首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aromatic amine N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) reacted directly with oxyhemoglobin in a catalytic reaction resulting in formation of ferrihemoglobin. The second order rate constant of the reaction was found to be 5.5 M-1.s-1. The stable Wurster's blue radical cation produced ferrihemoglobin at rates greater 10(3) M-1.s-1, i.e. more than two orders of magnitude faster than the parent amine. In contrast to the reactions of aminophenols with hemoglobin, free hydrogen peroxide was formed which additionally contributed to ferrihemoglobin formation. Since ferrihemoglobin formation proceeded by two orders of magnitude faster than autoxidation of TMPD, oxyhemoglobin itself acted as an oxidase/peroxidase resulting in electron abstraction from the amino alone pair electrons.  相似文献   

2.
3.
N,N-Dimethyl-p-phenylenediamine (DMPD) reacted directly with oxyhemoglobin under formation of ferrihemoglobin and, presumably, the N,N-dimethyl-p-phenylenediamine radical cation (DMPP.+). The apparent second-order rate constant of this reaction was 1 M-1 s-1 (pH 7.4, 37 degrees C). The reaction rate was diminished by catalase (by 1/3) and by superoxide dismutase (by 1/5). The apparent second-order rate constant of ferrihemoglobin formation by DMPD.+ was 5 x 10(3) M-1 s-1. Since DMPD.+ is disproportionated by 50% at pH 7.4, the quinonediimine could not be excluded as the ultimate ferrihemoglobin forming oxidant. To prove this hypothesis, the disproportionation equilibrium was shifted to the radical side by addition of excess DMPD. Ferrihemoglobin formation was thereby increased, indication that the radical was the responsible oxidant. In contrast to ferrihemoglobin formation, reactions with glutathione occurred predominantly with the quinonediimine. The second-order rate constant of this reaction was 4 x 10(5) M-1 s-1 which approaches the value obtained with p-benzoquinone. In contrast to the corresponding reactions of the N,N,N',N'-tetramethyl-p-phenylenediamine radical cation, the disporportionation reaction of DMPD.+ was very fast, k = 2 x 10(6) M-1 s-1. Formation of glutathione disulfide was negligible and the main reaction products were two isomeric glutathione adducts, 2- and 3-(glutathione-S-yl)-N,N-dimethyl-p-phenylenediamine. In human erythrocytes, DMPD produced many equivalents of ferrihemoglobin, diminished glutathione and produced both thioethers. In contrast to ferrihemoglobin formation, DMPD and glutathione disappearance as well as thioether appearance occured only after a marked lag phase. The calculated steady state concentration of DMPD.+ was only 4 x 10(-6) the DMPD concentration, as long as ferrihemoglobin was low. At increasing ferrihemoglobin higher steady state concentrations of the radical are attained. In fact, preformed ferrihemoglobin in red cells significantly accelerated DMPD and glutathione disappearance. This effect was completely prevented in the presence of ferrihemoglobin-complexing cyanide. The presented experiments once more appoint blood as a metabolically competent organ for the biotransformation of aromatic amines.  相似文献   

4.
5.
The melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK; 1), which was previously shown to be a potent radical scavenger, was oxidized using the ABTS cation radical [ABTS = 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)]. Several new oxidation products were obtained, which were separated by repeated chromatography and characterized by spectroscopic methods such as mass spectrometry (ESI-MS and ESI-HRMS), 1H-NMR and 13C-NMR, HMBC, HSQC, H,H COSY correlations and IR spectroscopy. The main products were oligomers of 1 (3 dimers, 1 trimer and 2 tetramers). In all cases, the amino group N2 was involved in the reactions. Two of the dimers turned out to be cis (2a) and trans (2b) isomers containing an azo bond. In the other dimer (3a), the nitrogen atom N2 was attached to atom C5 of the second aromatic amine, with loss of the methoxy group. In the trimer (5), one N2 formed a bridge to C5 of unit B, as in the respective dimer, while this one of C had bridged to C6 of B. One of the tetramers (6) was composed of a trimer 5 attached to N2 of a fourth 1 molecule via an azo bond as in 2a/b. In the other tetramer (7), an additional C-C bond between rings B and C in 6 is assumed. Although oligomers of AMK may only attain low in vivo concentrations, the types of reactions observed shed light on the physiologically possible metabolism of AMK once reacted with a free radical. The displacement of a methoxy group, rarely seen in the oxidation of methoxylated biomolecules, underlines the reactivity of AMK (1). Preliminary data show that, in the presence of ABTS cation radicals, AMK (1) can interact with side chains of aromatic amino acids, a finding which may be crucial for understanding to date unidentified protein modification by a melatonin metabolite detected earlier in experiments with radioactively labeled melatonin.  相似文献   

6.
7.
Since there is evidence that oxalyl thiolesters (RSCOCOO) are present in animal cells, and possibly may participate in the control of metabolism, the present study was undertaken to characterize their reactivity with nucleophiles so that one could gain a better understanding of how they might be affecting the activities of enzymes. At 25°C and neutral pH, N-acetyl-S-oxalyl-2-aminoethanethiol (NAC-S-Ox) reacts rapidly with cysteamine (2-aminoethanethiol) to give N-acetylcysteamine and N-oxalylcysteamine. Under similar conditions, other aminothiols, such as cysteine, homocysteine, penicillamine, and cysteine ethyl ester, also react rapidly with NAC-S-Ox, but non-thiol-containing amines, such as alanine, alanine ethyl ester, glycine, and S-methylcysteine, react more than four orders of magnitude less rapidly. The aminothiol reactions apparently proceed by rate-determining oxalyl transfer to the thiol followed by a rapid intramolecular S- to N-oxalyl migration. The reactions follow second-order kinetics with the thiolate anion being the reactive nucleophile. At 25°C and ionic strength 1.0 , kN, defined in the equation, rate = kN[RS][NAC-S-Ox], has the following values ( −1 s−1) for the anion of the reacting thiol: cysteamine, 170; cysteine, 260; cysteine ethyl ester, 76; homocysteine, 380. Rate data for the reaction of NAC-S-Ox with hydroxylamine, imidazole, hydroperoxide, and hydroxide were also obtained. The reaction of S-oxalyl-p-thiocresol with thiol anions under the same conditions gives the following values for kN ( −1 s−1 × 10−3): glutathione, 5.6; N-acetylcysteamine, 3.7; pantetheine, 4.8; 8-mercaptooctanoic acid, 4.5; 6-mercaptooctanoic acid, 1.0; dihydrolipoic acid, 8.2. These results indicate that oxalyl transfers from oxalyl thiolesters to thiol anions occur more than two orders of magnitude more rapidly than corresponding acetyl transfers, and that under physiological conditions any in vivo oxalyl thiolester would equilibrate within minutes with virtually every thiol in the cell, including those attached to enzymes. Consequently, it is proposed that one mechanism by which oxalyl thiolesters may function in vivo to alter the catalytic activities of enzymes is to covalently modify enzymic thiols by acylation with an oxalyl group.  相似文献   

8.
Reactions of the hydroxyl radical with polynucleotides   总被引:1,自引:0,他引:1  
  相似文献   

9.
Incubations of [3H]estradiol and [3H]2-hydroxyestradiol (2-OHE2) with rat liver microsomes and mushroom tyrosinase were carried out in the presence of glutathione and 2-mercaptoethanol. A ratio of about 3.5:1 for the C-4 and C-1 thioether conjugates of 2-OHE2 was observed. Chemical reaction of estradiol-2, 3-O-quinone with various thiols showed that alkyl and phenyl thiols gave about a 1:1 ratio of C-4 to C-1 thioethers. However, reaction of the O-quinone with 4-nitrothiophenol gave a C-4/C-1 ratio of 0.25 while 4-bromothiophenol gave a C-4/C-1 ratio of 4.0. These studies suggest that the regioselectivity of the reaction of thiols with estrogen catechols and O-quinones may be dependent on the nature of the thiol compounds and less on steric hindrance.  相似文献   

10.
Iron(III)bleomycin undergoes a redox reaction with thiols. Evidence from epr and UV-visible absorbance spectra indicate that the metal complex forms an intermediate with sulfhydryl groups presumably by adding a sixth ligand. In the presence of oxygen iron bleomycin cycles between its two oxidation states to catalyze the generation of oxygen free radicals using thiols as a source of electrons.  相似文献   

11.
12.
Both ferrioxamine and desferrioxamine react with the hydroxyl radical with a second order rate constant equal to 1.3 × 1010 M?1 s?1. Conditions for the use of desferrioxamine as a probe for the role of iron salts in the formation of hydroxyl radicals in biochemical systems are discussed.  相似文献   

13.
T Sakai  J Gross 《Biochemistry》1967,6(2):518-528
  相似文献   

14.
Some saturated and unsaturated mercapto C18 esters have been obtained for the first time. Such compounds are prepared from hydroxy esters via their mesyloxy derivatives by reaction with sodium hydrogen sulphide or with potassium thioacetate (followed by deacetylation) or from alkene esters by radical addition of thioacetic acid. The mercapto esters are readily identified by infrared, nuclear magnetic resonance, and mass spectroscopic procedures, preferably after acetylation or trifluoroacetylation.γ-Mesyloxy alkenes furnish tetrahydrothiophen rather than mercapto alkenes and methyl 9,12-epithiostearate was synthesised by an independent route from thiophen.  相似文献   

15.
Carbonyl cyanide phenylhydrazone and its ring-substituted analogs react with thiols (thioglycolic acid, 2-mercaptoethanol, dithiothreitol) and amino-thiols (cysteine, glutathione) to give corresponding N-(substituted phynyl)-N′-(alkythiodicyano)-methylhydrazine derivatives. These addition products decompose to the original components in alkaline solution. On the other hand, in the presence of an excess of thiols in aqueous buffered systems the addition reactions are practically quantitative with respect to phenylhydrazones, follow pseudo-first-order kinetics and can be investigated spectrophotometrically. These reactions are of the bimolecular AdN type where the non-dissociated form of carbonyl cyanide phenylhydrazones function as an electrophilic component, while the RS? ion plays the role of nucleophilic component in the case of thiols (the attack of the azomethine group).The reactivity of carbonyl cyanide phenylhydrazones with respect to thiols increases in the order carbonyl cyanide phenylhydrazone < carbonyl cyanide m-chlorophenylhydrazone < carbonyl cyanide p-trifluoromethoxyphenylhydrazone which corresponds to the order of decreasing values of the pKa constants. On the other hand, the reactivity of thiols increases with their basicity.The reactivity of carbonyl cyanide phynylhydrazone with thiols is comparable with the reactivity of phynyl isothiocyanate and N-ethylmaleimide. It was demostrated that carbonyl cyanide phenylhydrazone is an efficient inhibitor of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12).The results obtained are discussed in relation to the biological activity of carbonyl cyanide phenylhydrazones.  相似文献   

16.
The contribution of superoxide-mediated injury to oxidative stress is not fully understood. A potential mechanism is the reaction of superoxide with tyrosyl radicals, which either results in repair of the tyrosine or formation of tyrosine hydroperoxide by addition. Whether these reactions occur with protein tyrosyl radicals is of interest because they could alter protein structure or modulate enzyme activity. Here, we have used a xanthine oxidase/acetaldehyde system to generate tyrosyl radicals on sperm whale myoglobin in the presence of superoxide. Using mass spectrometry we found that superoxide prevented myoglobin dimer formation by repairing the protein tyrosyl radical. An addition product of superoxide at Tyr151 was also identified, and exogenous lysine promoted the formation of this product. In our system, reaction of tyrosyl radicals with superoxide was favored over dimer formation with the ratio of repair to addition being approximately 10:1. Our results demonstrate that reaction of superoxide with protein tyrosyl radicals occurs and may play a role in free radical-mediated protein injury.  相似文献   

17.
In direct experiments, rate constants of photochemical (kP) and non-photochemical (kP+) fluorescence quenching were determined in membrane fragments of photosystem II (PSII), in oxygen-evolving PSII core particles, as well as in core particles deprived of the oxygen-evolving complex. For this purpose, a new approach to the pulse fluorometry method was implemented. In the “dark” reaction center (RC) state, antenna fluorescence decay kinetics were measured under lowintensity excitation (532 nm, pulse repetition rate 1 Hz), and the emission was registered by a streak camera. To create a “closed” [P680+QA] RC state, a high-intensity pre-excitation pulse (pump pulse, 532 nm) of the sample was used. The time advance of the pump pulse against the measuring pulse was 8 ns. In this experimental configuration, under the pump pulse, the [P680+QA] state was formed in RC, whereupon antenna fluorescence kinetics was measured using a weak testing picosecond pulsed excitation light applied to the sample 8 ns after the pump pulse. The data were fitted by a two-exponential approximation. Efficiency of antenna fluorescence quenching by the photoactive RC pigment in its oxidized (P680+) state was found to be ~1.5 times higher than that of the neutral (P680) RC state. To verify the data obtained with a streak camera, control measurements of PSII complex fluorescence decay kinetics by the single-photon counting technique were carried out. The results support the conclusions drawn from the measurements registered with the streak camera. In this case, the fitting of fluorescence kinetics was performed in three-exponential approximation, using the value of τ1 obtained by analyzing data registered by the streak camera. An additional third component obtained by modeling the data of single photon counting describes the P680+Pheo charge recombination. Thus, for the first time the ratio of kP+/kP = 1.5 was determined in a direct experiment. The mechanisms of higher efficiency for non-photochemical antenna fluorescence quenching by RC cation radical in comparison to that of photochemical quenching are discussed.  相似文献   

18.
Oxidized bovine cytochrome c oxidase reacts with hydrogen peroxide to generate two electron paramagnetic resonance (EPR) free radical signals (Fabian, M., and Palmer, G. (1995) Biochemistry 34, 13802-13810). These radicals are associated with the binuclear center and give rise to two overlapped EPR signals, one signal being narrower in line width (DeltaHptp = 12 G) than the other (DeltaHptp = 45 G). We have used electron nuclear double resonance (ENDOR) spectrometry to identify the two different chemical species giving rise to these two EPR signals. Comparison of the ENDOR spectrum associated with the narrow signal with that of compound I of horseradish peroxidase (formed by reaction of that enzyme with hydrogen peroxide) demonstrates that the two species are virtually identical. The chemical species giving rise to the narrow signal is therefore identified as an exchange-coupled porphyrin cation radical similar to that formed in horseradish peroxidase compound I. Comparison of the ENDOR spectrum of compound ES (formed by the reaction of hydrogen peroxide with cytochrome c peroxidase) with that of the broad signal indicates that the chemical species giving rise to the broad EPR signal in cytochrome c oxidase is probably an exchange coupled tryptophan cation radical. This is substantiated using H(2)O/D(2)O solvent exchange experiments where the ENDOR difference spectrum of the broad EPR signal of cytochrome c oxidase shows a feature consistent with hyperfine coupling to the exchangeable N(1) proton of a tryptophan cation radical.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAHs) have induced large-scale and long-term environmental contamination due to heavy emissions, toxicity, and persistence. The investigation of the ultimate sink of PAHs in the atmosphere is very important. In this work, using quantum chemistry methods, the reaction mechanism of hydroxyl radical-initiated oxidation of benzo[a]anthracene (BaA) in the atmosphere was studied. The products resulted from the gas-phase reaction of BaA with hydroxyl radical include benzo[a]anthracenols, dialdehydes, ketones, epoxides, etc. Applying Rice-Ramsperger-Kassel-Marcus (RRKM) theory, the overall rate constant for reactions of ?OH addition to BaA was estimated to be 4.82?×?10?11 cm3 molecule?1 s?1 at 298 K and 1 atm. The lifetime of BaA in the atmosphere with respect to hydroxyl radical was calculated to be 5.92 h.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号