首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micellar electrokinetic chromatography (MEKC) with laser-induced fluorescence (LIF) detection has been developed for a protein kinase assay. This protein kinase assay could readily determine the phosphorylation activity of substrate peptide kemptide using cAMP-dependent protein kinase (PKA) as a model enzyme. Kemptide and phosphorylated kemptide could be reacted with 7-fluoro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-F) as a fluorescence derivatization reagent for LIF detection by directly adding NBD-F into the PKA enzymatic reaction mixture. These derivatives of substrate and product were separated and detected within the analysis time of 5 min by micellar electrokinetic mode using a mixture of sodium dodecylsulfate and methanol as a running buffer. Good linearity of the peak response of the phosphorylated kemptide was obtained over the range of 1-20 mU/tube of PKA in the assay. The relative standard deviation of the peak areas of the phosphorylated kemptide using 2, 5 and 10 mU/tube of PKA were calculated to <10.4%, indicating that the assay was reproducible. Also, IC(50) values of six PKA inhibitors, the K(i) value and the inhibition pattern of one inhibitor, which were calculated to estimate by the variation of the peak area of the phosphorylated kemptide using 5 mU/tube of PKA, were consistent with the published data. The sensitivity of the assay was higher than that of enzyme-linked immunosorbent assay (ELISA) for PKA phosphorylation activity, as IC(50) values, K(i) value, and the inhibition mechanism of inhibitors could be estimated using one-tenth amounts of PKA, compared with that of ELISA. The MEKC-LIF is expected to be very useful for protein kinase assay and its application to the estimation of inhibitors because this method does not entail experimentally troublesome procedures such as the preparation of antibody or fluorescence-labeled substrate.  相似文献   

2.
A peptide library approach based on electrospray mass-spectrometric (ESI-MS) detection of phosphopeptides was designed for rapid and quantitative characterization of protein kinase specificity. The k(cat)/K(m) values for the protein kinase Cbeta (PKCbeta) were determined for a systematically varied set of individual substrate peptides in library mixtures by the ESI-MS method. The analysis revealed a complex structural specificity profile in positions around the phosphorylated serine with hydrophobic and/or basic residues being mostly preferred. On the basis of the kinetic parameters, a highly efficient peptide substrate for PKCbeta (K(m)value below 100 nM) FRRRRSFRRR and its alanine substituted pseudosubstrate-analog inhibitor (K(i) value of 76 nM) were designed. The quantitative specificity profiles obtained by the new approach contained more information about kinase specificity than the conventional substrate consensus motifs. The new method presents a promising basis for design of substrate-site directed peptide or peptidomimetic inhibitors of protein kinases. Second, highly specific substrates could be designed for novel applications such as high-throughput protein kinase activity screens on protein kinase chips.  相似文献   

3.
A novel label-free electrochemical method for measuring the activity of protein tyrosine kinases (PTK) has been developed. Epidermal growth factor receptor (EGFR), a typical PTK associated with a large percentage of all solid tumors, was used as the model kinase. Poly(glu, tyr) (4:1) peptide, as a substrate of EGFR, was covalently immobilized on the surface of indium tin oxide (ITO) electrode by silane chemistry. The tyrosine (Tyr) residue in the polypeptide served as an electrochemical signal reporter. Its voltammetric current was catalyzed by a dissolved electron mediator Os(bpy)(3)(2+) (bpy=2,2'-bipyridine) for increased sensitivity. Phosphorylation of the Tyr led to a loss of its electrochemical current, thus providing a sensing mechanism for PTK activity. Experimental conditions for the silanization of ITO surface and immobilization of polypeptide were investigated in details to facilitate the generation of Tyr electrochemical signal. The proposed biosensor exhibited high sensitivity and excellent stability. The limit of detection for EGFR was 1 UmL(-1). Furthermore, this biosensor can also be used for quantitative analysis of kinase inhibition. On the basis of the inhibitor concentration dependent electrochemical signal, the half-maximal inhibition value IC(50) of three EGFR inhibitors, PD-153035, OSI-774 and ZD-1839, and their corresponding inhibition constants K(i) were estimated, which were in agreement with those obtained from the conventional kinase assay. This electrochemical biosensor can be implemented in an array format for the high throughput assay of in vitro PTK activity and PTK inhibitors screening for practical diagnostic application and drug discovery.  相似文献   

4.
During the course of our research into new anti-malaria drugs, Plasmodium falciparum thymidylate kinase (PfTMK) has emerged as an important drug target because of its unique substrate specificity. Compared with human thymidylate kinase (HsTMK), PfTMK shows broader substrate specificity, which includes both purine and pyrimidine nucleotides. PfTMK accepts both 2'-deoxyguanosine monophosphate (dGMP) and thymidine monosphosphate (TMP) as substrates. We have evaluated the inhibitory activity of seven carbocyclic thymidine analogs and report the first structure-activity relationship for these inhibitors against PfTMK. The 2',3' dideoxycarbocyclic derivative of thymidine showed the most potent inhibition of the enzyme. The K(i)(dTMP) and K(i)(dGMP) values were 20 and 7 μM respectively. Thus, further modifications of carbocyclic thymidine analogs represent a good strategy for developing more powerful thymidylate kinase inhibitors.  相似文献   

5.
New screening techniques for improved enzyme variants in turbid media are urgently required in many industries such as the detergent and food industry. Here, a new method is presented to measure enzyme activity in different types of substrate suspensions. This method allows a semiquantitative determination of protease activity using native protein substrates. Unlike conventional techniques for measurement of enzyme activity, the BioLector technology enables online monitoring of scattered light intensity and fluorescence signals during the continuous shaking of samples in microtiter plates. The BioLector technique is hereby used to monitor the hydrolysis of an insoluble protein substrate by measuring the decrease of scattered light. The kinetic parameters for the enzyme reaction (V(max,app) and K(m,app)) are determined from the scattered light curves. Moreover, the influence of pH on the protease activity is investigated. The optimal pH value for protease activity was determined to be between pH 8 to 11 and the activities of five subtilisin serine proteases with variations in the amino acid sequence were compared. The presented method enables proteases from genetically modified strains to be easily characterized and compared. Moreover, this method can be applied to other enzyme systems that catalyze various reactions such as cellulose decomposition.  相似文献   

6.
A kinetic analysis was made and a linear plot based on the general rate equation derived by Laidler [Can. J. Chem. 33, 1614-1624] is proposed. This linearization method allows determining the kinetic parameters (K(m), k(cat)) and [E](0) for enzymes with low catalytic activity. The method was applied to chloroperoxidase from Caldariomyces fumago [EC 1.11.1.10], whose kinetic parameters K(m)(app), k(cat)(app), and [E](0) with monochlorodimedone as substrate, were obtained by using the linearization plot and the V(max) value (calculated by Eadie-Hofstee plot). This plot could also be useful to the study of abenzyme kinetics provided the concentration of the latter is either higher or equal than K(m) value.  相似文献   

7.
Lansdon EB  Fisher AJ  Segel IH 《Biochemistry》2004,43(14):4356-4365
Recombinant human 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthetase, isoform 1 (brain), was purified to near-homogeneity from an Escherichia coli expression system and kinetically characterized. The native enzyme, a dimer with each 71 kDa subunit containing an adenosine triphosphate (ATP) sulfurylase and an adenosine 5'-phosphosulfate (APS) kinase domain, catalyzes the overall formation of PAPS from ATP and inorganic sulfate. The protein is active as isolated, but activity is enhanced by treatment with dithiothreitol. APS kinase activity displayed the characteristic substrate inhibition by APS (K(I) of 47.9 microM at saturating MgATP). The maximum attainable activity of 0.12 micromol min(-1) (mg of protein)(-1) was observed at an APS concentration ([APS](opt)) of 15 microM. The theoretical K(m) for APS (at saturating MgATP) and the K(m) for MgATP (at [APS](opt)) were 4.2 microM and 0.14 mM, respectively. At likely cellular levels of MgATP (2.5 mM) and sulfate (0.4 mM), the overall endogenous rate of PAPS formation under optimum assay conditions was 0.09 micromol min(-1) (mg of protein)(-1). Upon addition of pure Penicillium chrysogenum APS kinase in excess, the overall rate increased to 0.47 micromol min(-1) (mg of protein)(-1). The kinetic constants of the ATP sulfurylase domain were as follows: V(max,f) = 0.77 micromol min(-1) (mg of protein)(-1), K(mA(MgATP)) = 0.15 mM, K(ia(MgATP)) = 1 mM, K(mB(sulfate)) = 0.16 mM, V(max,r) = 18.7 micromol min(-1) (mg of protein)(-1), K(mQ(APS)) = 4.8 microM, K(iq(APS)) = 18 nM, and K(mP(PPi)) = 34.6 microM. The (a) imbalance between ATP sulfurylase and APS kinase activities, (b) accumulation of APS in solution during the overall reaction, (c) rate acceleration provided by exogenous APS kinase, and (d) availability of both active sites to exogenous APS all argue against APS channeling. Molybdate, selenate, chromate ("chromium VI"), arsenate, tungstate, chlorate, and perchlorate bind to the ATP sulfurylase domain, with the first five serving as alternative substrates that promote the decomposition of ATP to AMP and PP(i). Selenate, chromate, and arsenate produce transient APX intermediates that are sufficiently long-lived to be captured and 3'-phosphorylated by APS kinase. (The putative PAPX products decompose to adenosine 3',5'-diphosphate and the original oxyanion.) Chlorate and perchlorate form dead-end E.MgATP.oxyanion complexes. Phenylalanine, reported to be an inhibitor of brain ATP sulfurylase, was without effect on PAPS synthetase isoform 1.  相似文献   

8.
We have studied the interaction of several phosphopeptides with cationic polyamino acids such as polyarginine and polylysine by fluorescence polarization. The phosphopeptides used were labeled with fluorescein, and their net charges at the experimental pH of 7. 5 were 0, -1, -2, and -3. These phosphopeptides represent the products of enzymatic phosphorylation reactions of the corresponding nonphosphorylated precursors by the protein kinase A, Akt1 (protein kinase Balpha), and protein kinase C. We found that these phosphopeptides bind more strongly to the cationic polyamino acids studied than their nonphosphorylated analogs. This preferential binding of the phosphorylated peptides could be conveniently detected by an increase in the fluorescence polarization signal of the attached fluorescein residue. We have exploited this observation to develop a new approach for the detection of kinase activity that does not require radioactivity or separation of substrate from product. We have successfully used this method to perform K(m) determinations of the kinase enzymes for their substrates and K(i) determinations of one of their inhibitors. This method for measuring kinase activity might be particularly useful for high-throughput screening applications.  相似文献   

9.
Horseradish peroxidase (HRP) is known to degrade certain recalcitrant organic compounds such as phenol and substituted phenols. Here, for the first time we have shown HRP to be effective in degrading and precipitating industrially important azo dyes. For Remazol blue, the enzyme activity was found to be far better at pH 2.5 than at neutral pH. In addition, Remazol blue acts as a strong competitive inhibitor of HRP at neutral pH. Horseradish peroxidase shows broad substrate specificity toward a variety of azo dyes. Kinetic constants (K(m)(app) and V(max)(app)) for two different dyes have been determined. In addition to providing a systematic analysis of the potential of HRP in degradation of dyes, this study opens up a new area on exploration of commercial dyes as inhibitors of enzymes. 2001 John Wiley & Sons, Inc.  相似文献   

10.
The inhibitory activities of 5,6-dihydro-4H-1,3-selenazine derivatives on protein kinases were investigated. In a multiple protein kinase assay using a postnuclear fraction of v-src-transformed NIH3T3 cells, 4-ethyl-4-hydroxy-2-p-tolyl-5, 6-dihydro-4H-1,3-selenazine (TS-2) and 4-hydroxy-6-isopropyl-4-methyl-2-p-tolyl-5,6-dihydro-4H-1, 3-selenazine (TS-4) exhibited selective inhibitory activity against eukaryotic elongation factor-2 kinase (eEF-2K) over protein kinase A (PKA), protein kinase C (PKC) and protein tyrosine kinase (PTK). In further experiments using purified kinases, TS-2 (IC(50)=0.36 microM) and TS-4 (IC(50)=0.31 microM) inhibited eEF-2K about 25-fold more effectively than calmodulin-dependent protein kinase-I (CaMK-I), and about 6-fold (TS-2) or 33-fold (TS-4) more effectively than calmodulin-dependent protein kinase-II (CaMK-II), respectively. TS-2 and TS-4 showed much weaker inhibitory activity toward PKA and PKC, while TS-4, but not TS-2, moderately inhibited immunoprecipitated v-src kinase. TS-2 (10.7-fold) and TS-4 (12.5-fold) demonstrated more potent and more specific eEF-2K inhibitory activity than rottlerin, a previously identified eEF-2K inhibitor. TS-2 inhibited ATP or eEF-2 binding to eEF-2K in a competitive or non-competitive manner, respectively. In cultured v-src-transformed NIH3T3 cells, TS-2 also decreased phospho-eEF-2 protein level (IC(50)=4.7 microM) without changing the total eEF-2 protein level. Taken together, these results suggest that TS-2 and TS-4 are the first identified selective eEF-2K inhibitors and should be useful tools for studying the function of eEF-2K.  相似文献   

11.
In this study, we have examined the effects of a range of organotin compounds (mono-, di-, tributyltin, mono-, di-, trioctyltin) on the activities of rat testis microsomal 3beta-hydroxysteroid dehydrogenase (3beta-HSD), 17-hydroxylase (17-OHase) and 17beta-hydroxysteroid dehydrogenase (17beta-HSD). 17-OHase activity was inhibited by more than 50% compared with the control rate by 59 microM tributyltin (TBT) but other organotin compounds showed no inhibition. 17beta-HSD activity was unaffected by all organotins tested. 3beta-HSD was inhibited by monooctyltin (81 microM) and by TBT at all concentrations tested in a dose-dependent manner, with almost complete loss of activity at TBT concentrations of 12 microM. The mechanism of inhibition of 3beta-HSD was investigated in kinetic analysis with 0-12 microM TBT. Three rat testis microsomal preparations were incubated with dehydroepiandrosterone as the steroid substrate ranging from 1 to 10,000 nM. Tributyltin was primarily a competitive inhibitor of 3beta-HSD activity, causing an increase in the value of the K(m(app)). However, the mechanism was not entirely competitive as while there was an increase in K(m(app)), a decrease in the V(max(app)) was also observed with increasing concentrations of TBT. Slope and intercept replots demonstrated that the K(i)((app)) from slope replots was around 2.7 microM whereas the K(i)((app)) value from intercept replots was around 30 microM. When compared with the K(m(app)) for 3beta-HSD of around 0.42 microM, TBT could be an effective inhibitor of this enzyme.  相似文献   

12.
Pollock VV  Barber MJ 《Biochemistry》2001,40(5):1430-1440
Rhodobacter sphaeroides f. sp. denitrificans biotin sulfoxide reductase catalyzes the reduction of d-biotin d-sulfoxide (BSO) to biotin. Initial rate studies of the homogeneous recombinant enzyme, expressed in Escherichia coli, have demonstrated that the purified protein utilizes NADPH as a facile electron donor in the absence of any additional auxiliary proteins. We have previously shown [Pollock, V. V., and Barber, M. J. (1997) J. Biol. Chem. 272, 3355-3362] that, at pH 8 and in the presence of saturating concentrations of BSO, the enzyme exhibits, a marked preference for NADPH (k(cat,app) = 500 s(-1), K(m,app) = 269 microM, and k(cat,app)/K(m,app) = 1.86 x 10(6) M(-1) s(-1)) compared to NADH (k(cat,app) = 47 s(-1), K(m,app) = 394 microM, and k(cat,app)/K(m,app) = 1.19 x 10(5) M(-1) s(-1)). Production of biotin using NADPH as the electron donor was confirmed by both the disk biological assay and by reversed-phase HPLC analysis of the reaction products. The purified enzyme also utilized ferricyanide as an artificial electron acceptor, which effectively suppressed biotin sulfoxide reduction and biotin formation. Analysis of the enzyme isolated from tungsten-grown cells yielded decreased reduced methyl viologen:BSO reductase, NADPH:BSO reductase, and NADPH:FR activities, confirming that Mo is required for all activities. Kinetic analyses of substrate inhibition profiles revealed that the enzyme followed a Ping Pong Bi-Bi mechanism with both NADPH and BSO exhibiting double competitive substrate inhibition. Replots of the 1/v-axes intercepts of the parallel asymptotes obtained at several low concentrations of fixed substrate yielded a K(m) for BSO of 714 and 65 microM for NADPH. In contrast, utilizing NADH as an electron donor, the replots yielded a K(m) for BSO of 132 microM and 1.25 mM for NADH. Slope replots of data obtained at high concentrations of BSO yielded a K(i) for BSO of 6.10 mM and 900 microM for NADPH. Kinetic isotope studies utilizing stereospecifically deuterated NADPD indicated that BSO reductase uses specifically the 4R-hydrogen of the nicotinamide ring. Cyanide inhibited NADPH:BSO and NADPH:FR activities in a reversible manner while diethylpyrocarbonate treatment resulted in complete irreversible inactivation of the enzyme concomitant with molybdenum cofactor release, indicating that histidine residues are involved in cofactor-binding.  相似文献   

13.
Enzymatic reversal of the Maillard reaction is a growing area of research. Fructosyl amine oxidase enzymes (EC 1.5.3) have attracted recent attention through demonstration of their ability to deglycate Amadori products, low molecular weight intermediates formed during the early stage of the Maillard reaction. Although stopped assays have been described, a bottleneck in current studies is the lack of continuous kinetic assays. Here, we describe the development of a continuous, coupled enzyme assay and its successful application to determining optimal storage conditions and the steady-state kinetic parameters of an enzyme from this group, amadoriase I. A K(m)(app) of 11 microM and a K(cat)(app) of 3.5s(-1) were determined using this assay using fructosyl propylamine as a substrate, which differ from previous reports. This method was also used to test the activity of two site-directed mutants of amadoriase I, H357N and S370A, which were found to be catalytically inactive.  相似文献   

14.
The authors describe an assay to measure the generation of adenosine 5'-diphosphate (ADP) resulting from phosphorylation of a substrate by a kinase. ADP accumulation is detected by conversion to a fluorescent signal via a coupled enzyme system. The technology has potential applications for the assessment of inhibitor potency and mode of action as well as kinetic analysis of enzyme activity. The assay has a wide dynamic range (0.25-75 microM) and has been validated with several kinases including the highly active cyclic adenosine monophosphate-dependent protein kinase (PKAalpha), casein kinase 1 (CK1), and the weakly active kinase Jun N-terminal kinase 2 (Jnk2alpha2). Kinase activity can be measured either in an end point or continuous mode. Assay performance in end point mode was compared with an adenosine 5'-triphosphate (ATP) depletion assay and in continuous mode with a pyruvate kinase/lactate dehydrogenase coupled assay. The ability to characterize kinase kinetics was demonstrated by deriving ATP/substrate affinity (Michaelis-Menten constant; K(m)) values for PKAalpha, CK1, and Jnk2alpha2. The assay readily measured activity with kinase reactions using protein substrates, indicating the suitability for use with large macromolecules. A wide range of inhibitor activities could be determined even in the presence of high ATP concentrations, making the assay highly suitable to characterize the mode of action of the inhibitor in question. Collectively, this assay provides a homogenous, generic method for a number of applications in kinase drug discovery.  相似文献   

15.
CPI-17 is a phosphorylation-dependent inhibitory protein for smooth muscle myosin phosphate. Phosphorylation at Thr(38), in vitro, by protein kinase C or Rho-kinase enhances the inhibitory potency toward myosin phosphatase. Phosphorylation of CPI-17 by protein kinase N (PKN), a fatty acid- and Rho-activated serine/threonine kinase, and its effect on smooth muscle myosin phosphatase activity were investigated. CPI-17 was phosphorylated by GST-PKN-CAT, a constitutively active GST-fusion fragment of PKN, to 1.46 mol of P/mol of CPI-17, in vitro. The K(m) value of CPI-17 for PKN was 0.96 microM. Phosphorylation of PKN dramatically increased the inhibitory effect of CPI-17 on myosin phosphatase activity. The major and inhibitory phosphorylation site was identified as Thr(38) using a point mutant of CPI-17 and a phosphorylation-state specific antibody. Thus, CPI-17 is a substrate of PKN and might be involved in the Ca(2+) sensitization of smooth muscle contraction as a downstream effector of Rho and/or arachidonic acid.  相似文献   

16.
Selectivity of protein kinase inhibitors in human intact platelets   总被引:1,自引:0,他引:1  
The specificity of commonly used protein kinase inhibitors has been evaluated in the intact human platelet. Protein kinase C (PKC) and cyclic AMP-dependent protein kinase (PKA) were activated selectively by treating platelets with phorbol dibutyrate (PDBu) or prostacyclin (PGl2). PKC activity was quantitated by measuring PDBu-specific phosphorylation of a 47,000 molecular weight protein, and PKA activity monitored by measuring prostacyclin-dependent phosphorylation of a 22,000 molecular weight protein. Staurosporine and 1-(5-isoquinolinylsulphonyl)-2-methyl-piperazine (H-7) were found to be non-specific inhibitors in the intact platelet, consistent with their effects on the isolated enzymes. Tamoxifen inhibited PKC activity (IC50 = 80 microM) but increased PKA-dependent protein phosphorylation. These results support the use of human platelets for measuring the specificity of protein kinase inhibitors and indicate that tamoxifen might have value for experimental purposes as a relatively selective PKC inhibitor.  相似文献   

17.
Miller BG  Raines RT 《Biochemistry》2005,44(32):10776-10783
During a recent investigation of the persistence of substrate ambiguity in contemporary enzymes, we identified three distinct ambiguous sugar kinases embedded within the modern Escherichia coli genome [Miller, B. G., and Raines, R. T. (2004) Biochemistry 43, 6387-6392]. These catalysts are the YajF, YcfX, and NanK polypeptides, all of which possess rudimentary glucokinase activities. Here, we report on the discovery of a fourth bacterial kinase with ambiguous substrate specificity. AlsK phosphorylates the glucose epimer, d-allose, with a k(cat)/K(m) value of 6.5 x 10(4) M(-)(1) s(-)(1). AlsK also phosphorylates d-glucose, with a k(cat)/K(m) value that is 10(5)-fold lower than the k(cat)/K(m) value displayed by native E. coli glucokinase. Overexpression of the alsK gene relieves the auxotrophy of a glucokinase-deficient bacterium, demonstrating that weak enzymatic activities derived from ambiguous catalysts can provide organisms with elaborated metabolic capacities. To explore how ambiguous catalysts are recruited to provide new functions, we placed the glucokinase-deficient bacterium under selection for growth at the expense of glucose. Under these conditions, the bacterium acquires a spontaneous mutation in the putative promoter region of the yajF gene, a locus previously shown to encode a sugar kinase with relaxed substrate specificity. The point mutation regenerates a consensus sigma(70) promoter sequence that leads to a 94-fold increase in the level of yajF expression. This increase provides sufficient glucokinase activity for reconstitution of the defunct glycolytic pathway of the bacterial auxotroph. Our current findings indicate that ambiguous enzymatic activities continue to play an important role in the evolution of new metabolic pathways, and provide insight into the molecular mechanisms that facilitate the recruitment of such catalysts during periods of natural selection.  相似文献   

18.
We describe a label-free method for the kinase inhibition assay toward discovery of kinase inhibitors. The surface plasmon resonance (SPR) imaging analysis using zinc(II) compound was adopted on the on-chip phosphorylation analysis. In this study, following three subjects were focused: (1) to monitor the inhibition of three inhibitors supporting by their specific inhibition mechanisms, (2) to quantify the inhibitory activities, and (3) to prove the reliability of the obtained 50% inhibition concentration (IC50) value. First, the inhibitory activities of Amide 5-24, H-89 and Gö6983 on PKA and PKCδ were determined, and specific inhibitions for two kinases could be observed quantitatively. Second, the inhibition curves of Amide 5-24, Amide 14-22 and H-89 were obtained, and the results supported the two previous reports: (1) the inhibition efficiency of Amide 5-24 was much higher than that of Amide 14-22, and (2) the inhibitory activity of H-89 followed ATP-binding site blocking mechanism. Last, the obtained IC50 values by the SPR imaging were almost corresponded to those by the solution assay, although on-chip phosphorylation efficiency was low (approximately 12%). In conclusion, validation of the on-chip phosphorylation analysis for kinase inhibitors was achieved. This label-free method might be applied for discovery of kinase inhibitors.  相似文献   

19.
As a member of the Wee-kinase family protein kinase PKMYT1 is involved in G2/M checkpoint regulation of the cell cycle. Recently, a peptide microarray approach led to the identification of a small peptide; EFS247–259 as substrate of PKMYT1, which allowed for subsequent development of an activity assay. The developed activity assay was used to characterize the PKMYT1 catalyzed phosphorylation of EFS247–259. For the first time kinetic parameters for PKMYT1, namely Km, Km, ATP and vmax were determined. The optimized assay was used to screen the published protein kinase inhibitor sets (PKIS I and II), two sets of small molecule ATP-competitive kinase inhibitors reported by GlaxoSmithKline. We identified ten inhibitors, providing different scaffolds. The inhibitors were further characterized by using binding assay, activity and functional assay. In addition, docking studies were carried out in order to rationalize the observed biological activities. The derived results provide the basis for further chemical optimization of PKMYT1 inhibitors and for further analysis of PKMYT1 as target for anti-cancer therapy.  相似文献   

20.
LeCPK2 (GenBank GQ205414), a versatile calcium-dependent protein kinase (CDPK or CPK) gene was isolated from tomato in our previous study. In this study, the biochemical properties of LeCPK2 were further investigated. To examine the role of the C-terminal calmodulin-like domain (CLD) of LeCPK2 with respect to Ca2+ activation, the kinase activities of recombinant full-length and truncated LeCPK2 were measured by Kinase-Glo Luminescent kinase assay (Promega). The results showed that LeCPK2 activity was Ca(2+)-dependent and the C-terminal CLD of 161 residues was essential for the activation of LeCPK2. The activity of LeCPK2 was sharply stimulated by Ca2+ with K0.5 (concentration of Ca2+ for half-maximal activity) of 48.8 and 45.5 nM with substrate histone IIIs and syntide 2, respectively. The optimal concentration of Mg2+ for LeCPK2 activity was 20 and 10 mM for substrate histone IIIs and syntide 2, respectively. The K(m) value of LeCPK2 towards histone IIIs and syntide 2 was 44.9 microg/ml and 89.52 microM, respectively. The determination of biochemical properties of LeCPK2 would provide some clues on how its activity was regulated in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号