首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Leishmania infantum is the causative agent of visceral and cutaneous leishmaniasis in the Mediterranean region, South America, and China. MON-1 L. infantum is the predominating zymodeme in all endemic regions, both in humans and dogs, the reservoir host. In order to answer important epidemiological questions it is essential to discriminate strains of MON-1.

Methodology/Principal Findings

We have used a set of 14 microsatellite markers to analyse 141 strains of L. infantum mainly from Spain, Portugal, and Greece of which 107 strains were typed by MLEE as MON-1. The highly variable microsatellites have the potential to discriminate MON-1 strains from other L. infantum zymodemes and even within MON-1 strains. Model- and distance-based analysis detected a considerable amount of structure within European L. infantum. Two major monophyletic groups—MON-1 and non-MON-1—could be distinguished, with non-MON-1 being more polymorphic. Strains of MON-98, 77, and 108 were always part of the MON-1 group. Among MON-1, three geographically determined and genetically differentiated populations could be identified: (1) Greece; (2) Spain islands–Majorca/Ibiza; (3) mainland Portugal/Spain. All four populations showed a predominantly clonal structure; however, there are indications of occasional recombination events and gene flow even between MON-1 and non-MON-1. Sand fly vectors seem to play an important role in sustaining genetic diversity. No correlation was observed between Leishmania genotypes, host specificity, and clinical manifestation. In the case of relapse/re-infection, only re-infections by a strain with a different MLMT profile can be unequivocally identified, since not all strains have individual MLMT profiles.

Conclusion

In the present study for the first time several key epidemiological questions could be addressed for the MON-1 zymodeme, because of the high discriminatory power of microsatellite markers, thus creating a basis for further epidemiological investigations.  相似文献   

2.

Background/Objectives

Palestinian strains of L.tropica characterized by multilocus enzyme electrophoresis (MLEE) fall into two zymodemes, either MON-137 or MON-307.

Methodology/Principle Findings

Assays employing PCR and subsequent RFLP were applied to sequences found in the Hexokinase (HK) gene, an enzyme that is not used in MLEE, and the Phosphoglucomutase (PGM) gene, an enzyme that is used for MLEE, to see if they would facilitate consigning local strains of L.tropica to either zymodeme MON-137 or zymodeme MON-307. Following amplification and subsequent double digestion with the restriction endonucleases MboI and HaeIII, variation in the restriction patterns of the sequence from the HK gene distinguished strains of L.tropica, L.major and L.infantum and also exposed two genotypes (G) among the strains of L.tropica: HK-LtG1, associated with strains of L.tropica of the zymodemes MON-137 and MON-265, and HK-LtG2, associated with strains of L.tropica of the zymodemes MON-307, MON-288, MON-275 and MON-54. Following amplification and subsequent digestion by the restriction endonuclease MboI, variation in the sequence from the PGM gene also exposed two genotypes among the strains of L.tropica: PGM-G1, associated only with strains of L.tropica of the zymodeme MON-137; and PGM-G2, associated with strains of L.tropica of the zymodemes MON-265, MON-307, MON-288, MON-275 and MON-54, and, also, with six strains of L.major, five of L.infantum and one of L.donovani. The use of the HK and PGM gene sequences enabled distinction the L.tropica strains of the zymodeme MON-137 from those of the zymodeme MON-265. This genotyping system ‘correctly’ identified reference strains of L.tropica of known zymodemal affiliation and also from clinical samples, with a level of sensitivity down to <1 fg in the case of the former and to 1 pg of DNA in the case of the latter.

Conclusions/Significance

Both assays proved useful for identifying leishmanial parasites in clinical samples without resource to culture and MLEE.  相似文献   

3.
Leishmania infantum causes Visceral and cutaneous leishmaniasis in northern Morocco. It predominantly affects children under 5 years with incidence of 150 cases/year. Genetic variability and population structure have been investigated for 33 strains isolated from infected dogs and humans in Morocco. A multilocus microsatellite typing (MLMT) approach was used in which a MLMtype based on size variation in 14 independent microsatellite markers was compiled for each strain. MLMT profiles of 10 Tunisian, 10 Algerian and 21 European strains which belonged to zymodeme MON-1 and non-MON-1 according to multilocus enzyme electrophoresis (MLEE) were included for comparison. A Bayesian model-based approach and phylogenetic analysis inferred two L.infantum sub-populations; Sub-population A consists of 13 Moroccan strains grouped with all European strains of MON-1 type; and sub-population B consists of 15 Moroccan strains grouped with the Tunisian and Algerian MON-1 strains. Theses sub-populations were significantly different from each other and from the Tunisian, Algerian and European non MON-1 strains which constructed one separate population. The presence of these two sub-populations co-existing in Moroccan endemics suggests multiple introduction of L. infantum from/to Morocco; (1) Introduction from/to the neighboring North African countries, (2) Introduction from/to the Europe. These scenarios are supported by the presence of sub-population B and sub-population A respectively. Gene flow was noticed between sub-populations A and B. Five strains showed mixed A/B genotypes indicating possible recombination between the two populations. MLMT has proven to be a powerful tool for eco-epidemiological and population genetic investigations of Leishmania.  相似文献   

4.
Twenty-seven strains of Leishmania infantum from north and central Tunisia belonging to the three main MON zymodemes (the MON-typing system is based on multilocus enzyme electrophoresis (MLEE) of 15 enzymes) found in this country (MON-1, MON-24 and MON-80) and representing different pathologies (visceral, cutaneous and canine leishmaniasis) have been studied to understand the genetic polymorphism within this species. Intraspecific variation could be detected in L. infantum by the use of 14 hypervariable microsatellite markers. In addition to microsatellite repeat length variation, a high degree of allelic heterozygosity has been observed among the strains investigated, suggestive of sexual recombination within L. infantum groups. The two major clusters found by using Bayesian statistics as well as distance analysis are consistent with the classification based on isoenzymes, dividing Tunisian L. infantum into MON-1 and MON-24/MON-80. Moreover, the existence of hybrid strains between the MON-1 and the non-MON-1 populations has been shown and verified by analysis of clones of one of these strains. Substructure analysis discriminated four groups of L. infantum. The major MON-1 cluster split into two groups, one comprising only Tunisian strains and the second both Tunisian and European strains. The major MON-24 cluster was subdivided into two groups with geographical and clinical feature correlations: a dermotropic group of strains mainly from the north, and a viscerotropic group of strains from the centre of Tunisia. The four viscerotropic hybrid strains all originated from central Tunisia and were typed by MLEE as MON-24 or MON-80. To our knowledge, this is the first report describing relationships between clinical picture and population substructure of L. infantum MON-24 based on genotype data, as well as the existence of hybrids between zymodemes MON-1 and MON-24/MON-80, and proving one of these hybrid strains by molecular analysis of the parent strain and its clones.  相似文献   

5.

Background

Visceral Leishmaniasis (VL) caused by species from the Leishmania donovani complex is the most severe form of the disease, lethal if untreated. VL caused by Leishmania infantum is a zoonosis with an increasing number of human cases and millions of dogs infected in the Old and the New World. In this study, L. infantum (syn. L.chagasi) strains were isolated from human and canine VL cases. The strains were obtained from endemic areas from Brazil and Portugal and their genetic polymorphism was ascertained using the LSSP-PCR (Low-Stringency Single Specific Primer PCR) technique for analyzing the kinetoplastid DNA (kDNA) minicircles hypervariable region.

Principal Findings

KDNA genetic signatures obtained by minicircle LSSP-PCR analysis of forty L. infantum strains allowed the grouping of strains in several clades. Furthermore, LSSP-PCR profiles of L. infantum subpopulations were closely related to the host origin (human or canine). To our knowledge this is the first study which used this technique to compare genetic polymorphisms among strains of L. infantum originated from both the Old and the New World.

Conclusions

LSSP-PCR profiles obtained by analysis of L. infantum kDNA hypervariable region of parasites isolated from human cases and infected dogs from Brazil and Portugal exhibited a genetic correlation among isolates originated from the same reservoir, human or canine. However, no association has been detected among the kDNA signatures and the geographical origin of L. infantum strains.  相似文献   

6.

Background

Visceral leishmaniasis due to Leishmania infantum is currently spreading into new foci across Europe. Leishmania infantum transmission in the Old World was reported to be strongly associated with a few specific environments. Environmental changes due to global warming or human activity were therefore incriminated in the spread of the disease. However, comprehensive studies were lacking to reliably identify all the environments at risk and thereby optimize monitoring and control strategy.

Methodology/Findings

We exhaustively collected 328 cases of autochthonous visceral leishmaniasis from 1993 to 2009 in South-Eastern France. Leishmaniasis incidence decreased from 31 yearly cases between 1993 and 1997 to 12 yearly cases between 2005 and 2009 mostly because Leishmania/HIV coinfection were less frequent. No spread of human visceral leishmaniasis was observed in the studied region. Two major foci were identified, associated with opposite environments: whereas one involved semi-rural hillside environments partly made of mixed forests, the other involved urban and peri-urban areas in and around the region main town, Marseille. The two neighboring foci were related to differing environments despite similar vectors (P. perniciosus), canine reservoir, parasite (L. infantum zymodeme MON-1), and human host.

Conclusions/Significance

This unprecedented collection of cases highlighted the occurrence of protracted urban transmission of L. infantum in France, a worrisome finding as the disease is currently spreading in other areas around the Mediterranean. These results complete previous studies about more widespread canine leishmaniasis or human asymptomatic carriage. This first application of systematic geostatistical methods to European human visceral leishmaniasis demonstrated an unsuspected heterogeneity of environments associated with the transmission of the disease. These findings modify the current view of leishmaniasis epidemiology. They notably stress the need for locally defined control strategies and extensive monitoring including in urban environments.  相似文献   

7.

Background

Infection with Leishmania results in a broad spectrum of pathologies where L. infantum and L. donovani cause fatal visceral leishmaniasis and L. major causes destructive cutaneous lesions. The identification and characterization of Leishmania virulence genes may define the genetic basis for these different pathologies.

Methods and Findings

Comparison of the recently completed L. major and L. infantum genomes revealed a relatively small number of genes that are absent or present as pseudogenes in L. major and potentially encode proteins in L. infantum. To investigate the potential role of genetic differences between species in visceral infection, seven genes initially classified as absent in L. major but present in L. infantum were cloned from the closely related L. donovani genome and introduced into L. major. The transgenic L. major expressing the L. donovani genes were then introduced into BALB/c mice to select for parasites with increased virulence in the spleen to determine whether any of the L. donovani genes increased visceral infection levels. During the course of these experiments, one of the selected genes (LinJ32_V3.1040 (Li1040)) was reclassified as also present in the L. major genome. Interestingly, only the Li1040 gene significantly increased visceral infection in the L. major transfectants. The Li1040 gene encodes a protein containing a putative component of an endosomal protein sorting complex involved with protein transport.

Conclusions

These observations demonstrate that the levels of expression and sequence variations in genes ubiquitously shared between Leishmania species have the potential to significantly influence virulence and tissue tropism.  相似文献   

8.

Background/Objectives

Visceral leishmaniasis (VL) caused by Leishmania donovani is a major health problem in Ethiopia. Parasites in disparate regions are transmitted by different vectors, and cluster in distinctive genotypes. Recently isolated strains from VL and HIV-VL co-infected patients in north and south Ethiopia were characterized as part of a longitudinal study on VL transmission.

Methodology/Principal Findings

Sixty-three L. donovani strains were examined by polymerase chain reaction (PCR) targeting three regions: internal transcribed spacer 1 (ITS1), cysteine protease B (cpb), and HASPB (k26). ITS1- and cpb - PCR identified these strains as L. donovani. Interestingly, the k26 - PCR amplicon size varied depending on the patient''s geographic origin. Most strains from northwestern Ethiopia (36/40) produced a 290 bp product with a minority (4/40) giving a 410 bp amplicon. All of the latter strains were isolated from patients with HIV-VL co-infections, while the former group contained both VL and HIV-VL co-infected patients. Almost all the strains (20/23) from southwestern Ethiopia produced a 450 bp amplicon with smaller products (290 or 360 bp) only observed for three strains. Sudanese strains produced amplicons identical (290 bp) to those found in northwestern Ethiopia; while Kenyan strains gave larger PCR products (500 and 650 bp). High-resolution melt (HRM) analysis distinguished the different PCR products. Sequence analysis showed that the k26 repeat region in L. donovani is comprised of polymorphic 13 and 14 amino acid motifs. The 13 amino acid peptide motifs, prevalent in L. donovani, are rare in L. infantum. The number and order of the repeats in L. donovani varies between geographic regions.

Conclusions/Significance

HASPB repeat region (k26) shows considerable polymorphism among L. donovani strains from different regions in East Africa. This should be taken into account when designing diagnostic assays and vaccines based on this antigen.  相似文献   

9.
Multilocus enzyme electrophoresis (MLEE) is the gold standard for taxonomy and strain typing of Leishmania, but has some limitations. An alternative reliable and fast genotyping method for addressing population genetic and key epidemiological questions, is multilocus microsatellite typing (MLMT). MLMT using 15 markers was applied to 91 strains of L. donovani, L. archibaldi, L. infantum and L. chagasi from major endemic regions of visceral leishmaniasis. Population structures were inferred by combination of Bayesian model-based and distance-based approaches. Six main genetically distinct populations were identified: (1) L. infantum/L. chagasi MON-1 and (2) L. infantum/L. chagasi non-MON-1, both Mediterranean region/South America; (3) L. donovani (MON-18), L. archibaldi (MON-82), L. infantum (MON-30, 81) and (4) L. donovani (MON-31, 274), L. archibaldi (MON-82, 257, 258), L. infantum (MON-267), both Sudan/Ethiopia; (5) L. donovani MON-2, India; (6) L. donovani (MON-36, 37, 38), Kenya and India. Substructures according to place and time of strain isolation were detected. The VL populations seem to be predominantly clonal with a high level of inbreeding. Allelic diversity was highest in the Mediterranean region, intermediate in Africa and lowest in India. MLMT provides a powerful tool for global taxonomic, population genetic and epidemiological studies of the L.donovani complex.  相似文献   

10.
The present study applies multilocus microsatellite typing (MLMT) for studying the polymorphism among 55 strains of Leishmania infantum from Algeria. These strains from different Algerian foci representing different zymodemes, hosts and clinical forms were analysed using 14 microsatellite markers. All 55 strains had individual MLMT profiles and no relationship was observed between them and different host or geographical origins. Three populations of Algerian L. infantum were identified by a Bayesian clustering approach implemented in STRUCTURE software and supported by genetic distance analysis. Two populations, A and B, consisted mainly of strains belonging to zymodeme MON-1, and the third population, C, mainly of MON-24 strains isolated from cutaneous leishmaniasis cases. Interestingly, a small group of strains appeared as a mixture of different populations and might be putative hybrids. Genetic migration was noticed among the two MON-1 populations, A and B, as well as between populations A and C. Due to its high discriminatory power MLMT could be also successfully applied for differentiating relapses or re-infection for patients suffering from multiple episodes of visceral leishmaniasis.  相似文献   

11.

Background

Visceral leishmaniasis (VL), caused by infection with Leishmania donovani complex, remains a major public health problem in endemic regions of South Asia, East Africa, and Brazil. If untreated, symptomatic VL is usually fatal. Rapid field diagnosis relies principally on demonstration of anti-Leishmania antibodies in clinically suspect cases. The rK39 immunochromatographic rapid diagnostic test (RDT) is based on rK39, encoded by a fragment of a kinesin-related gene derived from a Brazilian L. chagasi, now recognised as L. infantum, originating from Europe. Despite its reliability in South Asia, the rK39 test is reported to have lower sensitivity in East Africa. A reason for this differential response may reside in the molecular diversity of the rK39 homologous sequences among East African L. donovani strains.

Methodology/Principal Findings

Coding sequences of rK39 homologues from East African L. donovani strains were amplified from genomic DNA, analysed for diversity from the rK39 sequence, and compared to South Asian sequences. East African sequences were revealed to display significant diversity from rK39. Most coding changes in the 5′ half of repeats were non-conservative, with multiple substitutions involving charge changes, whereas amino acid substitutions in the 3′ half of repeats were conservative. Specific polymorphisms were found between South Asian and East African strains. Diversity of HASPB1 and HASPB2 gene repeat sequences, used to flank sequences of a kinesin homologue in the synthetic antigen rK28 designed to reduce variable RDT performance, was also investigated. Non-canonical combination repeat arrangements were revealed for HASPB1 and HASPB2 gene products in strains producing unpredicted size amplicons.

Conclusions/Significance

We demonstrate that there is extensive kinesin genetic diversity among strains in East Africa and between East Africa and South Asia, with ample scope for influencing performance of rK39 diagnostic assays. We also show the importance of targeted comparative genomics in guiding optimisation of recombinant/synthetic diagnostic antigens.  相似文献   

12.
In the south of France, Leishmania infantum is responsible for numerous cases of canine leishmaniasis (CanL), sporadic cases of human visceral leishmaniasis (VL) and rare cases of cutaneous and muco-cutaneous leishmaniasis (CL and MCL, respectively). Several endemic areas have been clearly identified in the south of France including the Pyrénées-Orientales, Cévennes (CE), Provence (P), Alpes-Maritimes (AM) and Corsica (CO). Within these endemic areas, the two cities of Nice (AM) and Marseille (P), which are located 150 km apart, and their surroundings, concentrate the greatest number of French autochthonous leishmaniasis cases. In this study, 270 L. infantum isolates from an extended time period (1978–2011) from four endemic areas, AM, P, CE and CO, were assessed using Multi-Locus Microsatellite Typing (MLMT). MLMT revealed a total of 121 different genotypes with 91 unique genotypes and 30 repeated genotypes. Substantial genetic diversity was found with a strong genetic differentiation between the Leishmania populations from AM and P. However, exchanges were observed between these two endemic areas in which it seems that strains spread from AM to P. The genetic differentiations in these areas suggest strong epidemiological structuring. A model-based analysis using STRUCTURE revealed two main populations: population A (consisting of samples primarily from the P and AM endemic areas with MON-1 and non-MON-1 strains) and population B consisting of only MON-1 strains essentially from the AM endemic area. For four patients, we observed several isolates from different biological samples which provided insight into disease relapse and re-infection. These findings shed light on the transmission dynamics of parasites in humans. However, further data are required to confirm this hypothesis based on a limited sample set. This study represents the most extensive population analysis of L. infantum strains using MLMT conducted in France.  相似文献   

13.
Transmission of cutaneous leishmaniasis (CL) caused by Leishmania infantum was studied in South Anatolia, Turkey. Small, non-ulcerating lesions prevailed and patients were negative in rK39 tests for antibody detection for human visceral leishmaniasis (VL). The most abundant sand fly species, Phlebotomus tobbi, was found positive for Leishmania promastigotes with a prevalence of 1.4% (13 out of 898 dissected females). The isolated strains were identical with those obtained from patients with CL and were typed as L. infantum. Phylogenetic analysis revealed similarity to MON-188 and a clear difference from the MON-1 clade. Blood-meal identification showed that P. tobbi feeds preferentially on cattle and humans. This finding, the high number of CL patients and relative scarcity of dogs in the focus, suggests that the transmission cycle could be anthroponotic.  相似文献   

14.
In Ethiopia, visceral leishmaniasis (VL) is an increasing public health concern. Recently, a new outbreak of VL claimed the lives of hundreds of Ethiopians. Mapping its distribution and the identification of the causative Leishmania species is important for proper use of resources and for control planning. The choice of appropriate typing technique is the key for determining the infecting species. Here we compared three deoxyribonucleic acid (DNA) based markers. We used, for the first time, cpbE and cpbF (cpbE/F) PCR-RFLP and demonstrated that it clearly differentiates Leishmania donovani from Leishmania infantum. The cpbE/F PCR-RFLP gave identical banding pattern for all L. donovani strains irrespective of their geographic origin. With the K26 (primers) PCR-RFLP, the L. donovani strains gave a banding pattern different from L. infantum and showed variation with geographic origin. The Ethiopian isolates typed as L. donovani by the PCR-RFLP of the cpbE/F (gene) and K26 (primers) showed two types of patterns with the T2/B4 (primers) PCR-RFLP; one group with L. infantum-like and the other L. donovani-like pattern. Phylogenetic analysis using cpbE/F sequences showed variation with geographic origin of strains and the African strains of L. donovani are more distantly related to L. infantum. Moreover, the Ethiopian isolates were seen to be closely related to the Sudanese, Kenyan and Indian strains. Thus, we recommend the use of more than one marker to study the population genetics of L. donovani complex.  相似文献   

15.

Background

Sodium antimony gluconate (SAG) unresponsiveness of Leishmania donovani (Ld) had effectively compromised the chemotherapeutic potential of SAG. 60s ribosomal L23a (60sRL23a), identified as one of the over-expressed protein in different resistant strains of L.donovani as observed with differential proteomics studies indicates towards its possible involvement in SAG resistance in L.donovani. In the present study 60sRL23a has been characterized for its probable association with SAG resistance mechanism.

Methodology and principal findings

The expression profile of 60s ribosomal L23a (60sRL23a) was checked in different SAG resistant as well as sensitive strains of L.donovani clinical isolates by real-time PCR and western blotting and was found to be up-regulated in resistant strains. Ld60sRL23a was cloned, expressed in E.coli system and purified for raising antibody in swiss mice and was observed to have cytosolic localization in L.donovani. 60sRL23a was further over-expressed in sensitive strain of L.donovani to check its sensitivity profile against SAG (Sb V and III) and was found to be altered towards the resistant mode.

Conclusion/Significance

This study reports for the first time that the over expression of 60sRL23a in SAG sensitive parasite decreases the sensitivity of the parasite towards SAG, miltefosine and paramomycin. Growth curve of the tranfectants further indicated the proliferative potential of 60sRL23a assisting the parasite survival and reaffirming the extra ribosomal role of 60sRL23a. The study thus indicates towards the role of the protein in lowering and redistributing the drug pressure by increased proliferation of parasites and warrants further longitudinal study to understand the underlying mechanism.  相似文献   

16.

Background

Visceral leishmaniasis (VL), a widely distributed systemic disease caused by infection with the Leishmania donovani complex (L. donovani and L. infantum), is almost always fatal if symptomatic and untreated. A rapid point-of-care diagnostic test for anti-Leishmania antibodies, the rK39-immunochromatographic test (rK39-ICT), has high sensitivity and specificity in South Asia but is less sensitive in East Africa. One of the underlying reasons may be continent-specific molecular diversity in the rK39 antigen within the L. donovani complex. However, a second reason may be differences in specific IgG anti-Leishmania levels in patients from different geographical regions, either due to variable antigenicity or immunological response.

Methodology/Principal Findings

We determined IgG titres of Indian and Sudanese VL patients against whole cell lysates of Indian and Sudanese L. donovani strains. Indian VL patients had significantly higher IgG titres against both L. donovani strains compared to Sudanese VL patients (p<0.0001). Mean reciprocal log10 50% end-point titres (1/log10t50) were i) 3.80 and 3.88 for Indian plasma and ii) 2.13 and 2.09 for Sudanese plasma against Indian and Sudanese antigen respectively (p<0.0001). Overall, the Indian VL patients therefore showed a 46.8–61.7 -fold higher mean ELISA titre than the Sudanese VL patients. The higher IgG titres occurred in children (<16 years old) and adults of either sex from India (mean 1/log10t50: 3.60–4.15) versus Sudan (mean 1/log10t50: 1.88–2.54). The greatest difference in IgG responses was between male Indian and Sudanese VL patients of ≥ 16 years old (mean 1/log10t50: 4.15 versus 1.99 = 144-fold (p<0.0001).

Conclusions/Significance

Anti-Leishmania IgG responses among VL patients in Sudan were significantly lower than in India; this may be due to chronic malnutrition with Zn2+ deficiency, or variable antigenicity and capacity to generate IgG responses to Leishmania antigens. Such differential anti-Leishmania IgG levels may contribute to lower sensitivity of the rK39-ICT in East Africa.  相似文献   

17.

Background

One of the most important drawbacks in visceral leishmaniasis (VL) population studies is the difficulty of diagnosing asymptomatic carriers. The aim of this study, conducted in an urban area in the Southeast of Brazil, was to evaluate the performance of serology to identify asymptomatic VL infection in participants selected from a cohort with a two-year follow-up period.

Methodology

Blood samples were collected in 2001 from 136 cohort participants (97 positive and 39 negatives, PCR/hybridization carried out in 1999). They were clinically evaluated and none had progressed to disease from their asymptomatic state. As controls, blood samples from 22 control individuals and 8 patients with kala-azar were collected. Two molecular biology techniques (reference tests) were performed: PCR with Leishmania-generic primer followed by hybridization using L. infantum probe, and PCR with specific primer to L. donovani complex. Plasma samples were tested by ELISA using three different antigens: L. infantum and L. amazonensis crude antigens, and rK39 recombinant protein. Accuracy of the serological tests was evaluated using sensitivity, specificity, likelihood ratio and ROC curve.

Findings

The presence of Leishmania was confirmed, by molecular techniques, in all kala-azar patients and in 117 (86%) of the 136 cohort participants. Kala-azar patients showed high reactivity in ELISAs, whereas asymptomatic individuals presented low reactivity against the antigens tested. When compared to molecular techniques, the L. amazonensis and L. infantum antigens showed higher sensitivity (49.6% and 41.0%, respectively) than rK39 (26.5%); however, the specificity of rK39 was higher (73.7%) than L. amazonensis (52.6%) and L. infantum antigens (36.8%). Moreover, there was low agreement among the different antigens used (kappa<0.10).

Conclusions

Serological tests were inaccurate for diagnosing asymptomatic infections compared to molecular methods; this could lead to misclassification bias in population studies. Therefore, studies which have used serological assays to estimate prevalence, to evaluate intervention programs or to identify risk factors for Leishmania infection, may have had their results compromised.  相似文献   

18.

Background

Pentavalent antimonials have been the first line treatment for dermal leishmaniasis in Colombia for over 30 years. Miltefosine is administered as second line treatment since 2005. The susceptibility of circulating populations of Leishmania to these drugs is unknown despite clinical evidence supporting the emergence of resistance.

Methodology/Principal Findings

In vitro susceptibility was determined for intracellular amastigotes of 245 clinical strains of the most prevalent Leishmania Viannia species in Colombia to miltefosine (HePC) and/or meglumine antimoniate (SbV); 163, (80%) were evaluated for both drugs. Additionally, susceptibility to SbV was examined in two cohorts of 85 L. V. panamensis strains isolated between 1980–1989 and 2000–2009 in the municipality of Tumaco. Susceptibility to each drug differed among strains of the same species and between species. Whereas 68% of L. V. braziliensis strains presented in vitro resistance to HePC, 69% were sensitive to SbV. Resistance to HePC and SbV occurred respectively, in 20% y 21% of L. panamensis strains. Only 3% of L. V. guyanensis were resistant to HePC, and none to SbV. Drug susceptibility differed between geographic regions and time periods. Subpopulations having disparate susceptibility to SbV were discerned among L. V. panamensis strains isolated during 1980–1990 in Tumaco where resistant strains belonged to zymodeme 2.3, and sensitive strains to zymodeme 2.2.

Conclusions/Significance

Large scale evaluation of clinical strains of Leishmania Viannia species demonstrated species, population, geographic, and epidemiologic differences in susceptibility to meglumine antimoniate and miltefosine, and provided baseline information for monitoring susceptibility to these drugs. Sensitive and resistant clinical strains within each species, and zymodeme as a proxy marker of antimony susceptibility for L. V. panamensis, will be useful in deciphering factors involved in susceptibility and the distribution of sensitive and resistant populations.  相似文献   

19.

Background

Parasites'' evolution in response to parasite-targeted control strategies, such as vaccines and drugs, is known to be influenced by their population genetic structure. The aim of this study was to describe the population structure of Ethiopian strains of Leishmania donovani derived from different areas endemic for visceral leishmaniasis (VL) as a prerequisite for the design of effective control strategies against the disease.

Methodology/Principal Findings

Sixty-three strains of L. donovani newly isolated from VL cases in the two main Ethiopian foci, in the north Ethiopia (NE) and south Ethiopia (SE) of the country were investigated by using 14 highly polymorphic microsatellite markers. The microsatellite profiles of 60 previously analysed L. donovani strains from Sudan, Kenya and India were included for comparison. Multilocus microsatellite typing placed strains from SE and Kenya (n = 30) in one population and strains from NE and Sudan (n = 65) in another. These two East African populations corresponded to the areas of distribution of two different sand fly vectors. In NE and Sudan Phlebotomus orientalis has been implicated to transmit the parasites and in SE and Kenya P. martini. The genetic differences between parasites from NE and SE are also congruent with some phenotypic differences. Each of these populations was further divided into two subpopulations. Interestingly, in one of the subpopulations of the population NE we observed predominance of strains isolated from HIV-VL co-infected patients and of strains with putative hybrid genotypes. Furthermore, high inbreeding irreconcilable from strict clonal reproduction was found for strains from SE and Kenya indicating a mixed-mating system.

Conclusions/Significance

This study identified a hierarchical population structure of L. donovani in East Africa. The existence of two main, genetically and geographically separated, populations could reflect different parasite-vector associations, different ecologies and varying host backgrounds and should be further investigated.  相似文献   

20.

Background

For effective control of visceral leishmaniasis (VL) in East Africa, new rapid diagnostic tests are required to replace current tests with low sensitivity. The aim of this study is to improve diagnosis of VL in East Africa by testing a new antigen from an autochthonous L. donovani strain in Sudan.

Methodology and Principle Findings

We cloned, expressed and purified a novel recombinant protein antigen of L. donovani from Sudan, designated rKLO8, that contains putative conserved domains with significant similarity to the immunodominant kinesin proteins of Leishmania. rKLO8 exhibited 93% and 88% amino acid identity with cloned kinesin proteins of L. infantum (synonymous L. chagasi) (K39) and L. donovani (KE16), respectively. We evaluated the diagnostic efficiency of the recombinant protein in ELISA for specific detection of VL patients from Sudan. Data were compared with a rK39 ELISA and two commercial kits, the rK39 strip test and the direct agglutination test (DAT). Of 106 parasitologically confirmed VL sera, 104 (98.1%) were tested positive by rKLO8 as compared to 102 (96.2%) by rK39. Importantly, the patients'' sera showed increased reactivity with rKLO8 than rK39. Specificity was 96.1% and 94.8% for rKLO8- and rK39 ELISAs, respectively. DAT showed 100% specificity and 94.3% sensitivity while rK39 strip test performed with 81.1% sensitivity and 98.7% specificity.

Conclusion

The increased reactivity of Sudanese VL sera with the rKLO8 makes this antigen a potential candidate for diagnosis of visceral leishmaniasis in Sudan. However, the suitability at the field level will depend on its performance in a rapid test format.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号