首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Vascular complications, a major cause of morbidity and mortality in diabetic patients, are related to hyperglycemia-induced oxidative stress. Previously, we reported that rosiglitazone (RSG) attenuated vascular expression and activity of NADPH oxidases in diabetic mice. The mechanisms underlying these effects remain to be elucidated. We hypothesized that RSG acts directly on endothelial cells to modulate vascular responses in diabetes. To test this hypothesis, human aortic endothelial cells (HAECs) were exposed to normal glucose (NG; 5.6 mmol/l) or high glucose (HG; 30 mmol/l) concentrations. Select HAEC monolayers were treated with RSG, caffeic acid phenethyl ester (CAPE), diphenyleneiodonium (DPI), small interfering (si)RNA (to NF-κB/p65 or Nox4), or Tempol. HG increased the expression and activity of the NADPH oxidase catalytic subunit Nox4 but not Nox1 or Nox2. RSG attenuated HG-induced NF-κB/p65 phosphorylation, nuclear translocation, and binding to the Nox4 promoter. Inhibiting NF-κB with CAPE or siNF-κB/p65 also reduced HG-induced Nox4 expression and activity. HG-induced H(2)O(2) production was attenuated by siRNA-mediated knockdown of Nox4, and HG-induced HAEC monocyte adhesion was attenuated by treatment with RSG, DPI, CAPE, or Tempol. These results indicate that HG exposure stimulates HAEC NF-κB activation, Nox4 expression, and H(2)O(2) production and that RSG attenuates HG-induced oxidative stress and subsequent monocyte-endothelial interactions by attenuating NF-κB/p65 activation and Nox4 expression. This study provides novel insights into mechanisms by which the thiazolidinedione peroxisome proliferator-activated receptor-γ ligand RSG favorably modulates endothelial responses in the diabetic vasculature.  相似文献   

14.
15.
16.
This study investigated the anti-osteoclastic effect of caffeic acid phenethyl ester (CAPE) through suppression of Nox1-mediated superoxide anions production. The multi-nucleated cells were counted and followed by measuring their tartrate-resistant acid phosphatase (TRAP) activity. The superoxide anion production was determined by using fluorescent probe dihydroethidium (DHE). After one day of exposure to the receptor activator of nuclear factor-κB ligand (RANKL), the expression of the proteins involved in superoxide anion production was determined by western blotting. A potent anti-osteoclastic effect of CAPE was observed; the superoxide anion level reached a maximum value after one day of incubation. CAPE attenuated the expression of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 1 (Nox1) and Rac1, and mitigated the RANKL-induced translocation of p47phox to the cell membrane. In addition, CAPE suppressed the expression of nuclear factor-kappa B (NF-κB p65), its translocation to the nucleus, and the activation of NF-κB inhibitor (IκBα) and its kinase (IKKβ). Furthermore, CAPE diminished the expression and activation of the c-jun N-terminal kinase (JNK) and the expression of protein-1 activators (AP-1) such as c-Fos and c-Jun. The expression of Nox1 was suppressed by CAPE through the down-regulation of IKKβ/IκBα/NF-κB and JNK/AP-1 signal pathway. This study provides evidence that the anti-osteoclastic effect of CAPE depends upon the attenuated superoxide anion production, which is closely related with interruption of an active Nox1 complex formation due to the attenuated catalytic subunit Nox1 expression resulting from suppression of the IKKβ/IκBα/NF-κB and JNK/AP-1 signaling pathway and the down-regulation of the p47phox subunit translocation to the cell membrane.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号