首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The grain aphid, Sitobion avenae, is an economically important cereal pest worldwide. Aphid saliva plays an essential role in the interaction between aphids and their host plants. However, limited information is available regarding the proteins found in the saliva of S. avenae. Here, the watery saliva proteins from S. avenae were collected in an artificial diet and identified using a liquid chromatography–mass spectrometry/mass spectrometry analysis. A total of 114 proteins were identified in S. avenae saliva, including several enzymes, binding proteins, and putative effectors, as well as other proteins with unknown functions. In comparison with salivary proteins from nine other aphid species, the most striking feature of the salivary protein from S. avenae was the different patterns of protein functions. Several orthologous proteins secreted by other aphid species such as glucose dehydrogenase, elongation factors, and effector C002 were also detected in S. avenae saliva and speculated to play a significant role in aphid–plant interactions. These results provide further insight into the molecular basis between aphids and cereal plant interactions.  相似文献   

3.
Since 2003, four new biotypes of the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), RWA2-RWA5, have been discovered that have the ability to damage most of the wheat germplasm resistant to the original Russian wheat aphid population (RWA1). Barley germplasm lines with resistance to RWA1 have not yet been evaluated against the newest biotypes. Our study compared how biotypes RWA1-RWA5 affected the growth and leaf damage of RWA1-resistant germplasm (STARS 9301B, STARS 9577B), moderately resistant germplasm (MR-015), and susceptible varieties (Schuyler, Harrington, and Morex) under greenhouse conditions. Russian wheat aphid population levels also were determined 14 d after plant infestation. STARS 9301B exhibited strong resistance by showing only small differences in leaf damage and growth parameters from the feeding by the biotypes. STARS 9577B showed greater differences in damage by the Russian wheat aphid biotypes than STARS 9301B, yet, the ratings were still within the resistant category (e.g., chlorosis rating 2.3-4.9). Leaf chlorosis ratings for MR-015 ranged from 5.0 to 6.9 and fell within the moderately resistant to susceptible categories for all the biotypes. The greatest difference in leaf chlorosis occurred in Morex where RWA2 showed less virulence than the other biotypes. Feeding by the Russian wheat aphid biotypes produced only small differences in leaf rolling and plant growth within plant entries. Population levels of the Russian wheat aphid biotypes did not differ within barley entries (n = 610-971) at the termination of the study (14 d). From our research, we conclude that the new Russian wheat aphid biotypes pose no serious threat to the key sources of resistance in barley (STARS 9301B and 9577B).  相似文献   

4.
蚜虫唾液蛋白研究进展   总被引:2,自引:0,他引:2  
尚哲明  刘德广 《昆虫学报》2019,62(12):1435-1447
蚜虫属于半翅目蚜科,多为重要的农业害虫,通过刺吸式口器吸食植物汁液,传播病毒,其爆发常常造成重大经济损失。在漫长的协同进化历程中,植物建立了高效的防御系统以应对蚜虫威胁。为了克服植物的防御反应,蚜虫也发展了相应的反制手段,其中蚜虫在取食过程中分泌的唾液蛋白能调控植物防御反应,降解植物次生物质,从而在蚜虫与植物互作中发挥着至关重要的作用。本文综述了蚜虫唾液蛋白的组分鉴定方法和相关蛋白的功能,并对唾液蛋白在蚜虫防治的应用和今后的研究方向进行了展望。常见的蚜虫唾液蛋白组分的鉴定和分析方法包括唾液蛋白的酶活性分析、唾液蛋白组学分析、唾液腺转录组学和蛋白组学分析等。但这些方法各有利弊,仅采取一种分析方法不能客观全面地反映蚜虫唾液蛋白分泌谱,多种技术手段联合分析方可提供更为逼真详实的信息。蚜虫唾液蛋白种类繁多,可分为解毒酶、保护酶、水解酶、结合功能蛋白以及分类未知的效应蛋白等。蚜虫唾液蛋白功能多样,能参与唾液鞘的形成,诱导植物防御反应,促进蚜虫取食,提高蚜虫繁殖力等。通过RNAi干扰唾液蛋白编码基因会显著改变蚜虫取食行为,并降低蚜虫存活率、产蚜量和适合度。因此,唾液蛋白是防控蚜虫的理想靶标。目前,采用寄主诱导的基因沉默(host-induced gene silencing, HIGS)技术已培育了数种靶向唾液蛋白基因的高效抗蚜作物品系,展示出了良好的应用前景。从目前研究来看,各种蚜虫唾液蛋白谱急需采用多组学手段联合分析的方法来进行完整解析。各种唾液蛋白的具体功能方面的研究还严重缺乏,需从蚜虫、植物、两者之间的互作等多维度探究唾液蛋白的作用及相关的分子机制,为发展基于蚜虫唾液蛋白调控的蚜虫防治新策略打下基础。  相似文献   

5.
Aphid saliva plays an essential role in the interaction between aphids and their host plants. Several aphid salivary proteins have been identified but none from galling aphids. Here the salivary proteins from the Chinese gall aphid are analyzed, Schlechtendalia chinensis, via an LC‐MS/MS analysis. A total of 31 proteins are identified directly from saliva collected via an artificial diet, and 141 proteins are identified from extracts derived from dissected salivary glands. Among these identified proteins, 17 are found in both collected saliva and dissected salivary glands. In comparison with salivary proteins from ten other free‐living Hemipterans, the most striking feature of the salivary protein from S. chinensis is the existence of high proportion of proteins with binding activity, including DNA‐, protein‐, ATP‐, and iron‐binding proteins. These proteins maybe involved in gall formation. These results provide a framework for future research to elucidate the molecular basis for gall induction by galling aphids.  相似文献   

6.
7.
Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid, while six proteins were predicted to be associated with the accessory salivary glands or hemolymph. Knowledge of the proteins that regulate virus transmission and their predicted locations will aid in understanding the biochemical mechanisms regulating circulative virus transmission in aphids, as well as in identifying new targets to block transmission.  相似文献   

8.
Aphids are amongst the most devastating sap-feeding insects of plants. Like most plant parasites, aphids require intimate associations with their host plants to gain access to nutrients. Aphid feeding induces responses such as clogging of phloem sieve elements and callose formation, which are suppressed by unknown molecules, probably proteins, in aphid saliva. Therefore, it is likely that aphids, like plant pathogens, deliver proteins (effectors) inside their hosts to modulate host cell processes, suppress plant defenses, and promote infestation. We exploited publicly available aphid salivary gland expressed sequence tags (ESTs) to apply a functional genomics approach for identification of candidate effectors from Myzus persicae (green peach aphid), based on common features of plant pathogen effectors. A total of 48 effector candidates were identified, cloned, and subjected to transient overexpression in Nicotiana benthamiana to assay for elicitation of a phenotype, suppression of the Pathogen-Associated Molecular Pattern (PAMP)-mediated oxidative burst, and effects on aphid reproductive performance. We identified one candidate effector, Mp10, which specifically induced chlorosis and local cell death in N. benthamiana and conferred avirulence to recombinant Potato virus X (PVX) expressing Mp10, PVX-Mp10, in N. tabacum, indicating that this protein may trigger plant defenses. The ubiquitin-ligase associated protein SGT1 was required for the Mp10-mediated chlorosis response in N. benthamiana. Mp10 also suppressed the oxidative burst induced by flg22, but not by chitin. Aphid fecundity assays revealed that in planta overexpression of Mp10 and Mp42 reduced aphid fecundity, whereas another effector candidate, MpC002, enhanced aphid fecundity. Thus, these results suggest that, although Mp10 suppresses flg22-triggered immunity, it triggers a defense response, resulting in an overall decrease in aphid performance in the fecundity assays. Overall, we identified aphid salivary proteins that share features with plant pathogen effectors and therefore may function as aphid effectors by perturbing host cellular processes.  相似文献   

9.
Host plant resistance is an efficient and environmentally friendly means of controlling insects, including aphids, but resistant-breaking biotypes have occurred in several plant–aphid systems. Our review of the genetic and molecular bases of aphid resistance in crop species emphasizes the limited number of aphid resistance genes and alleles. Inheritance of aphid resistance may be monogenic (dominant or recessive genes) or polygenic. Two dominant, aphid resistance genes have been isolated to date. They both encode NBS-LRR proteins involved in the specific recognition of aphids. Strategies to ensure aphid resistance effectiveness and durability are discussed. Innovative research activities are proposed.  相似文献   

10.
We investigated the comparative effects of the feeding damage caused by two Russian wheat aphid (RWA, Diuraphis noxia Kurdjumov) biotypes, RWASA1 and RWASA2, on leaves of three RWA-resistant barley (Hordeum vulgare L.) lines from the USDA-ARS, and used a South African non-resistant cultivar as control. The relationship between aphid breeding capacity and the structural damage inflicted by the aphids was studied, using wide-field fluorescence and transmission electron microscopy (TEM). Colonies of the two biotypes grew rapidly on all four barley lines during a 10 day feeding exposure but as expected, population size and density were generally lower on the resistant lines than on the non-resistant cultivar. The new South African biotype, RWASA2, bred significantly faster than the original RWASA1 biotype. The feeding and water uptake-related damage sustained by phloem and xylem tissues of the resistant lines suggest that RWASA2 was a more aggressive feeder and caused substantially more cell damage than RWASA1. Examination of wound callose distribution after aphid feeding revealed that high levels of wound callose occurred in non-resistant and in resistant lines. Reduction in aphid population size, as well as ultrastructural damage during feeding by RWA biotypes on resistant lines, signals potential antibiotic and tolerant responses of the barley lines to aphid feeding. We infer from callose distribution and ultrastructural studies, that phloem transport would be substantially reduced in the non-resistant PUMA and to a lesser extent in the resistant STARS lines, which suggests that the STARS lines may be a potential source of RWASA1 and RWASA2-resistance.  相似文献   

11.
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean, Glycine max (L.). Merr., that significantly reduces yield in northern production areas of North America. Insecticides are widely used to control soybean aphid outbreaks, but efforts are underway to develop host plant resistance as an effective alternative management strategy. Here, previously identified resistant lines were evaluated in laboratory tests against field-collected populations of soybean aphid and in field-plot tests over 2 yr in South Dakota. Six lines previously identified with resistance to soybean aphid--Jackson, Dowling, K1639, Cobb, Palmetto and Sennari--were resistant in this study, but relatively high aphid counts on Tie-feng 8 in field plots contrasted with its previously reported resistance. Bhart-PI 165989 showed resistance in one of two laboratory tests, but it had relatively large aphid infestations in both years of field tests. Intermediate levels of soybean aphid occurred in field plots on lines previously shown to have strong (Sugao Zairai, PI 230977, and D75-10169) or moderate resistance to soybean aphid (G93-9223, Bragg, Braxton, and Tracy-M). Sugao Zairai also failed to have a significant proportion of resistant plants in two laboratory tests against aphids field-collected in 2008, but it was resistant in laboratory tests with aphids collected in 2002, 2005, and 2006. Overall, results showed that lines with Rag (i.e., Jackson) or Rag1 gene (i.e., Dowling) had low aphid numbers, whereas lines with Rag2 (i.e., Sugao Zairai, Sennari) had mixed results. Collectively, responses of soybean aphid populations in laboratory and field tests in 2008 resembled a virulence pattern reported previously for biotype 3 soybean aphids, but virulence in soybean aphid populations was variable and dynamic over years of the study. These results, coupled with previous reports of biotypes virulent to Rag1, suggest that deployment of lines with a single aphid-resistance gene is limited for soybean aphid management, and that deployment strategies relying on multiple resistance genes may be needed to effectively use plant resistance against soybean aphid.  相似文献   

12.
The biotypic diversity of the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae), was assessed in five isolates collected in Colorado. Three isolates, RWA 1, RWA 2, and an isolate from Montezuma County, CO, designated RWA 6, were originally collected from cultivated wheat, Triticum aestivum L., and obtained from established colonies at Colorado State University. The fourth isolate, designated RWA 7, was collected from Canada wildrye, Elymus canadensis L., in Baca County, CO. The fifth isolate, designated RWA 8, was collected from crested wheatgrass, Agropyron cristatum (L.) Gaertn., in Montezuma County, CO. The four isolates were characterized in a standard seedling assay, by using 24 plant differentials, 22 wheat lines and two barley, Hordeum vulgare L., lines. RWA 1 was the least virulent of the isolates, killing only the four susceptible entries. RWA 8 also killed only the four susceptible entries, but it expressed intermediate virulence on seven wheat lines. RWA 6, killing nine entries, and RWA 7, killing 11 entries, both expressed an intermediate level of virulence overall, but differed in their level of virulence to 'CO03797' (Dn1), 'Yumar' (Dn4), and 'CO960293-2'. RWA 2 was the most virulent isolate, killing 14 entries, including Dn4- and Dny-containing wheat. Four wheat lines, '94M370' (Dn7), 'STARS 02RWA2414-11', CO03797, and 'CI2401', were resistant to the five isolates. The results of this screening confirm the presence of five unique Russian wheat aphid biotypes in Colorado.  相似文献   

13.
The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113.  相似文献   

14.
It is hypothesized that the interaction between aphids and plants follows a gene-for-gene model. The recent appearance of several new Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), biotypes in the United States and the differential response of wheat, Triticum aestivum L., genotypes containing different resistance genes also suggest a gene-for-gene interaction. However, aphid elicitors remain unknown. This study was conducted to identify fractionated Russian wheat aphid extracts capable of eliciting differential responses between resistant and susceptible wheat genotypes. We extracted whole soluble compounds and separated proteins and metabolites from two Russian wheat aphid biotypes (1 and 2), injected these extracts into seedlings of susceptible wheat Gamtoos (dn7) and resistant 94M370 (Dn7), and determined phenotypic and biochemical plant responses. Injections of whole extract or protein extract from both biotypes induced the typical susceptible symptom, leaf rolling, in the susceptible cultivar, but not in the resistant cultivar. Furthermore, multiple injections with protein extract from biotype 2 induced the development of chlorosis, head trapping, and stunting in susceptible wheat. Injection with metabolite, buffer, or chitin, did not produce any susceptible symptoms in either genotype. The protein extract from the two biotypes also induced significantly higher activities of three defense-response enzymes (catalase, peroxidase, and beta-glucanase) in 94M370 than in Gamtoos. These results indicate that a protein elicitor from the Russian wheat aphid is recognized by a plant receptor, and the recognition is mediated by the Dn7-gene product. The increased activities of defense-response enzymes in resistant plants after injection with the protein fraction suggest that defense response genes are induced after recognition of aphid elicitors by the plant.  相似文献   

15.
Nine proteins secreted in the saliva of the pea aphid Acyrthosiphon pisum were identified by a proteomics approach using GE‐LC‐MS/MS and LC‐MS/MS, with reference to EST and genomic sequence data for A. pisum. Four proteins were identified by their sequences: a homolog of angiotensin‐converting enzyme (an M2 metalloprotease), an M1 zinc‐dependant metalloprotease, a glucose‐methanol‐choline (GMC)‐oxidoreductase and a homolog to regucalcin (also known as senescence marker protein 30). The other five proteins are not homologous to any previously described sequence and included an abundant salivary protein (represented by ACYPI009881), with a predicted length of 1161 amino acids and high serine, tyrosine and cysteine content. A. pisum feeds on plant phloem sap and the metalloproteases and regucalcin (a putative calcium‐binding protein) are predicted determinants of sustained feeding, by inactivation of plant protein defences and inhibition of calcium‐mediated occlusion of phloem sieve elements, respectively. The amino acid composition of ACYPI009881 suggests a role in the aphid salivary sheath that protects the aphid mouthparts from plant defences, and the oxidoreductase may promote gelling of the sheath protein or mediate oxidative detoxification of plant allelochemicals. Further salivary proteins are expected to be identified as more sensitive MS technologies are developed.  相似文献   

16.
Banana bunchy top disease caused by Banana bunchy top virus is the most serious viral disease of banana and plantain worldwide. The virus is transmitted by the aphid vector Pentalonia nigronervosa in a persistent manner. This paper deals with the effect of the interaction between plant growth promoting endophytic bacteria, Banana bunchy top virus, and the banana aphid Pentalonia nigronervosa in the expression of Pathogenesis-related proteins (PR-proteins) and defense enzymes in banana. The existence of virus in the aphids was confirmed by ELISA, DIBA and PCR. PCR could amplify 1100-bp replicase gene of BBTV from viruliferous aphids. A significant increase in the enzymatic activity of all measured PR proteins and defense enzymes, as compared to control plants, was seen in the plants inoculated with endophytic bacteria and challenged with viruliferous aphids. Native gel electrophoresis revealed expression of more isoforms of PR proteins viz., peroxidase and chitinase in the banana plants challenged with mixtures of plant growth promoting endophytic bacteria and viruliferous aphids. Enhanced activity of a PR-2 protein viz., β-1,3-glucanase was also noticed in the viruliferous aphids infested plants. Some of the defense-related enzymes viz., Polyphenol oxidase and Phenylalanine ammonia lyase and phenolic compounds were also upregulated, up to 5 days after aphid infestation and thereafter there was a reduction in the enzymatic activity. Thus, there exist a differential accumulation of PR proteins and defense-related enzymes, when there is tri-tropic interaction between endophytic bacteria, virus, and insect and the role of the endophytic bacteria in the defense mechanisms against insect pests needs to be elucidated.  相似文献   

17.
棉蚜寄主专化型及其形成的行为机理   总被引:9,自引:2,他引:7  
通过生活在甜瓜和棉花上的棉蚜Aphisgossypii Glover的行为,研究棉蚜的寄主专化型及其形成的行为机理。生物学观察显示: 两类棉蚜在寄主植物相互交换以后,定居数显著减少,棉花蚜型棉蚜的繁殖系数及若虫存活率显著下降,说明棉蚜存在甜瓜蚜型和棉花蚜型两种寄主专化型。通过刺探电位技术研究棉蚜的取食行为,以探索其寄主专化型形成的行为机理。结果表明: 甜瓜蚜型棉蚜在棉花上的取食行为容易被中断,但其口针定位韧皮部的能力并没有显著削弱;而棉花蚜型棉蚜在甜瓜上的取食行为受到更大的影响,口针无法顺利定位至韧皮部,并在2 h内根本无法在筛管内取食。生物学观察和EPG取食行为分析都显示: 与甜瓜蚜型棉蚜相比,棉花蚜型棉蚜对寄主的要求更严格-寄主专化程度更高,对寄主的利用率更高。  相似文献   

18.
Wheat, Triticum aestivum L., with Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) resistance based on the Dn4 gene has been important in managing Russian wheat aphid since 1994. Recently, five biotypes (RWA1-RWA5) of this aphid have been described based on their ability to differentially damage RWA resistance genes in wheat. RWA2, RWA4, and RWA5 are of great concern because they can kill wheat with Dn4 resistance. In 2005, 365 Russian wheat aphid clone colonies were made from collections taken from 98 fields of wheat or barley, Hordeum vulgare L., in Oklahoma, Texas, New Mexico, Colorado, Kansas, Nebraska, and Wyoming to determine their biotypic status. The biotype of each clone was determined through its ability to differentially damage two resistant and two susceptible wheat entries in two phases of screening. The first phase determined the damage responses of Russian wheat aphid wheat entries with resistance genes Dn4, Dn7, and susceptible 'Custer' to infestations by each clone to identify RWA1 to RWA4. The second phase used the responses of Custer and 'Yuma' wheat to identify RWA1 and RWA5. Only two biotypes, RWA1 and RWA2, were identified in this study. The biotype composition across all collection sites was 27.2% RWA1 and 72.8% RWA2. RWA biotype frequency by state indicated that RWA2 was the predominant biotype and composed 73-95% of the biotype complex in Texas, Oklahoma, Colorado, and Wyoming. Our study indicated that RWA2 is widely distributed and that it has rapidly dominated the biotype complex in wheat and barley within its primary range from Texas to Wyoming. Wheat with the Dn4 resistance gene will have little value in managing RWA in the United States, based on the predominance of RWA2.  相似文献   

19.
The Mi-1.2 gene in tomato confers resistance against certain clones of the potato aphid (Macrosiphum euphorbiae). This study used 2D-DIGE coupled with protein identification by MALDI-TOF-MS to compare the proteome patterns of avirulent and semivirulent potato aphids and their bacterial endosymbionts on resistant (Mi-1.2+) and susceptible (Mi-1.2−) tomato lines. Avirulent aphids had low survival on resistant plants, whereas the semivirulent clone could colonize these plants. Eighty-two protein spots showed significant quantitative differences among the four treatment groups, and of these, 48 could be assigned putative identities. Numerous structural proteins and enzymes associated with primary metabolism were more abundant in the semivirulent than in the avirulent aphid clone. Several proteins were also up-regulated in semivirulent aphids when they were transferred from susceptible to resistant plants. Nearly 25% of the differentially regulated proteins originated from aphid endosymbionts and not the aphid itself. Six were assigned to the primary endosymbiont Buchnera aphidicola, and 5 appeared to be derived from a Rickettsia-like secondary symbiont. These results indicate that symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids’ host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance.  相似文献   

20.
Chemical basis of host-plant resistance to aphids   总被引:8,自引:1,他引:7  
Abstract The importance of host-plant resistance of crop plants in the biological control of aphids and the formation of aphid biotypes is discussed. The rapid response of plant breeders to the formation of new aphid biotypes requires detailed knowledge on the mechanism of host-plant resistance. Current knowledge on the chemical basis of host-plant resistance to aphids is summarized. Of central importance to this relationship is the aphid-pectinase plant-pectin interdependence. Parallels between the mechanism of aphid-plant and pathogen-plant attack are pointed out and how aphid bacterial endo-symbiotes play a central role in host-plant selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号