首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metastin (kisspeptin-54) is an endogenous ligand that modulates gonadotropin-releasing hormone (GnRH) secretion through the interaction with a G protein-coupled receptor (GPCR), GPR54. The short-chain C-terminal decapeptide amide, metastin (45-54) (kisspeptin-10), exerts the identical bioactivities to metastin, such as metastasis suppression of cancer cells and inhibition of trophoblast migration and invasion. In order to understand the structural requirement for GPR54 agonistic activity, structure-activity relationship (SAR) study on pentapeptide-based C-terminal metastin analogues was carried out. As a result, H-Amb-Nal(2)-Gly-Leu-Arg-Trp-NH2 34 was identified as a novel GPR54 agonist that possessed the most potent GPR54 agonistic activity reported so far.  相似文献   

2.
The poorly characterized G-protein-coupled receptor GPR35 has been suggested as a potential exploratory target for the treatment of both metabolic disorders and hypertension. It has also been indicated to play an important role in immune modulation. A major impediment to validation of these concepts and further study of the role of this receptor has been a paucity of pharmacological tools that interact with GPR35. Using a receptor-β-arrestin-2 interaction assay with both human and rat orthologues of GPR35, we identified a number of compounds possessing agonist activity. These included the previously described ligand zaprinast. Although a number of active compounds, including cromolyn disodium and dicumarol, displayed similar potency at both orthologues of GPR35, a number of ligands, including pamoate and niflumic acid, had detectable activity only at human GPR35 whereas others, including zaprinast and luteolin, were markedly selective for the rat orthologue. Previous studies have demonstrated activation of Gα13 by GPR35. A Saccharomyces cerevisiae-based assay employing a chimaeric Gpa1-Gα13 G-protein confirmed that all of the compounds active at human GPR35 in the β-arrestin-2 interaction assay were also able to promote cell growth via Gα13. Each of these ligands also promoted binding of [35S]GTP[S] (guanosine 5'-[γ-[35S]thio]triphosphate) to an epitope-tagged form of Gα13 in a GPR35-dependent manner. The ligands identified in these studies will be useful in interrogating the biological actions of GPR35, but appreciation of the species selectivity of ligands at this receptor will be vital to correctly attribute function.  相似文献   

3.
The G-protein coupled receptor 83 (GPR83) is an orphan G-protein coupled receptor for which the natural ligand(s) and signaling pathway(s) remain to be identified. Previous studies suggest a role of GPR83 in the regulation of thermogenesis and the control of circulating adiponectin. The aim of this study was to gain insights into the molecular underpinnings underlying GPR83 signaling. In particular, we aimed to assess the underlying G-protein activated signaling pathway of GPR83 and how this pathway is affected by mutational activation and zinc(II) challenge. Finally, we assessed the capacity of GPR83 for homodimerization. Our results show for the first time that mouse (m) GPR83 has high basal Gq/11 activity without affecting Gi or Gs signaling. Furthermore, we found that, under physiological conditions, zinc(II) (but not calcium(II) and magnesium(II)) potently activates mGPR83, thus identifying zinc(II) as an endogenous molecule with agonistic capability to activate mGPR83. In line with the observation that zinc(II)-ions activate mGPR83, we identified a cluster of ion-binding sensitive amino acids (e.g. His145, His204, Cys207, Glu217) in an activation sensitive receptor region of mGPR83. The occurrence of a constitutive activating mutant and a zinc(II)-binding residue at the N-terminal part corroborate the importance of this region in mGPR83 signal regulation. Finally, our results indicate that mGPR83 forms homodimers, which extend the current knowledge and molecular facets of GPR83 signaling.  相似文献   

4.
G protein-coupled receptor 35 (GPR35) is poorly characterized but nevertheless has been revealed to have diverse roles in areas including lower gut inflammation and pain. The development of novel reagents and tools will greatly enhance analysis of GPR35 functions in health and disease. Here, we used mass spectrometry, mutagenesis, and [32P] orthophosphate labeling to identify that all five hydroxy-amino acids in the C-terminal tail of human GPR35a became phosphorylated in response to agonist occupancy of the receptor and that, apart from Ser294, each of these contributed to interactions with arretin-3, which inhibits further G protein-coupled receptor signaling. We found that Ser303 was key to such interactions; the serine corresponding to human GPR35a residue 303 also played a dominant role in arrestin-3 interactions for both mouse and rat GPR35. We also demonstrated that fully phospho-site–deficient mutants of human GPR35a and mouse GPR35 failed to interact effectively with arrestin-3, and the human phospho-deficient variant was not internalized from the surface of cells in response to agonist treatment. Even in cells stably expressing species orthologues of GPR35, a substantial proportion of the expressed protein(s) was determined to be immature. Finally, phospho-site–specific antisera targeting the region encompassing Ser303 in human (Ser301 in mouse) GPR35a identified only the mature forms of GPR35 and provided effective sensors of the activation status of the receptors both in immunoblotting and immunocytochemical studies. Such antisera may be useful tools to evaluate target engagement in drug discovery and target validation programs.  相似文献   

5.
Recent evidence has shown that eosinophils play an important role in metabolic homeostasis through Th2 cytokine production. GPR120 (FFA4) is a G protein-coupled receptor (GPCR) for long-chain fatty acids that functions as a regulator of physiological energy metabolism. In the present study, we aimed to investigate whether human eosinophils express GPR120 and, if present, whether it possesses a functional capacity on eosinophils. Eosinophils isolated from peripheral venous blood expressed GPR120 at both the mRNA and protein levels. Stimulation with a synthetic GPR120 agonist, GW9508, induced rapid down-regulation of cell surface expression of GPR120, suggesting ligand-dependent receptor internalization. Although GPR120 activation did not induce eosinophil chemotactic response and degranulation, we found that GW9508 inhibited eosinophil spontaneous apoptosis and Fas receptor expression. The anti-apoptotic effect was attenuated by phosphoinositide 3-kinase (PI3K) inhibitors and was associated with inhibition of caspase-3 activity. Eosinophil response investigated using ELISpot assay indicated that stimulation with a GPR120 agonist induced IL-4 secretion. These findings demonstrate the novel functional properties of fatty acid sensor GPR120 on human eosinophils and indicate the previously unrecognized link between nutrient metabolism and the immune system.  相似文献   

6.
G-protein-coupled receptor 52 (GPR52) is classified as an orphan Gs-coupled G-protein-coupled receptor. GPR52 cancels dopamine D2 receptor signaling and activates dopamine D1/N-methyl-d-aspartate receptors via intracellular cAMP accumulation. Therefore, GPR52 agonists are expected to alleviate symptoms of psychotic disorders. A novel series of 1-(benzothiophen-7-yl)-1H-pyrazole as GPR52 agonists was designed and synthesized based on compound 1b. Compound 1b has been reported by our group as the first orally active GPR52 agonist, but high lipophilicity and poor aqueous solubility still remained as issues for candidate selection. To resolve these issues, replacement of the benzene ring at the 7-positon of compound 1b with heterocylic rings, such as pyrazole and pyridine, was greatly expected to reduce lipophilicity to levels for which calculated logD values were lower than that of compound 1b. While evaluating the pyrazole derivatives, introduction of a methyl substituent at the 3-position of the pyrazole ring led to increased GPR52 agonistic activity. Moreover, additional methyl substituent at the 5-position of the pyrazole and further introduction of hydroxy group to lower logD led to significant improvement of solubility while maintaining the activity. As a result, we identified 3-methyl-5-hydroxymethyl-1H-pyrazole derivative 17 (GPR52 EC50?=?21?nM, Emax?=?103%, logD?=?2.21, Solubility at pH 6.8?=?21?μg/mL) with potent GPR52 agonistic activity and good solubility compared to compound 1b. Furthermore, this compound 17 dose-dependently suppressed methamphetamine-induced hyperlocomotion in mice.  相似文献   

7.
Allosteric rescuing of loss-of-function FFAR2 mutations   总被引:1,自引:0,他引:1  
FFAR2 (GPR43) is a receptor for short-chain fatty acids (SCFAs), acetate and propionate. In the current study, we investigate the molecular determinants contributing to receptor activation by endogenous ligands. Mutational analysis revealed several important residues located in transmembrane domains (TM) 3, 4, 5, 6, and 7 for acetate binding. Interestingly, mutations that abolished acetate activity, including the mutation in the well-conserved D(E)RY motif, could be rescued by a recently identified synthetic allosteric agonist. These findings provide additional insight into agonist binding and activation which may aid in designing allosteric ligands for targeting receptor function in various diseases.  相似文献   

8.
The KiSS1/GPR54 system in fish   总被引:1,自引:0,他引:1  
Elizur A 《Peptides》2009,30(1):164-170
  相似文献   

9.
GPR119 agonist has emerged as a promising target for the treatment of type 2 diabetes. A series of novel 2,4-disubstituted quinazoline analogues was prepared and evaluated their agonistic activity against human GPR119. The analogues bearing azabicyclic amine substituents (12a, 12c and 12g) exhibited better EC50 values than that of OEA though they appeared to be partial agonists.  相似文献   

10.
Neuropeptide B (NPB) has been recently identified as an endogenous ligand for GPR7 (NPBW1) and GPR8 (NPBW2) and has been shown to possess a relatively high selectivity for GPR7. In order to identify useful experimental tools to address physiological roles of GPR7, we synthesized a series of NPB analogs based on modification of an unbrominated form of 23 amino acids with amidated C-terminal, Br(-)NPB-23-NH(2). We confirmed that truncation of the N-terminal Trp residue resulted in almost complete loss of the binding affinity of NPB for GPR7 and GPR8, supporting the special importance of this residue for binding. Br(-)NPB-23-NH2 analogs in which each amino acid in positions 4, 5, 7, 8, 9, 10, 12 and 21 was replaced with alanine or glycine exhibited potent binding affinity comparable to the parent peptide. In contrast, replacement of Tyr(11) with alanine reduced the binding affinity for both GPR7 and GPR8 four fold. Of particular interest, several NPB analogs in which the consecutive amino acids from Pro4 to Val(13) were replaced with several units of 5-aminovaleric acid (Ava) linkers retained their potent affinity for GPR7. Furthermore, these Ava-substituted NPB analogs exhibited potent agonistic activities for GPR7 expressed in HEK293 cells. Among the Ava-substituted NPB analogs, analog 15 (Ava-5) and 17 (Ava-3) exhibited potency comparable to the parent peptide for GPR7 with significantly reduced activity for GPR8, resulting in high selectivity for GPR7. These highly potent and selective NPB analogs may be useful pharmacological tools to investigate the physiological and pharmacological roles of GPR7.  相似文献   

11.
Lysophosphatidyl-L-serine (lysoPS) is thought to be an immunological regulator because it dramatically augments the degranulation of rat peritoneal mast cells (RPMCs). This stimulatory effect may be mediated by a lysoPS receptor, but its molecule has not been identified yet. During a ligand fishing study for the orphan G-protein-coupled receptor 34 (GPR34), we found that lysoPS caused a dose-dependent inhibition of forskolin-stimulated cAMP accumulation in human GPR34-expressing Chinese hamster ovary (CHO/hGPR34) cells. The CHO/hGPR34 cells were unresponsive to other structurally related phospholipids examined. Quantitative real-time-PCR demonstrated that mRNAs of GPR34 are particularly abundant in mast cells. The effective lysoPS concentration for RPMC degranulation was similar to that required for GPR34 activation, and the structural requirement of lysoPS for RPMC degranulation was in good agreement with that observed in CHO/hGPR34 cells. These results suggest that GPR34 is the functional mast cell lysoPS receptor.  相似文献   

12.
The adhesion G-protein-coupled receptors (GPCRs) (also termed LN-7TM or EGF-7TM receptors) are membrane-bound proteins with long N-termini containing multiple domains. Here, 2 new human adhesion-GPCRs, termed GPR133 and GPR144, have been found by searches done in the human genome databases. Both GPR133 and GPR144 have a GPS domain in their N-termini, while GPR144 also has a pentraxin domain. The phylogenetic analyses of the 2 new human receptors show that they group together without close relationship to the other adhesion-GPCRs. In addition to the human genes, mouse orthologues to those 2 and 15 other mouse orthologues to human were identified (GPR110, GPR111, GPR112, GPR113, GPR114, GPR115, GPR116, GPR123, GPR124, GPR125, GPR126, GPR128, LEC1, LEC2, and LEC3). Currently the total number of human adhesion-GPCRs is 33. The mouse and human sequences show a clear one-to-one relationship, with the exception of EMR2 and EMR3, which do not seem to have orthologues in mouse. EST expression charts for the entire repertoire of adhesion-GPCRs in human and mouse were established. Over 1600 ESTs were found for these receptors, showing widespread distribution in both central and peripheral tissues. The expression patterns are highly variable between different receptors, indicating that they participate in a number of physiological processes.  相似文献   

13.
14.
A class of novel pyrimidine derivatives bearing diverse conformationally restricted azabicyclic ether/amine were designed, synthesized and evaluated for their GPR119 agonist activities against type 2 diabetes. Most compounds exhibited superior hEC50 values to endogenous lipid oleoylethanolamide (OEA). Analogs with 2-fluoro substitution in the aryl ring showed more potent GPR119 activation than those without fluorine. Especially compound 27m synthesized from endo-azabicyclic alcohol was observed to have the best EC50 value (1.2 nM) and quite good agonistic activity (112.2% max) as a full agonist.  相似文献   

15.
Two sesquiterpenoids, atractylenolide II and III, were isolated and identified from Atractylodes macrocephala (Asteraceae) to be subsequently evaluated for their activity against farnesoid X receptor (FXR) and progesterone receptor (PR) by transient transfection reporter assays. These sesquiterpenoids did not exert significant agonistic effect but antagonized the activity of chenodeoxycholic acid (CDCA), an endogenous FXR agonist, for FXR driven SHP promoter transactivation. Additionally, they transactivated CYP7A1 gene promoter activity by antagonizing FXR. Apart from acting as a FXR antagonist, atractylenolide III also showed agonistic activity against PR. All these results demonstrated that atractylenolide II and III are the active components of Atractylodes macrocephala to exert specific pharmacologic effects.  相似文献   

16.
The P2Y-like receptor GPR17 has been reported to respond to both uracil nucleotides and cysteinyl-leukotrienes (cysLTs), such as UDP-glucose and LTD4. Our previous data suggest a potential role for GPR17 in regulation of both cell viability and differentiation state of central nervous system cells. On this basis, in the present paper we investigated the effect of GPR17 receptor ligands on PC12 cell viability, following induction of morphological differentiation by nerve growth factor (NGF). In addition, the role of GPR17 ligands, either alone or in combination with growth factors, on the degree of PC12 cell differentiation was investigated. GPR17, which was not basally expressed in undifferentiated PC12 cells, was specifically induced by a 10 day-treatment with NGF, suggesting a role in the control of neuronal specification. Both UDP-glucose and LTD4, agonists at the nucleotide and cysLT GPR17 binding sites, respectively, induced a significant pro-survival effect on PC12 cells after priming with NGF. By in vitro silencing experiments with specific small interfering RNAs and by using receptor antagonists, we confirmed that the agonist effects are indeed mediated by the selective activation of GPR17. We also demonstrated that GPR17 agonists act, both alone and synergistically with NGF, to promote neurite outgrowth in PC12 cells. In addition, GPR17 ligands were able to confer an NGF-like activity to the epidermal growth factor (EGF), that, under these experimental conditions, also promoted cell differentiation and neurite elongation.Finally, we show that GPR17 ligands activate the intracellular phosphorylation of both ERK 1/2 and p38 kinases, that have been identified as important signalling pathways for neurotrophins in PC12 cells.Our results establish GPR17 as a neurotrophic regulator for neuronal-like cells and suggest a possible interplay between endogenous uracil derivatives, cysLTs and NGF in the signalling pathways involved in neuronal survival and differentiation. They also represent the first direct demonstration, in a native system, that GPR17 can indeed be activated by uracil nucleotides and cysLTs, in line with what previously demonstrated in recombinant expression systems.  相似文献   

17.
Marijuana is the most widely abused illegal drug, and its spectrum of effects suggests that several receptors are responsible for the activity. Two cannabinoid receptor subtypes, CB1 and CB2, have been identified, but the complex pharmacological properties of exogenous cannabinoids and endocannabinoids are not fully explained by their signaling. The orphan receptor GPR55 binds a subset of CB1 and CB2 ligands and has been proposed as a cannabinoid receptor. This designation, however, is controversial as a result of recent studies in which lysophosphatidylinositol (LPI) was identified as a GPR55 agonist. Defining a biological role for GPR55 requires GPR55 selective ligands that have been unavailable. From a β-arrestin, high-throughput, high-content screen of 300000 compounds run in collaboration with the Molecular Libraries Probe Production Centers Network initiative (PubChem AID1965), we identified potent GPR55 selective agonists. By modeling of the GPR55 activated state, we compared the GPR55 binding conformations of three of the novel agonists obtained from the screen, CID1792197, CID1172084, and CID2440433 (PubChem Compound IDs), with that of LPI. Our modeling indicates the molecular shapes and electrostatic potential distributions of these agonists mimic those of LPI; the GPR55 binding site accommodates ligands that have inverted-L or T shapes with long, thin profiles that can fit vertically deep in the receptor binding pocket while their broad head regions occupy a horizontal binding pocket near the GPR55 extracellular loops. Our results will allow the optimization and design of second-generation GPR55 ligands and provide a means for distinguishing GPR55 selective ligands from those interacting with cannabinoid receptors.  相似文献   

18.
Kisspeptin-10 is the C-terminal decapeptide amide of kisspeptin, an endogenous ligand for GPR54, and exhibits the same binding and agonist activity as the parent molecule. Although GPR54 is a membrane-embedded protein, details of the molecular interaction between kisspeptin-10 and lipid membranes remain unclear. Here, we performed a series of structural analyses using alanine-scanning analogs of kisspeptin-10 in membrane-mimetic medium. We found that there is a close correlation between lipid membrane binding and agonist activity. For instance, the F10A and non-amidated (NH2 → OH) analogs showed little or no GPR54-agonist activity and elicited no blue shift in tryptophan fluorescence. NMR analysis of kisspeptin-10 analog in DPC micelles revealed it to contain several tight turn structures, encompassing residues Trp3 to Phe10, but no helical conformation like that seen previously with SDS micelles. Together, our results suggest that kisspeptin-10 may activate GPR54 via a ligand transportation pathway incorporating a lipid membrane.  相似文献   

19.
GPR142 is an islet-enriched G protein-coupled receptor that has been investigated as a novel therapeutic target for the treatment of type 2 diabetes by virtue of its insulin secretagogue activity. However, the signaling pathways downstream of GPR142 and whether its stimulation of insulin release is glucose-dependent remain poorly characterized. In this study, we show that both native and synthetic GPR142 agonists can activate Gq as well as Gi signaling when GPR142 is recombinantly expressed in HEK293 cells. However, in primary pancreatic islets, a native cellular system, the insulin secretagogue activity of GPR142 agonists only requires Gq activation. In addition, our results show that stimulation of insulin secretion by GPR142 in pancreatic islets is strictly glucose-dependent.  相似文献   

20.
It has recently been shown that UDP-glucose is a potent agonist of the orphan G-protein-coupled receptor (GPCR) KIAA0001. Here we report cloning and analysis of the rat and mouse orthologs of this receptor. In accordance with GPCR nomenclature, we have renamed the cDNA clone, KIAA0001, and its orthologs GPR105 to reflect their functionality as G-protein-coupled receptors. The rat and mouse orthologs show 80% and 83% amino acid identity, respectively, to the human GPR105 protein. We demonstrate by genomic Southern blot analysis that there are no genes in the mouse or rat genomes with higher sequence similarity. Chromosomal mapping shows that the mouse and human genes are located on syntenic regions of chromosome 3. Further analyses of the rat and mouse GPR105 proteins show that they are activated by the same agonists as the human receptor, responding to UDP-glucose and closely related molecules with similar affinities. The mouse and rat receptors are widely expressed, as is the human receptor. Thus we conclude that we have identified the rat and mouse orthologs of the human gene GPR105.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号