首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Yeast SIR2, the founding member of a conserved gene family, acts to modulate chromatin structure in three different contexts: silent (HM) mating-type loci, telomeres and rDNA. At HM loci and telomeres, Sir2p forms a complex with Sir3p and Sir4p. However, Sir2p's role in rDNA silencing is Sir3/4 independent, requiring instead an essential nucleolar protein, Net1p. We describe two novel classes of SIR2 mutations specific to either HM/telomere or rDNA silencing. Despite their opposite effects, both classes of mutations cluster in the same two regions of Sir2p, each of which borders on a conserved core domain. A surprising number of these mutations are dominant. Several rDNA silencing mutants display a Sir2p nucleolar localization defect that correlates with reduced Net1p binding. Although the molecular defect in HM/telomere-specific mutants is unclear, they mimic an age-related phenotype where Sir3p and Sir4p relocalize to the nucleolus. Artificial targeting can circumvent the silencing defect in a subset of mutants from both classes. These results define distinct functional domains of Sir2p and provide evidence for additional Sir2p-interacting factors with locus-specific silencing functions.  相似文献   

3.
4.
5.
6.
7.
8.
Silent information regulator 2 (Sir2), the founding member of the conserved sirtuin family of NAD+-dependent histone deacetylase, regulates several physiological processes including genome stability, gene silencing, metabolism and life span in yeast. Within the nucleus, Sir2 is associated with telomere clusters in the nuclear periphery and rDNA in the nucleolus and regulates gene silencing at these genomic sites. How distribution of Sir2 between telomere and rDNA is regulated is not known. Here we show that Sir2 is sumoylated and this modification modulates the intra-nuclear distribution of Sir2. We identify Siz2 as the key SUMO ligase and show that multiple lysines in Sir2 are subject to this sumoylation activity. Mutating K215 alone counteracts the inhibitory effect of Siz2 on telomeric silencing. SUMO modification of Sir2 impairs interaction with Sir4 but not Net1 and, furthermore, SUMO modified Sir2 shows predominant nucleolar localization. Our findings demonstrate that sumoylation of Sir2 modulates distribution between telomeres and rDNA and this is likely to have implications for Sir2 function in other loci as well.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Genetic and biochemical evidence implicates chromatin structure in the silencing of the two quiescent mating-type loci near the telomeres of chromosome III in yeast. With high-resolution micrococcal nuclease mapping, we show that the HMRa locus has 12 precisely positioned nucleosomes spanning the distance between the E and I silencer elements. The nucleosomes are arranged in pairs with very short linkers; the pairs are separated from one another by longer linkers of approximately 20 bp. Both the basic amino-terminal region of histone H4 and the silent information regulator protein Sir3p are necessary for the organized repressive chromatin structure of the silent locus. Compared to HMRa, only small differences in the availability of the TATA box are present for the promoter in the cassette at the active MATa locus. Features of the chromatin structure of this silent locus compared to the previously studied HMLalpha locus suggest differences in the mechanisms of silencing and may relate to donor selection during mating-type interconversion.  相似文献   

17.
18.
19.
Histones of heterochromatin are deacetylated in yeast and methylated in more complex eukaryotes to regulate heterochromatin structure and gene silencing. Here, we report that histone H2A phosphorylated at serine 129 (γH2A) in Saccharomyces cerevisiae is a conceptually new type of heterochromatin modification that functions downstream of silent chromatin assembly. We show that γH2A is enriched throughout yeast telomeric and silent mating locus (HM) heterochromatin where γH2A results from the action of kinases Tel1 and Mec1. Interestingly, mutation of γH2A has no apparent effect on the binding of Sir (silent information regulator) complex or on gene silencing. In contrast, deletion of SIR3 abolishes the formation of γH2A at heterochromatin. To address the function of γH2A, we used a Δrif1 mutant strain in which telomeres are excessively elongated to show that γH2A is required for the optimal recruitment of Cdc13, a regulator of telomere elongation, and for telomere elongation itself. Thus, a histone modification that parallels Sir3 protein binding is shown here to be dispensable for the formation of a silent structure but is important for a crucial heterochromatin-specific downstream function in telomere homeostasis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号