytic periodicities. When the substrate and product concentrations evolve on comparable time scales, the amplitude of oscillations significantly drops as the number of enzyme subunits evolves from 2 to 8. The width of the domain of substrate injection rates which produce oscillations and the periodic variation in enzyme activity also depend on the number of protomers and on the time scale structure of the system. Theoretical predictions are compared with the experiments on glycolytic oscillations in yeast and muscle, and with the structural characteristics of phosphofructokinase. The results are also discussed in relation with the mechanism of cyclic AMP oscillations in the slime mold Dictyostelium discoideum.  相似文献   

19.
Computational models of primary visual cortex have demonstrated that principles of efficient coding and neuronal sparseness can explain the emergence of neurones with localised oriented receptive fields. Yet, existing models have failed to predict the diverse shapes of receptive fields that occur in nature. The existing models used a particular "soft" form of sparseness that limits average neuronal activity. Here we study models of efficient coding in a broader context by comparing soft and "bard" forms of neuronal sparseness. As a result of our analyses, we propose a novel network model for visual cortex. The model forms efficient visual representations in which the number of active neurones, rather than mean neuronal activity, is limited. This form of hard sparseness also economises cortical resources like synaptic memory and metabolic energy. Furthermore, our model accurately predicts the distribution of receptive field shapes found in the primary visual cortex of cat and monkey.  相似文献   

20.
Bone cells subjected to mechanical loading by fluid shear stress undergo significant architectural and biochemical changes. The models of shear stress used to analyze the effects of loading bone cells in vitro include both oscillatory and unidirectional fluid shear profiles. Although the fluid flow profile experienced by cells within bone is most likely oscillatory in nature, to date there have been few direct comparisons of how bone cells respond to these two fluid flow profiles. In this study we evaluated morphologic and biochemical responses to a time course of unidirectional and oscillatory fluid flow in two commonly used bone cell lines, MC3T3-E1 osteoblasts and MLO-Y4 osteocytes. We determined that stress fibers formed and aligned within osteoblasts after 1 h of unidirectional fluid flow, but this response was not observed until greater than 5 h of oscillatory fluid flow. Despite the delay in stress fiber formation, oscillatory and unidirectional fluid flow profiles elicited similar temporal effects on the induction of both cyclooxygenase-2 (Cox-2) and osteopontin protein expression in osteoblasts. Interestingly, MLO-Y4 osteocytes formed organized stress fibers after exposure to 24 h of unidirectional shear stress, while the number of dendritic processes per cell increased along with Cox-2 protein levels after 24 h of oscillatory shear stress. Despite these differences, both flow profiles significantly altered osteopontin levels in MLO-Y4 osteocytes. Together these results demonstrate that the profile of fluid shear can induce significantly different responses from osteoblasts and osteocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号