首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strub C  Schlieker C  Bukau B  Mogk A 《FEBS letters》2003,553(1-2):125-130
The Hsp100 protein ClpB is a member of the AAA+ protein family that mediates the solubilization of aggregated proteins in cooperation with the DnaK chaperone system. Unstructured polypeptides such as casein or poly-L-lysine have been shown to stimulate the ATPase activity of ClpB and thus may both act as substrates. Here we compared the effects of alpha-casein and poly-L-lysine on the ATPase and chaperone activities of ClpB. alpha-Casein stimulated ATP hydrolysis by both AAA domains of ClpB and inhibited the ClpB-dependent solubilization of aggregated proteins if present in excess. In contrast, poly-L-lysine stimulated exclusively the ATPase activity of the second AAA domain and increased the disaggregation activity of ClpB. Thus poly-L-lysine does not act as substrate, but rather represents an effector molecule, which enhances the chaperone activity of ClpB.  相似文献   

2.
Cell survival under severe thermal stress requires the activity of a bi-chaperone system, consisting of the ring-forming AAA+ chaperone ClpB (Hsp104) and the DnaK (Hsp70) chaperone system, which acts to solubilize and reactivate aggregated proteins. Recent studies have provided novel insight into the mechanism of protein disaggregation, demonstrating that ClpB/Hsp104 extracts unfolded polypeptides from an aggregate by threading them through its central pore. This translocation activity is necessary but not sufficient for aggregate solubilization. In addition, the middle (M) domain of ClpB and the DnaK system have essential roles, possibly by providing an unfolding force, which facilitates the extraction of misfolded proteins from aggregates.  相似文献   

3.
Hsp104 in yeast and ClpB in bacteria are homologous, hexameric AAA+ proteins and Hsp100 chaperones, which function in the stress response as ring-translocases that drive protein disaggregation and reactivation. Both Hsp104 and ClpB contain a distinctive coiled-coil middle domain (MD) inserted in the first AAA+ domain, which distinguishes them from other AAA+ proteins and Hsp100 family members. Here, we focus on recent developments concerning the location and function of the MD in these hexameric molecular machines, which remains an outstanding question. While the atomic structure of the hexameric assembly of Hsp104 and ClpB remains uncertain, recent advances have illuminated that the MD is critical for the intrinsic disaggregase activity of the hexamer and mediates key functional interactions with the Hsp70 chaperone system (Hsp70 and Hsp40) that empower protein disaggregation.  相似文献   

4.
The ClpB/Hsp104 molecular chaperone-a protein disaggregating machine   总被引:1,自引:0,他引:1  
ClpB and Hsp104 (ClpB/Hsp104) are essential proteins of the heat-shock response and belong to the class 1 family of Clp/Hsp100 AAA+ ATPases. Members of this family form large ring structures and contain two AAA+ modules, which consist of a RecA-like nucleotide-binding domain (NBD) and an alpha-helical domain. Furthermore, ClpB/Hsp104 has a longer middle region, the ClpB/Hsp104-linker, which is essential for chaperone activity. Unlike other Clp/Hsp100 proteins, however, ClpB/Hsp104 neither associates with a cellular protease nor directs the degradation of its substrate proteins. Rather, ClpB/Hsp104 is a bona fide molecular chaperone, which has the remarkable ability to rescue proteins from an aggregated state. The full recovery of these proteins requires the assistance of the cognate DnaK/Hsp70 chaperone system. The mechanism of this "bi-chaperone" network, however, remains elusive. Here we review the current understanding of the structure-function relationship of the ClpB/Hsp104 molecular chaperone and its role in protein disaggregation.  相似文献   

5.
The ClpB/Hsp104 chaperone solubilizes and reactivates protein aggregates in cooperation with DnaK/Hsp70 and its cofactors. The ClpB/Hsp104 protomer has two AAA+ modules, AAA-1 and AAA-2, and forms a homohexamer. In the hexamer, these modules form a two-tiered ring in which each tier consists of homotypic AAA+ modules. By ATP binding and its hydrolysis at these AAA+ modules, ClpB/Hsp104 exerts the mechanical power required for protein disaggregation. Although ATPase cycle of this chaperone has been studied by several groups, an integrated understanding of this cycle has not been obtained because of the complexity of the mechanism and differences between species. To improve our understanding of the ATPase cycle, we prepared many ordered heterohexamers of ClpB from Thermus thermophilus, in which two subunits having different mutations were cross-linked to each other and arranged alternately and measured their nucleotide binding, ATP hydrolysis, and disaggregation abilities. The results indicated that the ATPase cycle of ClpB proceeded as follows: (i) the 12 AAA+ modules randomly bound ATP, (ii) the binding of four or more ATP to one AAA+ ring was sensed by a conserved Arg residue and converted another AAA+ ring into the ATPase-active form, and (iii) ATP hydrolysis occurred cooperatively in each ring. We also found that cooperative ATP hydrolysis in at least one ring was needed for the disaggregation activity of ClpB.  相似文献   

6.
A protein quality control system, consisting of molecular chaperones and proteases, controls the folding status of proteins and prevents the aggregation of misfolded proteins by either refolding or degrading aggregation-prone species. During severe stress conditions this protection system can be overwhelmed by high substrate load, resulting in the formation of protein aggregates. In such emergency situations, Hsp104/ClpB becomes a key player for cell survival, as it has the extraordinary capacity to rescue proteins from an aggregated state in cooperation with an Hsp70 chaperone system. The ring-forming Hsp104/ClpB chaperone belongs to the AAA+ protein superfamily, which in general drives the assembly and disassembly of protein complexes by ATP-dependent remodelling of protein substrates. A disaggregation activity was also recently attributed to other eubacterial AAA+ proteins, while such an activity has not yet been identified in mammalian cells. In this review, we report on new insights into the mechanism of protein disaggregation by AAA+ proteins, suggesting that these chaperones act as molecular crowbars or ratchets.  相似文献   

7.
The ring-forming molecular chaperone Hsp104/ClpB is a member of the AAA+ protein family which rescues proteins from aggregated states. The newly determined crystal structure of ClpB provides new insights into the mechanism of protein disaggregation, suggesting a crowbar activity mediated by a unique coiled-coil domain.  相似文献   

8.
The molecular chaperone Hsp104 is an AAA+ ATPase (ATPase associated with a variety of cellular activities) from yeast that catalyzes protein disaggregation. Using mutagenesis, we impaired nucleotide binding or hydrolysis in the two nucleotide-binding domains (NBD) of Hsp104 and analyzed the consequences for chaperone function by monitoring ATP hydrolysis, polypeptide binding, polypeptide processing, and disaggregation. Our results reveal that ATP binding to NBD1 serves as a central regulatory switch for the chaperone; it triggers binding of polypeptides, and stimulates ATP hydrolysis in the C-terminal NBD2 by more than two orders of magnitude, implying that ATP hydrolysis in this domain is important for disaggregation. Moreover, we show that Hsp104 actively unfolds its polypeptide substrates during processing, demonstrating that AAA+ proteins involved in disaggregation share a common threading mechanism with AAA+ proteins mediating protein unfolding/degradation.  相似文献   

9.
The AAA+ protein ClpB cooperates with the DnaK chaperone system to solubilize and refold proteins from an aggregated state. The substrate-binding site of ClpB and the mechanism of ClpB-dependent protein disaggregation are largely unknown. Here we identified a substrate-binding site of ClpB that is located at the central pore of the first AAA domain. The conserved Tyr251 residue that lines the central pore contributes to substrate binding and its crucial role was confirmed by mutational analysis and direct crosslinking to substrates. Because the positioning of an aromatic residue at the central pore is conserved in many AAA+ proteins, a central substrate-binding site involving this residue may be a common feature of this protein family. The location of the identified binding site also suggests a possible translocation mechanism as an integral part of the ClpB-dependent disaggregation reaction.  相似文献   

10.
ClpB, a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), forms a ring-shaped hexamer and cooperates with the DnaK chaperone system to reactivate aggregated proteins in an ATP-dependent manner. The ClpB protomer consists of an N-terminal domain, an AAA+ module (AAA-1), a middle domain, and a second AAA+ module (AAA-2). Each AAA+ module contains highly conserved WalkerA and WalkerB motifs, and two arginines (AAA-1) or one arginine (AAA-2). Here, we investigated the roles of these arginines (Arg322, Arg323, and Arg747) of ClpB from Thermus thermophilus in the ATPase cycle and chaperone function by alanine substitution. These mutations did not affect nucleotide binding, but did inhibit the hydrolysis of the bound ATP and slow the threading of the denatured protein through the central pore of the T. thermophilus ClpB ring, which severely impaired the chaperone functions. Previously, it was demonstrated that ATP binding to the AAA-1 module induced motion of the middle domain and stabilized the ClpB hexamer. However, the arginine mutations of the AAA-1 module destabilized the ClpB hexamer, even though ATP-induced motion of the middle domain was not affected. These results indicated that the three arginines are crucial for ATP hydrolysis and chaperone activity, but not for ATP binding. In addition, the two arginines in AAA-1 and the ATP-induced motion of the middle domain independently contribute to the stabilization of the hexamer.  相似文献   

11.
The AAA+ molecular chaperone Hsp104 mediates the extraction of proteins from aggregates by unfolding and threading them through its axial channel in an ATP-driven process. An Hsp104-binding peptide selected from solid phase arrays enhanced the refolding of a firefly luciferase-peptide fusion protein. Analysis of peptide binding using tryptophan fluorescence revealed two distinct binding sites, one in each AAA+ module of Hsp104. As a further indication of the relevance of peptide binding to the Hsp104 mechanism, we found that it competes with the binding of a model unfolded protein, reduced carboxymethylated alpha-lactalbumin. Inactivation of the pore loops in either AAA+ module prevented stable peptide and protein binding. However, when the loop in the first AAA+ was inactivated, stimulation of ATPase turnover in the second AAA+ module of this mutant was abolished. Drawing on these data, we propose a detailed mechanistic model of protein unfolding by Hsp104 in which an initial unstable interaction involving the loop in the first AAA+ module simultaneously promotes penetration of the substrate into the second axial channel binding site and activates ATP turnover in the second AAA+ module.  相似文献   

12.
The AAA+ chaperone ClpB solubilizes in cooperation with the DnaK chaperone system aggregated proteins. The mechanistic features of the protein disaggregation process are poorly understood. Here, we investigated the mechanism of ClpB/DnaK-dependent solubilization of heat-aggregated malate dehydrogenase (MDH) by following characteristics of MDH aggregates during the disaggregation reaction. We demonstrate that disaggregation is achieved by the continuous extraction of unfolded MDH molecules and not by fragmentation of large MDH aggregates. These findings support a ClpB-dependent threading mechanism as an integral part of the disaggregation reaction.  相似文献   

13.
The AAA(+) chaperone ClpB mediates the reactivation of aggregated proteins in cooperation with the DnaK chaperone system. ClpB consists of two AAA domains that drive the ATP-dependent threading of substrates through a central translocation channel. Its unique middle (M) domain forms a coiled-coil structure that laterally protrudes from the ClpB ring and is essential for aggregate solubilization. Here, we demonstrate that the conserved helix 3 of the M domain is specifically required for the DnaK-dependent shuffling of aggregated proteins, but not of soluble denatured substrates, to the pore entrance of the ClpB translocation channel. Helix 3 exhibits nucleotide-driven conformational changes possibly involving a transition between folded and unfolded states. This molecular switch controls the ClpB ATPase cycle by contacting the first ATPase domain and establishes the M domain as a regulatory device that acts in the disaggregation process by coupling the threading motor of ClpB with the DnaK chaperone activity.  相似文献   

14.
The oligomeric AAA+ chaperone Hsp104 is essential for thermotolerance development and prion propagation in yeast. Thermotolerance relies on the ability of Hsp104 to cooperate with the Hsp70 chaperone system in the reactivation of heat-aggregated proteins. Prion propagation requires the Hsp104-dependent fragmentation of prion fibrils to create infectious seeds. It remained elusive whether both processes rely on common or different activities of Hsp104. Specifically, protein reactivation has been suggested to require a substrate threading activity of Hsp104 whereas fibril fragmentation may be mediated by a crowbar activity. Here we engineered an Hsp104 variant, HAP, which cooperates with the bacterial peptidase ClpP to form a novel proteolytic system. HAP threads aggregated model substrates as well as the yeast prion Sup35 through its central pore into associated ClpP. HAP variants that harbour a reduced threading activity were affected in both protein disaggregation and prion propagation, demonstrating that substrate threading represents the common mechanism for the processing of both substrate classes.  相似文献   

15.
ClpB is a heat-shock protein that reactivates aggregated proteins in cooperation with the DnaK chaperone system. ClpB belongs to the family of AAA+ ATPases and forms ring-shaped oligomers: heptamers in the absence of nucleotides and hexamers in the presence of nucleotides. We investigated the thermodynamic stability of ClpB in its monomeric and oligomeric forms. ClpB contains six distinct structural domains: the N-terminal domain involved in substrate binding, two AAA+ ATP-binding modules, each consisting of two domains, and a coiled-coil domain inserted between the AAA+ modules. We produced seven variants of ClpB, each containing a single Trp located in each of the ClpB domains and measured the changes in Trp fluorescence during the equilibrium urea-induced unfolding of ClpB. We found that two structural domains: the small domain of the C-terminal AAA+ module and the coiled-coil domain were destabilized in the oligomeric form of ClpB, which indicates that only those domains change their conformation and/or interactions during formation of the ClpB rings.  相似文献   

16.
Hsp100 family of molecular chaperones shows a unique capability to resolubilize and reactivate aggregated proteins. The Hsp100-mediated protein disaggregation is linked to the activity of other chaperones from the Hsp70 and Hsp40 families. The best-studied members of the Hsp100 family are the bacterial ClpB and Hsp104 from yeast. Hsp100 chaperones are members of a large super-family of energy-driven conformational "machines" known as AAA+ ATPases. This review describes the current mechanistic model of the chaperone-induced protein disaggregation and explains how the structural architecture of Hsp100 supports disaggregation and how the co-chaperones may participate in the Hsp100-mediated reactions.  相似文献   

17.
Clp ATPases are protein machines involved in protein degradation and disaggregation. The common structural feature of Clp ATPases is the formation of ring-shaped oligomers. Recent work has shown that the function of all Clp ATPases is based on an energy-dependent threading of substrates through the narrow pore at the centre of the ring. This review gives an outline of known mechanistic principles of threading machines that unfold protein substrates either before their degradation (ClpA, ClpX, HslU) or during their reactivation from aggregates (ClpB). The place of Clp ATPases within a broad AAA+ superfamily of ATPases associated with various cellular activities suggests that similar mechanisms can be used by other protein machines to induce conformational rearrangements in a wide variety of substrates.  相似文献   

18.
Hung GC  Masison DC 《Genetics》2006,173(2):611-620
Hsp104 is a hexameric protein chaperone that resolubilizes stress-damaged proteins from aggregates. Hsp104 promotes [PSI(+)] prion propagation by breaking prion aggregates, which propagate as amyloid fibers, into more numerous prion "seeds." Inactivating Hsp104 cures cells of [PSI(+)] and other amyloid-like yeast prions. Overexpressing Hsp104 also eliminates [PSI(+)], presumably by completely resolubilizing prion aggregates. Inexplicably, however, excess Hsp104 does not cure the other prions. Here we identify missense mutations in Hsp104's amino-terminal domain (NTD), which is conserved among Hsp100 proteins but whose function is unknown, that improve [PSI(+)] propagation. Hsp104Delta147, engineered to lack the NTD, supported [PSI(+)] and functioned normally in thermotolerance and protein disaggregation. Hsp104Delta147 failed to cure [PSI(+)] when overexpressed, however, implying that excess Hsp104 does not eliminate [PSI(+)] by direct dissolution of prion aggregates. Curing of [PSI(+)] by overexpressing catalytically inactive Hsp104 (Hsp104KT), which interferes with endogenous Hsp104, did not require the NTD. We further found that Hsp104 mutants defective in threading peptides through the hexamer pore had reduced ability to support [PSI(+)] in proportion to protein resolubilization defects, suggesting that [PSI(+)] propagation depends on this threading and that Hsp104 "breaks" prion aggregates by extracting protein monomers from the amyloid fibers.  相似文献   

19.
The AAA+ protein ClpB mediates the solubilization of protein aggregates in cooperation with the DnaK chaperone system (KJE). The order of action of ClpB and KJE on aggregated proteins is unknown. We describe a ClpB variant with mutational alterations in the Walker B motif of both AAA domains (E279A/E678A), which binds but does not hydrolyze ATP. This variant associates in vitro and in vivo in a stable manner with protein substrates, demonstrating direct interaction of ClpB with protein aggregates for the first time. Substrate interaction is strictly dependent on ATP binding to both AAA domains of ClpB. The unique substrate binding properties of the double Walker B variant allowed to dissect the order of ClpB and DnaK action during disaggregation reactions. ClpB-E279A/E678A outcompetes the DnaK system for binding to the model substrate TrfA and inhibits the dissociation of small protein aggregates by DnaK only, indicating that ClpB acts prior to DnaK on protein substrates.  相似文献   

20.
ClpB from Thermus thermophilus belongs to the Clp/Hsp100 protein family and reactivates protein aggregates in cooperation with the DnaK chaperone system. The mechanism of protein reactivation and interaction with the DnaK system remains unclear. ClpB possesses two nucleotide binding domains, which are essential for function and show a complex allosteric behavior. The role of the N-terminal domain that precedes the first nucleotide binding domain is largely unknown. We purified and characterized an N-terminal shortened ClpB variant (ClpBDeltaN; amino acids 140-854), which remained active in refolding assays with three different substrate proteins. In addition the N-terminal truncation did not significantly change the nucleotide binding affinities, the nucleotide-dependent oligomerization, and the allosteric behavior of the protein. In contrast casein binding and stimulation of the ATPase activity by kappa-casein were affected. These results suggest that the N-terminal domain is not essential for the chaperone function, does not influence the binding of nucleotides, and is not involved in the formation of intermolecular contacts. It contributes to the casein binding site of ClpB, but other substrate proteins do not necessarily interact with the N terminus. This indicates a substantial difference in the binding mode of kappa-casein that is often used as model substrate for ClpB and other possibly more suitable substrate proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号