首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PK 11195 and DAA1106 bind with high-affinity to the translocator protein (TSPO, formerly known as the peripheral benzodiazepine receptor). TSPO expression in glial cells increases in response to cytokines and pathological stimuli. Accordingly, [11C]-PK 11195 and [11C]-DAA1106 are recognized molecular imaging (MI) agents capable of monitoring changes in TSPO expression occurring in vivo and in response to various neuropathologies.Here we tested the pharmacological characteristics and TSPO-monitoring potential of two novel MI agents: NIR-conPK and NIR-6T. NIR-conPK is an analogue of PK 11195 conjugated to the near-infrared (NIR) emitting fluorophore: IRDye 800CW. NIR-6T is a DAA1106 analogue also conjugated to IRDye 800CW.We found that NIR-6T competed for [3H]-PK 11195 binding in astrocytoma cell homogenates with nanomolar affinity, but did not exhibit specific binding in intact astrocytoma cells in culture, indicating that NIR-6T is unlikely to constitute a useful MI agent for monitoring TSPO expression in intact cells. Conversely, we found that NIR-conPK did not compete for [3H]-PK 11195 binding in astrocytoma cell homogenate, but exhibited specific binding in intact astrocytoma cells in culture with nanomolar affinity, suggesting that NIR-conPK binds to a protein distinct, but related to, TSPO. Accordingly, treating intact astrocytoma cells and microglia in culture with cytokines led to significant changes in the amount of NIR-conPK specific binding without corresponding change in TSPO expression. Remarkably, the cytokine-induced changes in the protein targeted by NIR-conPK in intact microglia were selective, since IFN-γ (but not TNFα and TGFβ) increased the amount of NIR-conPK specific binding in these cells.Together these results suggest that NIR-conPK binds to a protein that is related to TSPO, and expressed by astrocytomas and microglia. Our results also suggest that the expression of this protein is increased by specific cytokines, and thus allows for the monitoring of a particular subtype of microglia activation.  相似文献   

2.
The peripheral benzodiazepine receptor (PBR) is a trans-mitochondrial membrane protein that modulates steroid biosynthesis. Recently, up-regulation and nuclear localization of PBR has been shown to be associated with colon, prostate, and breast cancer. PBR has been targeted by the exogenous synthetic ligand, PK11195, for various purposes including imaging. To capitalize on these observations, we developed a high-throughput, noninvasive, in vivo imaging approach to detect spontaneously arising colonic tumors in mice using a novel PBR-targeted molecular imaging agent (NIR-conPK11195). NIR-conPK11195 localized and was retained in colonic adenomas and carcinomas in Smad3(-/-) mice but not in non-neoplastic hamartomas or chronically inflamed colonic tissue. Using a fluorescence signal-to-noise ratio of > or =4-fold 13 h after injection of the agent, we detected colonic tumors with a sensitivity of 67% and a specificity of 86% in a cohort of 37 Smad3(-/-) mice and control littermates. Furthermore, using oral administration of dextran sulfate to induce colonic inflammation, we showed that the clearance profile of NIR-conPK11195 distinguished transient uptake in inflammatory tissue from longer term retention in tumors. Taken together, these results indicate that NIR-conPK11195 is a promising optical molecular imaging tool to rapidly screen for colonic tumors in mice and to discriminate inflammation from cancer.  相似文献   

3.
We developed a molecular imaging agent (MIA), a conjugable form of PK11195 (conPK11195) coupled to a lissamine dye (Liss-ConPK11195), which targets the peripheral benzodiazepine receptor (PBR). To determine that our compound specifically binds to this 18 kDa protein, primarily expressed on the mitochondria, we performed classic binding studies on live MDA-MB-231 breast cancer cells and measured fluorescence in cell fractions of C6 glioma cells. We found that conPK11195 conjugated to the fluorophore retained significant binding to its target. Here we demonstrate the utility of the agent for in vitro imaging of live cells by specific binding to the protein of interest.  相似文献   

4.
目的通过比较亲骨转移乳腺癌细胞(MDA-MB-231BO)和亲代乳腺癌细胞(MDA-MB-231)的生长曲线和致瘤性,初步探讨MDA-MB-231BO细胞的生物学特性。方法MTT法测定两种细胞的生长曲线,并将两种乳腺癌细胞接种于裸鼠腋窝处皮下,建立乳腺癌细胞异种移植瘤动物模型,30 d后处死裸鼠,肿瘤组织及相关脏器官做病理检查。结果MTT法测得MDA-MB-231BO细胞生长速率高于MDA-MB-231细胞。接种两种乳腺癌细胞的裸鼠均长出肿瘤,成瘤率为100%。病理检查符合人乳腺癌细胞特征,MDA-MB-231BO组瘤体体积明显大于MDA-MB-231组(P〈0.05)。结论MDA-MB-231BO细胞生长速率高于MDA-MB-231细胞,而且MDA-MB-231BO在裸鼠体内的致瘤性强于MDA-MB-231。  相似文献   

5.
The functional effects of a drug ligand may be due not only to an interaction with its membrane protein target, but also with the surrounding lipid membrane. We have investigated the interaction of a drug ligand, PK11195, with its primary protein target, the integral membrane 18 kDa translocator protein (TSPO), and model membranes using Langmuir monolayers, quartz crystal microbalance with dissipation monitoring (QCM-D) and neutron reflectometry (NR). We found that PK11195 is incorporated into lipid monolayers and lipid bilayers, causing a decrease in lipid area/molecule and an increase in lipid bilayer rigidity. NR revealed that PK11195 is incorporated into the lipid chain region at a volume fraction of ~ 10%. We reconstituted isolated mouse TSPO into a lipid bilayer and studied its interaction with PK11195 using QCM-D, which revealed a larger than expected frequency response and indicated a possible conformational change of the protein. NR measurements revealed a TSPO surface coverage of 23% when immobilised to a modified surface via its polyhistidine tag, and a thickness of 51 Å for the TSPO layer. These techniques allowed us to probe both the interaction of TSPO with PK11195, and PK11195 with model membranes. It is possible that previously reported TSPO-independent effects of PK11195 are due to incorporation into the lipid bilayer and alteration of its physical properties. There are also implications for the variable binding profiles observed for TSPO ligands, as drug–membrane interactions may contribute to the apparent affinity of TSPO ligands.  相似文献   

6.
A dual probe with fluorescent and magnetic reporter groups was constructed by linkage of the near-infrared (NIR) fluorescent transferrin conjugate (Tf(NIR)) on the surface of contrast agent-encapsulated cationic liposome (Lip-CA). This probe was used for magnetic resonance imaging (MRI) and optical imaging of MDA-MB-231-luc breast cancer cells grown as a monolayer in vitro and as solid tumor xenografts in nude mice. Confocal microscopy, optical imaging, and MRI showed a dramatic increase of in vitro cellular uptake of the fluorescent and magnetic reporter groups from the probe compared with the uptake of contrast agent or Lip-CA alone. Pretreatment with transferrin (Tf) blocked uptake of the probe reporters, indicating the importance and specificity of the Tf moiety for targeting. Intravenous administration of the dual probe to nude mice significantly enhanced the tumor contrast in MRI, and preferential accumulation of the fluorescent signal was clearly seen in NIR-based optical images. More interestingly, the contrast enhancement in MRI showed a heterogeneous pattern within tumors, which reflected the tumor's morphologic heterogeneity. These results indicate that the newly developed dual probe enhances the tumor image contrast and is superior to contrast agent alone for identifying the tumor pathologic features on the basis of MRI but also is suitable for NIR-based optical imaging.  相似文献   

7.
8.
Here, we investigated the compartment-specific role of cell cycle arrest and senescence in breast cancer tumor growth. For this purpose, we generated a number of hTERT-immortalized senescent fibroblast cell lines overexpressing CDK inhibitors, such as p16(INK4A), p19(ARF) or p21(WAF1/CIP1). Interestingly, all these senescent fibroblast cell lines showed evidence of increased susceptibility toward the induction of autophagy (either at baseline or after starvation), as well as significant mitochondrial dysfunction. Most importantly, these senescent fibroblasts also dramatically promoted tumor growth (up to ~2-fold), without any comparable increases in tumor angiogenesis. Conversely, we generated human breast cancer cells (MDA-MB-231 cells) overexpressing CDK inhibitors, namely p16(INK4A) or p21(WAF1/CIP1). Senescent MDA-MB-231 cells also showed increased expression of markers of cell cycle arrest and autophagy, including β-galactosidase, as predicted. Senescent MDA-MB-231 cells had retarded tumor growth, with up to a near 2-fold reduction in tumor volume. Thus, the effects of CDK inhibitors are compartment-specific and are related to their metabolic effects, which results in the induction of autophagy and mitochondrial dysfunction. Finally, induction of cell cycle arrest with specific inhibitors (PD0332991) or cellular stressors [hydrogen peroxide (H?O?) or starvation] indicated that the onset of autophagy and senescence are inextricably linked biological processes. The compartment-specific induction of senescence (and hence autophagy) may be a new therapeutic target that could be exploited for the successful treatment of human breast cancer patients.  相似文献   

9.
Gliomas are the most common brain tumours with a poor prognosis due to their aggressiveness and propensity for recurrence. The 18 kDa translocator protein (TSPO) has been demonstrated to be greatly expressed in glioma cells and its over-expression has been correlated with glioma malignance grades. Due to both its high density in tumours and the pro-apoptotic activity of its ligands, TSPO has been suggested as a promising target in gliomas. With the aim to evidence if the TSPO expression level alters glioma cell susceptibility to undergo to cell death, we analysed the effects of the specific TSPO ligand, PK 11195, in human astrocytoma wild-type and TSPO-silenced cell lines. As first step, TSPO was characterised in human astrocytoma cell line (ADF). Our data demonstrated the presence of a single class of TSPO binding sites highly expressed in mitochondria. PK 11195 cell treatment activated an autophagic pathway followed by apoptosis mediated by the modulation of the mitochondrial permeability transition. In TSPO-silenced cells, produced by siRNA technique, a reduced cell proliferation rate and a decreased cell susceptibility to the PK 11195-induced anti-proliferative effect and mitochondrial potential dissipation were demonstrated respect to control cells. In conclusion, for the first time, PK 11195 was demonstrated to differentially affect glioma cell survival in relation to TSPO expression levels. These results encourage the development of specific-cell strategies for the treatment of gliomas, in which TSPO is highly expressed respect to normal cells.  相似文献   

10.
Nitric oxide (NO) is an essential signaling molecule in biological systems. Soluble guanylate cyclase (sGC), composing of α1 and β1 subunit, is the receptor for NO. Using radioimmunoassay, we discovered that activation of sGC by treatment with bradykinin or sodium nitroprusside (SNP) is impaired in MCF-7 and MDA-MB-231 breast cancer cells as compared to normal breast epithelial 184A1 cells. The 184A1 cells expressed both sGC α1 and sGCβ1 mRNAs. However, levels of sGCβ1 mRNAs were relatively lower in MCF-7 cells while both mRNA of sGC subunits were absent in MDA-MB-231 cells. Treatment with DNA methyltransferase inhibitor 5-aza-2’-deoxycytidine (5-aza-dC) increased mRNA levels of both sGCα1 and sGCβ1 in MDA-MB-231 cells but only sGCβ1 mRNAs in MCF-7 cells. The 5-aza-dC treatment increased the SNP-induced cGMP production in MCF-7 and MDA-MB-231, but not in 184A1 cells. Bisulfite sequencing revealed that the promoter of sGCα1 in MDA-MB-231 cells and promoter of sGCβ1 in MCF-7 cells were methylated. Promoter hypermethylation of sGCα1 and sGCβ1 was found in 1 out of 10 breast cancer patients. Over-expression of both sGC subunits in MDA-MB-231 cells induced apoptosis and growth inhibition in vitro as well as reduced tumor incidence and tumor growth rate of MDA-MB-231 xenografts in nude mice. Elevation of sGC reduced protein abundance of Bcl-2, Bcl-xL, Cdc2, Cdc25A, Cyclin B1, Cyclin D1, Cdk6, c-Myc, and Skp2 while increased protein expression of p53. Our study demonstrated that down-regulation of sGC, partially due to promoter methylation, provides growth and survival advantage in human breast cancer cells.  相似文献   

11.
Antony ML  Kim SH  Singh SV 《PloS one》2012,7(2):e32267
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast), MCF-7 (breast), and HCT-116 (colon) human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim) protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA) protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells) and Bcl-2 (MCF-7 cells). Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study indicate that Bim-independent apoptosis by BITC in cancer cells is mediated by PUMA.  相似文献   

12.
Zong X  Yang H  Yu Y  Zou D  Ling Z  He X  Meng X 《BMB reports》2011,44(9):595-600
Pax 6, a member of the paired box (Pax) family, has been implicated in oncogenesis. However, its therapeutic potential has been never examined in breast cancer. To explore the role of Pax6 in breast cancer development, a lentivirus based short hairpin RNA (shRNA) delivery system was used to knockdown Pax6 expression in estrogen receptor (ER)-positive (MCF-7) and ER-negative (MDA-MB-231) breast cancer cells. Effect of Pax6 silencing on breast cancer cell proliferation and tumorigenesis was analyzed. Pax6-RNAi-lentivirus infection remarkably downregulated the expression levels of Pax6 mRNA and protein in MCF-7 and MDA-MB-231 cells. Accordingly, the cell viability, DNA synthesis, and colony formation were strongly suppressed, and the tumorigenesis in xenograft nude mice was significantly inhibited. Moreover, tumor cells were arrested at G0/G1 phase after Pax6 was knocked down. Pax6 facilitates important regulatory roles in breast cancer cell proliferation and tumor progression, and could serve as a diagnostic marker for clinical investigation.  相似文献   

13.
14.
15.
Mitochondria play important roles in cancer progression and have emerged as viable targets for cancer therapy. Increasing levels of the outer mitochondrial membrane protein, 18-kDa translocator protein (TSPO), are associated with advancing breast cancer stage. In particular, higher TSPO levels are found in estrogen receptor (ER)-negative breast tumors, compared with ER-positive tumors. In this study, we sought to define the roles of TSPO in the acquisition of breast cancer malignancy. Using a three-dimensional Matrigel culture system, we determined the impact of elevated TSPO levels on mammary epithelial morphogenesis. Our studies demonstrate that stable overexpression of TSPO in mammary epithelial MCF10A acini drives proliferation and provides partial resistance to luminal apoptosis, resulting in enlarged acinar structures with partially filled lumen that resemble early stage breast lesions leading to breast cancer. In breast cancer cell lines, TSPO silencing or TSPO overexpression significantly altered the migratory activity. In addition, we found that combination treatment with the TSPO ligands (PK 11195 or Ro5-4864) and lonidamine, a clinical phase II drug targeting mitochondria, decreased viability of ER-negative breast cancer cell lines. Taken together, these data demonstrate that increases in TSPO levels at different stages of breast cancer progression results in the acquisition of distinct properties associated with malignancy. Furthermore, targeting TSPO, particularly in combination with other mitochondria-targeting agents, may prove useful for the treatment of ER-negative breast cancer.  相似文献   

16.
OBJECTIVES: Brain metastases due to breast cancer are increasing, and the prognosis is poor. Lack of effective therapy is attributed to heterogeneity of breast cancers and their resulting metastases, as well as impermeability of the blood–brain barrier (BBB), which hinders delivery of therapeutics to the brain. This work investigates three experimental models of HER2 + breast cancer brain metastasis to better understand the inherent heterogeneity of the disease. We use magnetic resonance imaging (MRI) to quantify brain metastatic growth and explore its relationship with BBB permeability. DESIGN: Brain metastases due to breast cancer cells (SUM190-BR3, JIMT-1-BR3, or MDA-MB-231-BR-HER2) were imaged at 3 T using balanced steady-state free precession and contrast-enhanced T1-weighted spin echo sequences. The histology and immunohistochemistry corresponding to MRI were also analyzed. RESULTS: There were differences in metastatic tumor appearance by MRI, histology, and immunohistochemistry (Ki67, CD31, CD105) across the three models. The mean volume of an MDA-MB-231-BR-HER2 tumor was significantly larger compared to other models (F2,12 = 5.845, P < .05); interestingly, this model also had a significantly higher proportion of Gd-impermeable tumors (F2,12 = 22.18, P < .0001). Ki67 staining indicated that Gd-impermeable tumors had significantly more proliferative nuclei compared to Gd-permeable tumors (t[24] = 2.389, P < .05) in the MDA-MB-231-BR-HER2 model. CD31 and CD105 staining suggested no difference in new vasculature patterns between permeable and impermeable tumors in any model. CONCLUSION: Significant heterogeneity is present in these models of brain metastases from HER2 + breast cancer. Understanding this heterogeneity, especially as it relates to BBB permeability, is important for improvement in brain metastasis detection and treatment delivery.  相似文献   

17.
目的建立简便的人乳腺癌裸鼠移植模型,并探讨其部分生物学特性。方法采用雌激素受体阴性的MDA-MB-231和SK-BR-3人乳腺癌细胞株,分别接种于10只裸鼠左侧腋窝皮下,移植细胞总数为1×107/只。观察肿块生长情况,第42天处死荷瘤鼠,切除肿块作病理切片。结果 MDA-MB-231接种后第5d在接种部位可见结节,成瘤率为90%(9/10),接种42 d肿瘤体积426.6±333.8,瘤重0.417±0.276,病理学检查为浸润性导管癌;SK-BR-3接种后第11天在接种部位可见结节,成瘤率为80%(8/10),接种42 d肿瘤体积357.5±246,瘤重0.325±0.167,病理学检查为浸润性导管癌。结论该方法建立的人乳腺癌裸鼠移植模型,皮下移植方法简单,易于操作,成功率较高,肿瘤可部分保持人乳腺癌生物学特性,为研究人乳腺癌提供了重要工具。  相似文献   

18.
A longer survival and a decrease in the number of fungal cells in kidneys and brain were observed in groups of mice inoculated with Aspergillus fumigatus conidia 2-3 weeks (especially 3 weeks) after sarcoma 180 tumor transplantation compared to groups of non-tumor-bearing (control) mice inoculated with fungal cells only. The 3-4-week tumor-bearing mice had significantly decreased levels of serum iron and increased levels of unbound iron binding capacity in the serum compared to those of the non-tumor-bearing mice.  相似文献   

19.
An ideal approach to treat cancers with dysfunctional p53 tumor suppressor gene is to reinstate p53 functionality by directly using p53 protein as a therapeutic agent. However, this has not been possible because the cells cannot readily internalize the protein. We constructed a fusion protein consisting of gonadotropin-releasing hormone (GnRH-p53) and p53 moieties. The recombinant protein was directly used to treat human breast cancer cells and athymic nude mice bearing breast cancer xenografts, with or without DNA synthesis-arresting agent 5-fluorouracil (5-FU). Treatments of cells from breast cancer cell-lines MDA-MB-231, T47D, or SKBR-3 with GnRH-p53 in combination with 5-FU significantly enhanced p53-activated apoptosis signals, including PUMA expression, BAX translocation to mitochondria, and activated caspase-3. Intratumoral injection of the GnRH-p53 protein inhibited MDA-MB-231 xenograft growth and induced p53-mediated apoptosis in the tumors. Systemic treatment of the tumor-bearing mice via tail vein injection of GnRH-p53 markedly augmented the anticancer efficacy of 5-FU. Substitution of GnRH-p53 with wild type p53 protein had no effect. Recombinant GnRH-p53 is able to function as a surrogate of p53 with regard to its apoptosis-inducing activity. Combination of GnRH-p53 with DNA-damaging drugs may be of important therapeutic value for cancer treatment.  相似文献   

20.
Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR) and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231), and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01), reduced osteolytic lesion tumor volume (p<0.01), increased survivorship in vivo (p<0.001), and resulted in decreased MDA-231 growth in the fat pad (p<0.01). Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1) and matrix metalloproteinase 9 (MMP9), both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号