首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction of long-term potentiation at CA3-CA1 synapses is caused by an N-methyl-d-aspartate (NMDA) receptordependent accumulation of intracellular Ca(2+), followed by Src family kinase activation and a positive feedback enhancement of NMDA receptors (NMDARs). Nevertheless, the amplitude of baseline transmission remains remarkably constant even though low frequency stimulation is also associated with an NMDAR-dependent influx of Ca(2+) into dendritic spines. We show here that an interaction between C-terminal Src kinase (Csk) and NMDARs controls the Src-dependent regulation of NMDAR activity. Csk associates with the NMDAR signaling complex in the adult brain, inhibiting the Src-dependent potentiation of NMDARs in CA1 neurons and attenuating the Src-dependent induction of long-term potentiation. Csk associates directly with Src-phosphorylated NR2 subunits in vitro. An inhibitory antibody for Csk disrupts this physical association, potentiates NMDAR mediated excitatory postsynaptic currents, and induces long-term potentiation at CA3-CA1 synapses. Thus, Csk serves to maintain the constancy of baseline excitatory synaptic transmission by inhibiting Src kinase-dependent synaptic plasticity in the hippocampus.  相似文献   

2.
Tyrosine phosphorylation of the NR2A and NR2B subunits of the N-methyl-d-aspartate (NMDA) receptor by Src protein-tyrosine kinases modulates receptor channel activity and is necessary for the induction of long term potentiation (LTP). Deletion of H-Ras increases both NR2 tyrosine phosphorylation and NMDA receptor-mediated hippocampal LTP. Here we investigated whether H-Ras regulates phosphorylation and function of the NMDA receptor via Src family protein-tyrosine kinases. We identified Src as a novel H-Ras binding partner. H-Ras bound to Src but not Fyn both in vitro and in brain via the Src kinase domain. Cotransfection of H-Ras and Src inhibited Src activity and decreased NR2A tyrosine phosphorylation. Treatment of rat brain slices with Tat-H-Ras depleted NR2A from the synaptic membrane, decreased endogenous Src activity and NR2A phosphorylation, and decreased the magnitude of hippocampal LTP. No change was observed for NR2B. We suggest that H-Ras negatively regulates Src phosphorylation of NR2A and retention of NR2A into the synaptic membrane leading to inhibition of NMDA receptor function. This mechanism is specific for Src and NR2A and has implications for studies in which regulation of NMDA receptor-mediated LTP is important, such as synaptic plasticity, learning, and memory and addiction.  相似文献   

3.
Previous studies have shown that Csk plays critical roles in the regulation of neural development, differentiation and glutamate-mediated synaptic plasticity. It has been found that Csk associates with the NR2A and 2B subunits of N-methyl-D-aspartate receptors (NMDARs) in a Src activity-dependent manner and serves as an intrinsic mechanism to provide a “brake” on the induction of long-term synaptic potentiation (LTP) mediated by NMDARs. In contrast to the NR2A and 2B subunits, no apparent tyrosine phosphorylation is found in the NR1 subunit of NMDARs. Here, we report that Csk can also associate with the NR1 subunit in a Src activity-dependent manner. The truncation of the NR1 subunit C-tail which contains only one tyrosine (Y837) significantly reduced the Csk association with the NR1-1a/NR2A receptor complex. Furthermore, we found that either the truncation of NR2A C-tail at aa 857 or the mutation of Y837 in the NR1-1a subunit to phenylalanine blocked the inhibition of NR1-1a/NR2A receptors induced by intracellular application of Csk. Thus, both the NR1 and NR2 subunits are required for the regulation of NMDAR activity by Csk.  相似文献   

4.
While the spatiotemporal development of Tau pathology has been correlated with occurrence of cognitive deficits in Alzheimer's patients, mechanisms underlying these deficits remain unclear. Both brain‐derived neurotrophic factor (BDNF) and its tyrosine kinase receptor TrkB play a critical role in hippocampus‐dependent synaptic plasticity and memory. When applied on hippocampal slices, BDNF is able to enhance AMPA receptor‐dependent hippocampal basal synaptic transmission through a mechanism involving TrkB and N‐methyl‐d‐Aspartate receptors (NMDAR). Using THY‐Tau22 transgenic mice, we demonstrated that hippocampal Tau pathology is associated with loss of synaptic enhancement normally induced by exogenous BDNF. This defective response was concomitant to significant memory impairments. We show here that loss of BDNF response was due to impaired NMDAR function. Indeed, we observed a significant reduction of NMDA‐induced field excitatory postsynaptic potential depression in the hippocampus of Tau mice together with a reduced phosphorylation of NR2B at the Y1472, known to be critical for NMDAR function. Interestingly, we found that both NR2B and Src, one of the NR2B main kinases, interact with Tau and are mislocalized to the insoluble protein fraction rich in pathological Tau species. Defective response to BDNF was thus likely related to abnormal interaction of Src and NR2B with Tau in THY‐Tau22 animals. These are the first data demonstrating a relationship between Tau pathology and synaptic effects of BDNF and supporting a contribution of defective BDNF response and impaired NMDAR function to the cognitive deficits associated with Tauopathies.  相似文献   

5.
The N-methyl-D-aspartate receptor (NMDAR) plays a critical role in synaptic plasticity and is one of the main targets for alcohol (ethanol) in the brain. Trafficking of the NMDAR is emerging as a key regulatory mechanism that underlies channel activity and synaptic plasticity. Here we show that exposure of hippocampal neurons to ethanol increases the internalization of the NR2A but not NR2B subunit of the NMDAR via the endocytic pathway. We further observed that ethanol exposure results in NR2A endocytosis through the activation of H-Ras and the inhibition of the tyrosine kinase Src. Importantly, ethanol treatment alters functional subunit composition from NR2A/NR2B- to mainly NR2B-containing NMDARs. Our results suggest that addictive drugs such as ethanol alter NMDAR trafficking and subunit composition. This may be an important mechanism by which ethanol exerts its effects on NMDARs to produce alcohol-induced aberrant plasticity.  相似文献   

6.
The N-methyl-D-aspartate receptor (NMDAR), a major excitatory ligand-gated ion channel in the central nervous system (CNS), is a principal mediator of synaptic plasticity. Here we report that neuropilin tolloid-like 1 (Neto1), a complement C1r/C1s, Uegf, Bmp1 (CUB) domain-containing transmembrane protein, is a novel component of the NMDAR complex critical for maintaining the abundance of NR2A-containing NMDARs in the postsynaptic density. Neto1-null mice have depressed long-term potentiation (LTP) at Schaffer collateral-CA1 synapses, with the subunit dependency of LTP induction switching from the normal predominance of NR2A- to NR2B-NMDARs. NMDAR-dependent spatial learning and memory is depressed in Neto1-null mice, indicating that Neto1 regulates NMDA receptor-dependent synaptic plasticity and cognition. Remarkably, we also found that the deficits in LTP, learning, and memory in Neto1-null mice were rescued by the ampakine CX546 at doses without effect in wild-type. Together, our results establish the principle that auxiliary proteins are required for the normal abundance of NMDAR subunits at synapses, and demonstrate that an inherited learning defect can be rescued pharmacologically, a finding with therapeutic implications for humans.  相似文献   

7.
The NMDA subtype of glutamate receptors (NMDAR) at excitatory neuronal synapses plays a key role in synaptic plasticity. The extracellular signal-regulated kinase (ERK1,2 or ERK) pathway is an essential component of NMDAR signal transduction controlling the neuroplasticity underlying memory processes, neuronal development, and refinement of synaptic connections. Here we show that NR2B, but not NR2A or NR1 subunits of the NMDAR, interacts in vivo and in vitro with RasGRF1, a Ca(2+)/calmodulin-dependent Ras-guanine-nucleotide-releasing factor. Specific disruption of this interaction in living neurons abrogates NMDAR-dependent ERK activation. Thus, RasGRF1 serves as NMDAR-dependent regulator of the ERK kinase pathway. The specific association of RasGRF1 with the NR2B subunit and study of ERK activation in neurons with varied content of NR2B suggests that NR2B-containing channels are the dominant activators of the NMDA-dependent ERK pathway.  相似文献   

8.
Recently, the role of EphB receptor (EphBR) tyrosine kinase and their ephrinB ligands in pain-related neural plasticity at the spinal cord level have been identified. To test whether Src-family tyrosine kinase-dependent glutamatergic N-methyl-d-aspartate receptor NR2B subunit phosphorylation underlies lumbosacral spinal EphBR activation to mediate pelvic-urethra reflex potentiation, we recorded external urethra sphincter electromyogram reflex activity and analyzed protein expression in the lumbosacral (L(6)-S(2)) dorsal horn in response to intrathecal ephrinB2 injections. When compared with vehicle solution, exogenous ephrinB2 (5 μg/rat it)-induced reflex potentiation, in associated with phosphorylation of EphB1/2, Src-family kinase, NR2B Y1336 and Y1472 tyrosine residues. Both intrathecal EphB1 and EphB2 immunoglobulin fusion protein (both 10 μg/rat it) prevented ephrinB2-dependent reflex potentiation, as well as protein phosphorylation. Pretreatment with PP2 (50 μM, 10 μl it), an Src-family kinase antagonist, reversed the reflex potentiation, as well as Src kinase and NR2B phosphorylation. Together, these results suggest the ephrinB2-dependent EphBR activation, which subsequently provokes Src kinase-mediated N-methyl-d-aspartate receptor NR2B phosphorylation in the lumbosacral dorsal horn, is crucial for the induction of spinal reflex potentiation contributing to the development of visceral pain and/or hyperalgesia in the pelvic area.  相似文献   

9.

Background

NMDA-type glutamate receptors (NMDARs) are major contributors to long-term potentiation (LTP), a form of synaptic plasticity implicated in the process of learning and memory. These receptors consist of calcium-permeating NR1 and multiple regulatory NR2 subunits. A majority of studies show that both NR2A and NR2B-containing NMDARs can contribute to LTP, but their unique contributions to this form of synaptic plasticity remain poorly understood.

Methodology/Principal Findings

In this study, we show that NR2A and NR2B-containing receptors promote LTP differently in the CA1 hippocampus of 1-month old mice, with the NR2A receptors functioning through Ras-GRF2 and its downstream effector, Erk Map kinase, and NR2B receptors functioning independently of these signaling molecules.

Conclusions/Significance

This study demonstrates that NR2A-, but not NR2B, containing NMDA receptors induce LTP in pyramidal neurons of the CA1 hippocamus from 1 month old mice through Ras-GRF2 and Erk. This difference add new significance to the observation that the relative levels of these NMDAR subtypes is regulated in neurons, such that NR2A-containing receptors become more prominent late in postnatal development, after sensory experience and synaptic activity.  相似文献   

10.
NMDA receptor (NMDAR)-mediated excitatory synaptic transmission plays a critical role in synaptic plasticity and memory formation, whereas its dysfunction may underlie neuropsychiatric and neurodegenerative diseases. The neuroactive steroid pregnenolone sulfate (PS) acts as a cognitive enhancer in impaired animals, augments LTP in hippocampal slices by enhancing NMDAR activity, and may participate in the reduction of schizophrenia's negative symptoms by systemic pregnenolone. We report that the effects of PS on NMDAR function are diverse, varying with subunit composition and NR1 splice variant. While PS potentiates NR1-1a/NR2B receptors through a critical steroid modulatory domain in NR2B that also modulates tonic proton inhibition, potentiation of the NMDA response is not dependent upon relief of such inhibition, a finding that distinguishes it from spermine. In contrast, the presence of an NR2A subunit confers enhanced PS-potentiation at reduced pH, suggesting that it may indeed act like spermine does at NR2B-containing receptors. Additional tuning of the NMDAR response by PS comes via the N-terminal exon-5 splicing insert of NR1-1b, which regulates the magnitude of proton-dependent PS potentiation. For NR2C- and NR2D-containing receptors, negative modulation at NR2C receptors is pH-independent (like NR2B) while negative modulation at NR2D receptors is pH-dependent (like NR2A). Taken together, PS displays a rich modulatory repertoire that takes advantage of the structural diversity of NMDARs in the CNS. The differential pH sensitivity of NMDAR isoforms to PS modulation may be especially important given the emerging role of proton sensors to both learning and memory, as well as brain injury.  相似文献   

11.
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that has been implicated in learning, synaptic plasticity, neurotransmission, and numerous neurological disorders. We previously showed that conditional loss of Cdk5 in adult mice enhanced hippocampal learning and plasticity via modulation of calpain-mediated N-methyl-D-aspartic acid receptor (NMDAR) degradation. In the present study, we characterize the enhanced synaptic plasticity and examine the effects of long-term Cdk5 loss on hippocampal excitability in adult mice. Field excitatory post-synaptic potentials (fEPSPs) from the Schaffer collateral CA1 subregion of the hippocampus (SC/CA1) reveal that loss of Cdk5 altered theta burst topography and enhanced post-tetanic potentiation. Since Cdk5 governs NMDAR NR2B subunit levels, we investigated the effects of long-term Cdk5 knockout on hippocampal neuronal excitability by measuring NMDAR-mediated fEPSP magnitudes and population-spike thresholds. Long-term loss of Cdk5 led to increased Mg2+-sensitive potentials and a lower threshold for epileptiform activity and seizures. Biochemical analyses were performed to better understand the role of Cdk5 in seizures. Induced-seizures in wild-type animals led to elevated amounts of p25, the Cdk5-activating cofactor. Long-term, but not acute, loss of Cdk5 led to decreased p25 levels, suggesting that Cdk5/p25 may be activated as a homeostatic mechanism to attenuate epileptiform activity. These findings indicate that Cdk5 regulates synaptic plasticity, controls neuronal and behavioral stimulus-induced excitability and may be a novel pharmacological target for cognitive and anticonvulsant therapies.  相似文献   

12.
NMDA receptors (NMDARs) activation in the hippocampus and insular cortex is necessary for spatial memory formation. Recent studies suggest that localization of NMDARs to lipid rafts enhance their signalization, since the kinases that phosphorylate its subunits are present in larger proportion in lipid raft membrane microdomains. We sought to determine the possibility that NMDAR translocation to synaptic lipid rafts occurs during plasticity processes such as memory formation. Our results show that water maze training induces a rapid recruitment of NMDAR subunits (NR1, NR2A, NR2B) and PSD-95 to synaptic lipid rafts and decrease in the post-synaptic density plus an increase of NR2B phosphorylation at tyrosine 1472 in the rat insular cortex. In the hippocampus, spatial training induces selective translocation of NR1 and NR2A subunits to lipid rafts. These results suggest that NMDARs translocate from the soluble fraction of post-synaptic membrane (non-raft PSD) to synaptic lipid raft during spatial memory formation. The recruitment of NMDA receptors and other proteins to lipid rafts could be an important mechanism for increasing the efficiency of synaptic transmission during synaptic plasticity process.  相似文献   

13.
N-methyl-d-aspartate receptors (NMDARs) are critical for neuronal maturation and synaptic formation as well as for the onset of long-term potentiation, a process critical to learning and memory in postnatal life. In the current study, we demonstrated that NMDAR subunits undergo spatial, temporal, and sex-specific regulation. During development, we observed increasing NR1 and NR2A expression at the same time as levels of NR2B subunits decreased in the hippocampus and cortex in the fetal guinea pig. We have also shown that glucocorticoids can modulate fetal NMDAR subunit expression in a sex-specific fashion. This is clinically important because synthetic glucocorticoids are administered to pregnant women at risk of preterm labor. Repeated exposure to exogenous glucocorticoids caused a dose-dependent decrease in NR1 mRNA levels and increased NR2A mRNA expression in the female hippocampus at Gestational Day 62. There are significant changes in NMDAR subunit expression in late gestation. It is possible that these alter NMDA-dependent signaling at this time. Prenatal exposure to exogenous glucocorticoids modifies the trajectory of NMDAR subunit expression in females but not in males.  相似文献   

14.
Mice lacking protein tyrosine phosphatase alpha (PTPalpha) exhibited defects in NMDA receptor (NMDAR)-associated processes such as learning and memory, hippocampal neuron migration, and CA1 hippocampal long-term potentiation (LTP). In vivo molecular effectors linking PTPalpha and the NMDAR have not been reported. Thus the involvement of PTPalpha as an upstream regulator of NMDAR tyrosine phosphorylation was investigated in synaptosomes of wild-type and PTPalpha-null mice. Tyrosine phosphorylation of the NMDAR NR2A and NR2B subunits was reduced upon PTPalpha ablation, indicating a positive effect of this phosphatase on NMDAR phosphorylation via intermediate molecules. The NMDAR is a substrate of src family tyrosine kinases, and reduced activity of src, fyn, yes and lck, but not lyn, was apparent in the absence of PTPalpha. In addition, autophosphorylation of proline-rich tyrosine kinase 2 (Pyk2), a tyrosine kinase linked to NMDAR signaling, was also reduced in PTPalpha-deficient synaptosomes. Altered protein tyrosine phosphorylation was not accompanied by altered expression of the NMDAR or the above tyrosine kinases at any stage of PTPalpha-null mouse development examined. In a human embryonic kidney (HEK) 293 cell expression system, PTPalpha enhanced fyn-mediated NR2A and NR2B tyrosine phosphorylation by several-fold. Together, these findings provide evidence that aberrant NMDAR-associated functions in PTPalpha-null mice are due to impaired NMDAR tyrosine phosphorylation resulting from the reduced activity of probably more than one of the src family kinases src, fyn, yes and lck. Defective NMDAR activity in these mice may also be linked to the loss of PTPalpha as an upstream regulator of Pyk2.  相似文献   

15.
The beta subunits of voltage-dependent Ca(2+) channels (VDCCs) have marked effects on the properties of the pore-forming alpha(1) subunits of VDCCs, including surface expression of channel complexes and modification of voltage-dependent kinetics. Among the four different beta subunits, the beta(3) subunit (Ca(v)beta3) is abundantly expressed in the hippocampus. However, the role of Ca(v)beta3 in hippocampal physiology and function in vivo has never been examined. Here, we investigated Ca(v)beta3-deficient mice for hippocampus-dependent learning and memory and synaptic plasticity at hippocampal CA3-CA1 synapses. Interestingly, the mutant mice exhibited enhanced performance in several hippocampus-dependent learning and memory tasks. However, electrophysiological studies revealed no alteration in the Ca(2+) current density, the frequency and amplitude of miniature excitatory postsynaptic currents, and the basal synaptic transmission in the mutant hippocampus. On the other hand, however, N-methyl-d-aspartate receptor (NMDAR)-mediated synaptic currents and NMDAR-dependent long term potentiation were significantly increased in the mutant. Protein blot analysis showed a slight increase in the level of NMDAR-2B in the mutant hippocampus. Our results suggest a possibility that, unrelated to VDCCs regulation, Ca(v)beta3 negatively regulates the NMDAR activity in the hippocampus and thus activity-dependent synaptic plasticity and cognitive behaviors in the mouse.  相似文献   

16.
Animals must recognize and remember conspecifics and potential mates, and distinguish these animals from potential heterospecific competitors and predators. Despite its necessity, aged animals are known to exhibit impaired social recognition memory. As the brain ages, the ratio of NR2A:NR2B in the brain increases over time and has been postulated to underlie the cognitive decline observed during the aging process. Here, we test the hypothesis that an increased NR2A:NR2B subunit ratio underlies long‐term social recognition memory. Using transgenic overexpression of NR2A in the forebrain regions, we investigated the ability of these mice to learn and remember male and female conspecifics, mice of another strain and animals of another rodent species, the rat. Furthermore, due to the importance of olfaction in social recognition, we tested the olfactory memory in the NR2A transgenic mice. Our series of behavioral experiments revealed significant impairments in the NR2A transgenic mice in long‐term social memory of both male and female conspecifics. Additionally, the NR2A transgenic mice are unable to recognize mice of another strain or rats. The NR2A transgenic mice also exhibited long‐term memory impairments in the olfactory recognition task. Taken together, our results provide evidence that an increased NR2A:NR2B ratio in the forebrain leads to reduced long‐term memory function, including the ethologically important memories such as social recognition and olfactory memory .  相似文献   

17.
Cleavage of the intracellular carboxyl terminus of the N-methyl-d-aspartate (NMDA) receptor 2 subunit (NR2) by calpain regulates NMDA receptor function and localization. Here, we show that Fyn-mediated phosphorylation of NR2B controls calpain-mediated NR2B cleavage. In cultured neurons, calpain-mediated NR2B cleavage is significantly attenuated by blocking NR2B phosphorylation of Tyr-1336, but not Tyr-1472, via inhibition of Src family kinase activity or decreasing Fyn levels by small interfering RNA. In HEK cells, mutation of Tyr-1336 eliminates the potentiating effect of Fyn on calpain-mediated NR2B cleavage. The potentiation of NR2B cleavage by Fyn is limited to cell surface receptors and is associated with calpain translocation to plasma membranes during NMDA receptor activation. Finally, reducing full-length NR2B by calpain does not decrease extrasynaptic NMDA receptor function, and truncated NR1/2B receptors similar to those generated by calpain have electrophysiological properties matching those of wild-type receptors. Thus, the Fyn-controlled regulation of NMDA receptor cleavage by calpain may play critical roles in controlling NMDA receptor properties during synaptic plasticity and excitotoxicity.  相似文献   

18.
19.
N-methyl-d-aspartate receptor (NMDAR) stimulation activates many downstream mechanisms involved in both cell survival and cell death. The manner in which the NMDAR regulates one of these pathways, the p38 mitogen-activated protein kinase (p38) pathway, is currently unknown. In the present study, we have defined a developmental-, concentration-, and time-dependent phosphorylation and subsequent dephosphorylation of p38. In cultured hippocampal neurons 7-8 days in vitro (DIV7-8), NMDAR stimulation leads to a concentration-dependent increase in p38 phosphorylation (phospho-p38). However, in more mature neurons (>DIV17) application of NMDA produces concentration-dependent effects, such that low concentrations result in sustained increases in phospho-p38 levels, and high concentrations dephosphorylate p38 within 5 min. Conantokin G, an antagonist of NR1/2A/2B and NR1/2B receptors, inhibits p38 phosphorylation, while NR1/2B-specific antagonists prevent the rapid dephosphorylation of p38 without affecting p38 activation. Furthermore, inhibition of calcineurin prevents the activation of p38, whereas inhibition of phosphoinositide 3-kinase (PI3K) prevents the rapid dephosphorylation of p38. Our results support the presence of subtype-dependent pathways regulating p38 activation and deactivation: one involves NR1/2A/2B receptors activating calcineurin and resulting in p38 phosphorylation, and the other utilizes NR1/2B receptors binding to and activating PI3K and leading to the dephosphorylation of p38 in a manner involving both NR1/2A/2B receptor activation and tyrosine phosphorylation of NR2B. The ability of NMDAR subtype-specific mechanisms to regulate p38 has implications for NMDAR-mediated synaptic plasticity, gene regulation, and excitotoxicity.  相似文献   

20.
Cocaine-induced long-term potentiation of glutamatergic synapses in the ventral tegmental area (VTA) has been proposed as a key process that contributes to the development of addictive behaviors. In particular, the activation of ionotrophic glutamate NMDA receptor (NMDAR) in the VTA is critical for the initiation of cocaine sensitization. Here we show that application of cocaine both in slices and in vivo induced an increase in tyrosine phosphorylation of the NR2A, but not the NR2B subunit of the NMDAR in juvenile rats. Cocaine induced an increase in the activity of both Fyn and Src kinases, and the Src-protein tyrosine kinase (Src-PTKs) inhibitor, 4-amino-5-(4-chlorophenyl)-7-( t -butyl)pyrazolo[3,4-d]pyrimidine (PP2), abolished both cocaine-induced increase in tyrosine phosphorylation of the NR2A subunit and the increase in the expression of NR1, NR2A, and NR2B in the VTA. Moreover, cocaine-induced enhancement in NMDAR-mediated excitatory post-synaptic currents was completely abolished by PP2. Taken together, these results suggest that acute cocaine induced an increase in the expression of NMDAR subunits and enhanced tyrosine phosphorylation of NR2A-containing NMDAR through members of the Src-PTKs. This in turn, increased NMDAR-mediated currents in VTA dopamine neurons. These results provide a potential cellular mechanism by which cocaine triggers NMDAR-dependent synaptic plasticity of VTA neurons that may underlie the development of behavioral sensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号