首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human parainfluenza virus type 2 (HPIV-2), an important pediatric respiratory pathogen, encodes a V protein that inhibits type I interferon (IFN) induction and signaling. Using reverse genetics, we attempted the recovery of a panel of V mutant viruses that individually contained one of six cysteine-to-serine (residues 193, 197, 209, 211, 214, and 218) substitutions, one of two paired charge-to-alanine (R175A/R176A and R205A/K206A) substitutions, or a histidine-to-phenylalanine (H174F) substitution. This mutagenesis was performed using a cDNA-derived HPIV-2 virus that expressed the V and P coding sequences from separate mRNAs. Of the cysteine substitutions, only C193S, C214S, and C218S yielded viable virus, and only the C214S mutant replicated well enough for further analysis. The H174F, R175A/R176A, and R205A/K206A mutants were viable and replicated well. The H174F and R205A/K206A mutants did not differ from the wild-type (WT) V in their ability to physically interact with MDA5, a cytoplasmic sensor of nonself RNA that induces type I IFN. Like WT HPIV-2, these mutants inhibited IFN-β induction and replicated efficiently in African green monkeys (AGMs). In contrast, the C214S and R175A/R176A mutants did not bind MDA5 efficiently, did not inhibit interferon regulatory factor 3 (IRF3) dimerization or IFN-β induction, and were attenuated in AGMs. These findings indicate that V binding to MDA5 is important for HPIV-2 virulence in nonhuman primates and that some V protein residues involved in MDA5 binding are not essential for efficient HPIV-2 growth in vitro. Using a transient expression system, 20 additional mutant V proteins were screened for MDA5 binding, and the region spanning residues 175 to 180 was found to be essential for this activity.  相似文献   

2.
Mutants of bacteriophage T4 which exhibit increased sensitivity to ultraviolet radiation specifically at high temperature were isolated after mutagenesis with hydroxylamine. At 42 °C the mutants are twice as sensitive to ultraviolet light as T4D, whereas at 30 °C they exhibit survival curves almost identical to that of the wild-type strain. Complementation tests revealed that the mutants possess temperature-sensitive mutations in the v gene.Evidence is presented to show that T4 endonuclease V produced by the mutants is more thermolabile than the enzyme of the wild-type. (1) Extracts of cells infected with the mutants were capable of excising pyrimidine dimers from ultraviolet irradiated T4 DNA at 30 °C, but no selective release of dimers was induced at 42 °C. (2) Endonuclease V produced by the mutant was inactivated more rapidly than was the enzyme from T4D-infected cells when the purified enzymes were incubated in a buffer at 42 °C. From these results it is evident that the v gene is the structural gene for T4 endonuclease V, which plays an essential role in the excision-repair of ultraviolet light-damaged DNA.The time of action of the repair endonuclease was determined by using the mutant. Survival of a temperature-sensitive v mutant, exposed to ultraviolet light, increased when infected cells were incubated at 30 °C for at least ten minutes and then transferred to 42 °C. It appears that repair of DNA proceeds during an early stage of phage development.  相似文献   

3.
Nucleoside diphosphate kinase (HsNDK) from an extremely halophilic archaea, Halobacterium salinarum, is composed of a homo hexamer, assembled as a trimer of basic dimeric units. It requires >2 M NaCl for refolding, although it does not require NaCl for stability or enzymatic activity below 30 °C. A HisN111L mutant with an N-terminal extension sequence containing hexa-His tag, in which Asn111 was replaced with Leu, was designed to be less stable between basic dimeric units. This mutant can lose between 6 and 12 hydrogen bonds between basic dimeric units in the hexamer structure. The HisN111L mutant had enhanced salt requirements for enzymatic activity and refolding even though the secondary structure of the HisN111L mutant was confirmed to be similar to the control, HisNDK, in low and high salt solutions using circular dichroism. We reported previously that G114R and D148C mutants, which had enhanced interactions between basic dimeric units, showed facilitated refolding and stabilization in low salt solution. The results of this study help to elucidate the process for engineering industrial enzymes by controlling subunit–subunit interactions through mutations.  相似文献   

4.
5.
Tryptophan residues located in the substrate-binding cleft of a class V chitinase from Nicotiana tabacum (NtChiV) were mutated to alanine and phenylalanine (W190F, W326F, W190F/W326F, W190A, W326A, and W190A/W326A), and the mutant enzymes were characterized to define the role of the tryptophans. The mutations of Trp326 lowered thermal stability by 5–7 °C, while the mutations of Trp190 lowered stability only by 2–4 °C. The Trp326 mutations strongly impaired enzymatic activity, while the effects of the Trp190 mutations were moderate. The experimental data were rationalized based on the crystal structure of NtChiV in a complex with (GlcNAc)4, in which Trp190 is exposed to the solvent and involved in face-to-face stacking interaction with the +2 sugar, while Trp326 is buried inside but interacts with the ?2 sugar through hydrophobicity. HPLC analysis of anomers of the enzymatic products suggested that Trp190 specifically recognizes the β-anomer of the +2 sugar. The strong effects of the Trp326 mutations on activity and stability suggest multiple roles of the residue in stabilizing the protein structure, in sugar residue binding at subsite ?2, and probably in maintaining catalytic efficiency by providing a hydrophobic environment for proton donor Glu115.  相似文献   

6.
A total of sixteen spontaneously generated, independent suppressor mutants was isolated from a mutant (divE42) of Escherichia coli K12 that is defective in cell division. One of the suppressor mutants, designated TR4, had a novel phenotype: it was able to grow at 42°?C but not at 32°?C. The Kohara genomic library was screened for complementing clones. Clone 148 was able to complement the mutation responsible for the cold-sensitive phenotype, and the gene for trigger factor (tig), which encodes a ribosome-associated peptidyl-prolyl cis/trans isomerase, was identified as the mutated gene by deletion analysis with the insert DNA from clone 148. DNA sequencing revealed that the mutation in the tig gene of the TR4 suppressor mutant was a single nucleotide insertion (+A) at a distance of 834 nucleotides from the initiation codon for this enzyme. When the wild-type tig gene was introduced into the TR4 suppressor mutant, the bacteria were able to grow at 32°?C but not at 42°?C, an indication that the intergenic suppressor mutation was recessive to the wild-type allele. A model is proposed that accounts for the phenotypes of the divE42 mutant and the TR4 suppressor mutant.  相似文献   

7.
Pharmacological chaperones represent a new class of ligand with the potential to facilitate the delivery of misfolded, but still active, G-protein-coupled receptors to the cell surface. Using transfected HEK 293T cells, treatment with a nonpeptide antagonist, SR49059, dramatically increased ( approximately 60-fold) the surface expression of a misfolded, nonfunctional and intracellularly localized vasopressin V(1a) receptor (V(1a)R) mutant (D148A). This rescue of surface expression (111 +/- 7%) was almost identical to wild type assessed by confocal microscopy and quantitative enzyme-linked immunosorbent assay-based techniques. Recovery was not specific to D148A, since other surface-impaired mutations, D148N and D148E, and wild type were also increased following SR49059 exposure. However, surface delivery was specific to SR49059, since V(1a)R-selective peptide ligands or unrelated ligands were unable to mimic this action, suggesting that SR49059 acts intracellularly. SR49059-mediated surface rescue was time-, mutant-, and concentration-dependent but not directly related to its binding affinity. Maximal recovery was achieved following 12 h of treatment and did not involve de novo receptor synthesis or a consequence of preventing endogenous constitutive activity and/or internalization. Once at the surface, all mutants displayed enhanced signaling ability, and D148A was able to undergo agonist-mediated internalization. SR49059 was not effectively removed from the receptor, since signaling (EC(50)) of both wild type and D148A was reduced approximately 40-fold. This is the first report of a pharmacological chaperone ligand to act on misfolded mutant V(1a) Rs. This work provides an excellent model to understand the mechanistic action of an important new class of drug that may have potential in the treatment of diseases caused by inherited mutations.  相似文献   

8.
9.
A total of sixteen spontaneously generated, independent suppressor mutants was isolated from a mutant (divE42) of Escherichia coli K12 that is defective in cell division. One of the suppressor mutants, designated TR4, had a novel phenotype: it was able to grow at 42° C but not at 32° C. The Kohara genomic library was screened for complementing clones. Clone 148 was able to complement the mutation responsible for the cold-sensitive phenotype, and the gene for trigger factor (tig), which encodes a ribosome-associated peptidyl-prolyl cis/trans isomerase, was identified as the mutated gene by deletion analysis with the insert DNA from clone 148. DNA sequencing revealed that the mutation in the tig gene of the TR4 suppressor mutant was a single nucleotide insertion (+A) at a distance of 834 nucleotides from the initiation codon for this enzyme. When the wild-type tig gene was introduced into the TR4 suppressor mutant, the bacteria were able to grow at 32° C but not at 42° C, an indication that the intergenic suppressor mutation was recessive to the wild-type allele. A model is proposed that accounts for the phenotypes of the divE42 mutant and the TR4 suppressor mutant. Received: 3 March 1998 / Accepted: 14 July 1998  相似文献   

10.
The decomposition of nitrogenous compounds of extracts of cooked halibut meat due to the growth at 4°C and 17°C of Pseudomonas fragi, strain F 111, was followed with determinations of the total volatile nitrogen (TVN) and of trimethylamine (TMA). The steam-distillation method according to Bethea & Hillig (1965) and the Conway-microdiffusion-method according to Farber & Ferro (1956) were used for these determinations. When fish extract was inoculated with the strain F 111 and stored at 4°C for 5 days or at 17°C for 3½ days an increase of TVN was started. This increase of TVN was slower at 4°C than at 17°C. It was shown that in the extract B, which was prepared from fish meat of poor but acceptable commercial quality, the initial TVN was higher, the increase of TVN caused by the action of the strain F 111 was slower, and the TVN maximum was lower than the corresponding values representing extract A. The last mentioned extract was prepared from halibut meat of good commercial quality. The correlation between the increase of TVN and that of pH of the inoculated fish extract was poor. This indicates that the initial increase of pH was not caused by volatile basic compounds. It was shown that the exclusion of air after 1 or more days of incubation at 17°C could delay the onset of the TVN increase but did not prevent it. The final TVN value of the sample, which was layered with paraffin oil 24 hrs. after the inoculation of the strain F 111, was approximately the same as that of the fish extract sample layered after 14 days of incubation at 17°C. In inoculated fish extract samples, which were sterile-filtered on the day when the extract was layered with paraffin oil, no further increase of TVN was observed. It was confirmed that Pseudomonas fragi caused no increase of TMA in the extract of cooked halibut.  相似文献   

11.
12.
The effectiveness of rapid chilling or freezing of oysters to reduce Vibrio vulnificus levels in shellfish may be compromised by product handling procedures that permit cold adaptation. When a V. vulnificus culture was shifted from 35°C to 6°C conditions, it underwent transition to a non-culturable state. Cells adapted to 15°C prior to change to 6°C condition, however, remain viable and culturable. In addition, cultures adapted to 15°C were able to survive better upon freezing at −78°C compared with cultures frozen directly from 35°C. Inhibition of protein synthesis by addition of chloramphenicol in a V. vulnificus culture immediately prior to the exposure to the adaptive temperature eliminated inducible cold tolerance. These results suggest that cold-adaptive “protective” proteins may enhance survival and tolerance at cold temperatures. In addition, removal of iron from the growth medium by adding 2,2′-Dipyridyl prior to cold adaptation decreased the viability by approximately 2 logarithm levels. This suggests that iron plays an important role in adaptation at cold temperatures. Analysis of total cellular proteins on an SDS polyacrylamide gel electrophoresis, labeled with 35S-methionine during exposure at 15°C, showed elevated expressions of a 6-kDa and a 40-kDa protein and decreased expression of an 80-kDa protein. These results suggest that, for V. vulnificus, survival and tolerance at cold temperatures could be due to the expression of cold-adaptive proteins other than previously documented major cold shock proteins such as CS7.4 and CsdA. In this study, for the first time we have shown that exposure to an intermediate cold temperature (15°C) causes a cold adaptive response, helping this pathogen remain in culturable state when exposed to a much colder temperature (6°C). This adaptive nature to cold temperatures could be important for shellfish industry efforts to reduce the risk of V. vulnificus infection from consuming raw oysters. Received: 30 July 1998 / Accepted: 1 October 1998  相似文献   

13.
Familial amyotrophic lateral sclerosis (FALS) is linked to over 90 point mutations in superoxide dismutase-1 (SOD1), a dimeric metalloenzyme. The postmortem FALS brain is characterized by SOD1 inclusions in the motor neurons of regions in which neuronal loss is most significant. These findings, together with animal modeling studies, suggest that aggregation of mutant SOD1 produces a pathogenic species. We demonstrate here that a mutant form of SOD1 (A4V) that is linked to a particularly aggressive form of FALS aggregates in vitro, while wild-type SOD1 (WT) is stable. Some A4V aggregates resemble amyloid pores formed by other disease-associated proteins. The WT dimer is significantly more stable than the A4V dimer, suggesting that dimer dissociation may be the required first step of aggregation. To test this hypothesis, an intersubunit disulfide bond between symmetry-related residues at the A4V dimer interface was introduced. The resultant disulfide bond (V148C-V148C') eliminated the concentration-dependent loss of enzymatic activity of A4V, stabilized the A4V dimer, and completely abolished aggregation. A drug-like molecule that could stabilize the A4V dimer could slow the onset and progression of FALS.  相似文献   

14.
A series of site-directed mutant glucose isomerase at tryptophan 139 from Thermoanaerobacterium saccharolyticum strain B6A were purified to gel electrophoretic homogeneity, and the biochemical properties were determined. W139F mutation is the most efficient mutant derivative with a tenfold increase in its catalytic efficiency toward glucose compared with the native GI. With a maximal activity at 80 °C of 59.58 U/mg on glucose, this mutant derivative is the most active type ever reported. The enzyme activity was maximal at 90 °C and like other glucose isomerase, this mutant enzyme required Co2+ or Mg2+ for enzyme activity and thermal stability (stable for 20 h at 80 °C in the absence of substrate). Its optimum pH was around 7.0, and it had 86 % of its maximum activity at pH 6.0 incubated for 12 h at 60 °C. This enzyme was determined as thermostable and weak-acid stable. These findings indicated that the mutant GI W139F from T. saccharolyticum strain B6A is appropriate for use as a potential candidate for high-fructose corn syrup producing enzyme.  相似文献   

15.
High fructose corn syrup (HFCS) is an alternative of liquid sweetener to sucrose that is isomerized by commercial glucose isomerase (GI). One-step production of 55 % HFCS by thermostable GI has been drawn more and more attentions. In this study, a new hyperthermophilic GI from Thermoanaerobacter ethanolicus CCSD1 (TEGI) was identified by genome mining, and then a 1317 bp fragment encoding the TEGI was synthesized and expressed in Escherichia coli BL21(DE3). To improve the activity of TEGI, two amino acid residues, Trp139 and Val186, around the active site and substrate-binding pocket based on the structural analysis and molecular docking were selected for site-directed mutagenesis. The specific activity of mutant TEGI-W139F/V186T was 2.3-fold and the value of k cat/K m was 1.86-fold as compared to the wild type TEGI, respectively. Thermostability of mutant TEGI-W139F/V186T at 90 °C for 24 h showed 1.21-fold extension than that of wild type TEGI. During the isomerization of glucose to fructose, the yield of fructose could maintain above 55.4 % by mutant TEGI-W139F/V186T as compared to 53.8 % by wild type TEGI at 90 °C. This study paved foundation for the production of 55 % HFCS using the thermostable TEGI.  相似文献   

16.
Little is known of the molecular mechanisms by which temperature-sensitive mutations interfere with the formation of biologically active proteins. We have studied the effects of such mutations at 13 different sites on the properties of the multifunctional tail spike protein of bacteriophage P22, a thermostable structural protein composed of 76,000 Mr chains.Using multiple mutant strains blocked in capsid assembly, we have examined the free mutant tail spikes that accumulate in active form at permissive temperature. When assayed for the ability to bind to phage heads at the restrictive temperature, the mutant proteins were as active as the wild type. Similarly, when assayed for the ability to adsorb to bacteria at restrictive temperature, the mutant proteins were as active as the wild type. Thus the temperature-sensitive phenotypes of the mutants are not due to the thermolability of these functions in the mature mutant protein.The wild-type protein is heat-resistant, requiring incubation at 90 °C, to give a half-time of inactivation of ten minutes. The 13 ts mutant proteins, once matured at 30 °C, were as resistant as the wild-type protein to inactivation at elevated temperatures.Though the mature wild-type protein is heat stable, its maturation is heat-sensitive; the number of polypeptide chains synthesized at 30 °C and 39 °C is the same, but the yield of active tail spikes at 39 °C is only 25% of the yield at 30 °C.The results show that the amino acid substitutions in the mutant proteins, though lethal for the formation of the virus at 39 °C, do not affect the thermostability of the mature tail spike protein formed at 30 °C. They may act by destabilizing thermolabile intermediates in the folding or subunit assembly of the tail spike protein.  相似文献   

17.
The secreted proteome of Pichia pastoris X-33 was investigated in methanol-induced cultures with a goal to enhance the secretion and purification of recombinant proteins. In a fed-batch fermentation at 30 °C, more host proteins were found in greater concentrations compared to cultures grown at 25 °C. Protein samples collected directly from the culture media at 25 °C, as well as separated by two-dimensional (2D) gel, were subjected to ESI-MS/MS analysis. A total of 75 proteins were identified in the media from different conditions including pre- and post-methanol induction and in a strain overexpressing a recombinant schistosomiasis vaccine, Sm14-C62V. The identified proteins include native secreted proteins and some intracellular proteins, most of which have low isoelectric points (pI < 6). 2D gel analyses further revealed important characteristics, such as abundance, degradation, and glycosylation of these identified proteins in this proteome. Cell wall-associated proteins involved in cell wall biogenesis, structure, and modification comprised the majority of the secreted proteins which have been identified. Intracellular proteins such as alcohol oxidase and superoxide dismutase were also found in the proteome, suggesting some degree of cell lysis. However, both protocols show that their concentrations are significantly lower than the native secreted proteins. This study identifies proteins secreted or released into the culture media in the methanol-induced fermentation cultures of P. pastoris X-33 and suggests potential biotechnology applications based on the discovery of this proteome.  相似文献   

18.
Genes (uncB) for wild-type and mutant a subunits of Escherichia coli H+-ATPase (F0F1) were cloned into recombinant plasmids. The subunits were expressed under the control of a weak promoter of the unc operon at 30 degrees C and strong promoters of lambda phage at 42 degrees C. At 30 degrees C, the wild type and a truncated (Glu-269----end) a subunit complemented the defect of the a subunit mutant KF24A (Trp-111----end), whereas the other mutant subunits (Trp-111----end, Trp-231----end, Gln-252----end, and a subunit with a deletion of residues 21 to 227) did not. Three mutant subunits (Trp-231----end, Gln-252----end, and Glu-269----end) and the wild-type a subunit caused growth inhibition associated with cell elongation, an uneven distribution of membrane proteins, and an altered septum structure when they were expressed at 42 degrees C. These phenomena were not observed with the other mutant subunits, suggesting that overproduction of the middle region (between residues 111 and 230) of the a subunit causes growth inhibition.  相似文献   

19.
DNA polymerase V (pol V) of Escherichia coli is a translesion DNA polymerase responsible for most of the mutagenesis observed during the SOS response. Pol V is activated by transfer of a RecA subunit from the 3''-proximal end of a RecA nucleoprotein filament to form a functional complex called DNA polymerase V Mutasome (pol V Mut). We identify a RecA surface, defined by residues 112-117, that either directly interacts with or is in very close proximity to amino acid residues on two distinct surfaces of the UmuC subunit of pol V. One of these surfaces is uniquely prominent in the active pol V Mut. Several conformational states are populated in the inactive and active complexes of RecA with pol V. The RecA D112R and RecA D112R N113R double mutant proteins exhibit successively reduced capacity for pol V activation. The double mutant RecA is specifically defective in the ATP binding step of the activation pathway. Unlike the classic non-mutable RecA S117F (recA1730), the RecA D112R N113R variant exhibits no defect in filament formation on DNA and promotes all other RecA activities efficiently. An important pol V activation surface of RecA protein is thus centered in a region encompassing amino acid residues 112, 113, and 117, a surface exposed at the 3''-proximal end of a RecA filament. The same RecA surface is not utilized in the RecA activation of the homologous and highly mutagenic RumA''2B polymerase encoded by the integrating-conjugative element (ICE) R391, indicating a lack of structural conservation between the two systems. The RecA D112R N113R protein represents a new separation of function mutant, proficient in all RecA functions except SOS mutagenesis.  相似文献   

20.
This investigation describes how the binding characteristics of the single-stranded DNA-binding protein encoded by gene V of bacteriophage M13, are affected by single-site amino acid substitutions. The series of mutant proteins tested includes mutations in the purported monomer-monomer interaction region as well as mutations in the DNA-binding domain at positions which are thought to be functionally involved in monomer-monomer interaction or single-stranded DNA binding. The characteristics of the binding of the mutant proteins to the homopolynucleotides poly(dA), poly(dU) and poly(dT), were studied by means of fluorescence-titration experiments. The binding stoichiometry and fluorescence quenching of the mutant proteins are equal to, or lower than, the wild-type gene V protein values. In addition, all proteins measured bind a more-or-less co-operative manner to single-stranded DNA. The binding affinities for poly(dA) decrease in the following order: Y61H greater than wild-type greater than F68L and R16H greater than Y41F and Y41H greater than F73L greater than R21C greater than Y34H greater than G18D/Y56H. Possible explanations for the observed differences are discussed. The conservation of binding affinity, also for mutations in the single-stranded DNA-binding domain, suggests that the binding to homopolynucleotides is largely non-specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号