首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The aromatic amine N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) reacted directly with oxyhemoglobin in a catalytic reaction resulting in formation of ferrihemoglobin. The second order rate constant of the reaction was found to be 5.5 M-1.s-1. The stable Wurster's blue radical cation produced ferrihemoglobin at rates greater 10(3) M-1.s-1, i.e. more than two orders of magnitude faster than the parent amine. In contrast to the reactions of aminophenols with hemoglobin, free hydrogen peroxide was formed which additionally contributed to ferrihemoglobin formation. Since ferrihemoglobin formation proceeded by two orders of magnitude faster than autoxidation of TMPD, oxyhemoglobin itself acted as an oxidase/peroxidase resulting in electron abstraction from the amino alone pair electrons.  相似文献   

2.
The effect of thyroid hormones on the electron flow through the bc1 complex of rat liver mitochondria was studied using two dye bypasses of the Antimycin A block of the bc1 complex by the method of Alexandre and Lehninger (Biochim. Biophys. Acta 767:120; 1984). Bypass respiration rates with both DCIP (2,6-dichlorophenolindophenol) and TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride) were elevated in the hyperthyroid rats and depressed in the hypothyroid groups compared to the euthyroid controls. T3 treatment of hypothyroid rats returned the bypass rates to control levels in 24 hours with the TMPD dye but not for the DCIP. This further demonstrates that different portions of the bc1 complex respond individually to the thyroid state.  相似文献   

3.
It was possible to quantitate the terminal oxidase(s) reaction using bacterial resting-cell suspensions and demonstrate the usefulness of this reaction for taxonomic purposes. Resting-cell suspensions of physiologically diverse bacteria were examined for their capabilities of oxidizing N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) using a manometric assay. For organisms having this capability, it was possible to calculate the conventional TMPD oxidase Q(O2) value (microliters of O2 consumed per hour per milligram [dry weight]). All cultures were grown heterotrophically at 30 C, under identical nutritional conditions, and were harvested at the late-logarithmic growth phase. The TMPD oxidase Q(O2) values showed perfect correlation with the Kovacs oxidase test and, in addition, it was possible to define quantitatively that point which separated oxidase-positive from oxidase-negative bacteria. Oxidase-negative bacteria exhibited a TMPD oxidase Q(O2) value (after correcting for the endogenous by substraction) of less than or equal 33 and had an uncorrected TMPD/endogenous ratio of less than or equal 5. The TMPD oxidase Q(O2) values were also correlated with the data obtained for the Hugh-Leifson Oxferm test. In general, bacteria that exhibited a respiratory mechanism had high TMPD oxidase values, whereas fermentative organsims had low TMPD oxidase activity. All exceptions to this are noted. This quantitative study also demonstrated that organisms that (i) lack a type c cytochrome, or (ii) lack a cytochrome-containing electron transport system, like the lactic acid bacteria, exhibited low or negligible TMPD oxidase Q(O2) values. From the 79 bacterial species (36 genera) examined, it appears that this quantitative oxidase test has taxonomic value that can differentiate the oxidative relationships between bacteria at the subspecies, species, and genera levels.  相似文献   

4.
The autoxidation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) at neutral pH has been shown to generate superoxide radical and hydrogen peroxide. The rate of formation of these species was increased in the presence of certain iron and copper compounds; in the presence of iron complexed with EDTA, hydroxyl radical was also produced. Hydrogen peroxide was detected in erythrocytes incubated with TMPD and these cells suffered oxidative damage as reflected by methaemoglobin formation and glutathione depletion; the one-electron oxidation product of TMPD, Wurster's Blue, was equally effective in producing such changes in erythrocytes. N-Methylated p-phenylenediamines are known to be mutagenic and myotoxic, and it is suggested that 'active oxygen' species may be involved in the initiation of these harmful effects.  相似文献   

5.
The oxidase cho of Methylobacillus flagellatus KT was purified to homogeneity by nondenaturing gel electrophoresis, and the kinetic properties and substrate specificity of the enzyme were studied. Ascorbate and ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) were oxidized by cbo with a pH optimum of 8.3. When TMPD served as electron donor for the oxidase cho, the optimal pH (7.0 to 7.6) was determined from the difference between respiration rates in the presence of ascorbate/TMPD and of only ascorbate. The kinetic constants, determined at pH 7.0, were as follows: oxidation by the enzyme of reduced TMPD at pH 7.0 was characterized by KM = 0.86 mM and Vmax = 1.1 mumol O2/(min mg protein), and oxidation of reduced cytochrome c from horse heart was characterized by KM = 0.09 mM and Vmax = 0.9 mumol O2/(min mg protein) Cyanide inhibited ascorbate/TMPD oxidase activity (Ki = 4.5-5.0 microM). The soluble cytochrome cH (12 kDa) partially purified from M. flagellatus KT was found to serve as the natural electron donor for the oxidase cbo.  相似文献   

6.
It was possible to quantitate the terminal oxidase(s) reaction using bacterial resting-cell suspensions and demonstrate the usefulness of this reaction for taxonomic purposes. Resting-cell suspensions of physiologically diverse bacteria were examined for their capabilities of oxidizing N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) using a manometric assay. For organisms having this capability, it was possible to calculate the conventional TMPD oxidase Q(O2) value (microliters of O2 consumed per hour per milligram [dry weight]). All cultures were grown heterotrophically at 30 C, under identical nutritional conditions, and were harvested at the late-logarithmic growth phase. The TMPD oxidase Q(O2) values showed perfect correlation with the Kovacs oxidase test and, in addition, it was possible to define quantitatively that point which separated oxidase-positive from oxidase-negative bacteria. Oxidase-negative bacteria exhibited a TMPD oxidase Q(O2) value (after correcting for the endogenous by substraction) of less than or equal 33 and had an uncorrected TMPD/endogenous ratio of less than or equal 5. The TMPD oxidase Q(O2) values were also correlated with the data obtained for the Hugh-Leifson Oxferm test. In general, bacteria that exhibited a respiratory mechanism had high TMPD oxidase values, whereas fermentative organsims had low TMPD oxidase activity. All exceptions to this are noted. This quantitative study also demonstrated that organisms that (i) lack a type c cytochrome, or (ii) lack a cytochrome-containing electron transport system, like the lactic acid bacteria, exhibited low or negligible TMPD oxidase Q(O2) values. From the 79 bacterial species (36 genera) examined, it appears that this quantitative oxidase test has taxonomic value that can differentiate the oxidative relationships between bacteria at the subspecies, species, and genera levels.  相似文献   

7.
N,N-Dimethyl-p-phenylenediamine (DMPD) reacted directly with oxyhemoglobin under formation of ferrihemoglobin and, presumably, the N,N-dimethyl-p-phenylenediamine radical cation (DMPP.+). The apparent second-order rate constant of this reaction was 1 M-1 s-1 (pH 7.4, 37 degrees C). The reaction rate was diminished by catalase (by 1/3) and by superoxide dismutase (by 1/5). The apparent second-order rate constant of ferrihemoglobin formation by DMPD.+ was 5 x 10(3) M-1 s-1. Since DMPD.+ is disproportionated by 50% at pH 7.4, the quinonediimine could not be excluded as the ultimate ferrihemoglobin forming oxidant. To prove this hypothesis, the disproportionation equilibrium was shifted to the radical side by addition of excess DMPD. Ferrihemoglobin formation was thereby increased, indication that the radical was the responsible oxidant. In contrast to ferrihemoglobin formation, reactions with glutathione occurred predominantly with the quinonediimine. The second-order rate constant of this reaction was 4 x 10(5) M-1 s-1 which approaches the value obtained with p-benzoquinone. In contrast to the corresponding reactions of the N,N,N',N'-tetramethyl-p-phenylenediamine radical cation, the disporportionation reaction of DMPD.+ was very fast, k = 2 x 10(6) M-1 s-1. Formation of glutathione disulfide was negligible and the main reaction products were two isomeric glutathione adducts, 2- and 3-(glutathione-S-yl)-N,N-dimethyl-p-phenylenediamine. In human erythrocytes, DMPD produced many equivalents of ferrihemoglobin, diminished glutathione and produced both thioethers. In contrast to ferrihemoglobin formation, DMPD and glutathione disappearance as well as thioether appearance occured only after a marked lag phase. The calculated steady state concentration of DMPD.+ was only 4 x 10(-6) the DMPD concentration, as long as ferrihemoglobin was low. At increasing ferrihemoglobin higher steady state concentrations of the radical are attained. In fact, preformed ferrihemoglobin in red cells significantly accelerated DMPD and glutathione disappearance. This effect was completely prevented in the presence of ferrihemoglobin-complexing cyanide. The presented experiments once more appoint blood as a metabolically competent organ for the biotransformation of aromatic amines.  相似文献   

8.
Substrate kinetic properties of cytochrome oxidase in rat liver, kidney, brain and heart mitochondria were examined using ascorbate + N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) as the electron donor system. Analysis of the substrate kinetics data revealed tissue-specific expression of kinetic components exhibiting differences with respect to Km, Vmax and Kcat/Km values. Regression analysis data suggest that the enzyme activity may be regulated in a tissue-specific manner.  相似文献   

9.
The resonance Raman spectra of deoxygenated solutions of mixed-valence cyanide-bound and fully reduced cytochrome oxidase derivatives that have been reduced in the presence of aqueous or solid sodium dithionite exhibit two new low-frequency lines centered at 474 and 590 cm-1. These lines were not observed when the reductant system was changed to a solution containing ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). Under enzyme turnover conditions, the addition of dithionite to the reoxidized protein (the 428-nm or "oxygenated" form) increases the intensity of these lines, while reoxidation and rereduction of the enzyme in the presence of ascorbate/TMPD resulted in the absence of both lines. Our data suggest that both lines must have contributions from species formed from aqueous dithionite, presumably the SO2 species, since these two lines are also observed in the Raman spectrum of a solution of aqueous dithionite, but not in the spectrum of an ascorbate/TMPD solution. Since heme metal-ligand stretch vibrations are expected to appear in the low-frequency region from 215 to 670 cm-1, our results indicate that special care should be exercised during the interpretation of the cytochrome a3 resonance Raman spectrum.  相似文献   

10.
1. The dependences of the reduction of ferricytochrome c-555 in the reaction center-cytochrome c complex on the redox potential and pH were investigated using N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), ferrocyanide, and reduced 2,5-dimethyl-p-quinone as electron donors. 2. In the reduction of cytochrome c-555 by TMPD, the unprotonated form was the exclusive electron donor to the cytochrome with a second-order rate constant of 1.0 X 10(5) M-1.s-1. 3. Ferrocyanide reduced cytochrome c-555 slowly with a rate constant of 7.8 X 10(3) M-1.s-1 at infinite salt concentration. The value of -5.2 X 10(-4) elementary charge/A2 was estimated as the surface charge density in the vicinity of cytochrome c-555 by analyzing the salt effect on the cytochrome reduction using the Gouy-Chapman theory. 4. The characteristics of the dependences of the reduction of cytochrome c-555 by reduced 2,5-dimethyl-p-quinone on the redox potential and pH were well explained by the redox potential and pH dependences of the formation of the semiquinone. In the neutral-to-alkaline pH range the anionic semiquinone was the main electron-donating species with a second-order rate constant of 6.0 X 10(7) m-1.s-1.  相似文献   

11.
The flash-induced thermoluminescence (TL) technique was used to investigate the action of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) on charge recombination in photosystem II (PSII). Addition of low concentrations (muM range) of TMPD to thylakoid samples strongly decreased the yield of TL emanating from S(2)Q(B)(-) and S(3)Q(B)(-) (B-band), S(2)Q(A)(-) (Q-band), and Y(D)(+)Q(A)(-) (C-band) charge pairs. Further, the temperature-dependent decline in the amplitude of chlorophyll fluorescence after a flash of white light was strongly retarded by TMPD when measured in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Though the period-four oscillation of the B-band emission was conserved in samples treated with TMPD, the flash-dependent yields (Y(n)) were strongly declined. This coincided with an upshift in the maximum yield of the B-band in the period-four oscillation to the next flash. The above characteristics were similar to the action of the ADRY agent, carbonylcyanide m-chlorophenylhydrazone (CCCP). Simulation of the B-band oscillation pattern using the integrated Joliot-Kok model of the S-state transitions and binary oscillations of Q(B) confirmed that TMPD decreased the initial population of PSII centers with an oxidized plastoquinone molecule in the Q(B) niche. It was deduced that the action of TMPD was similar to CCCP, TMPD being able to compete with plastoquinone for binding at the Q(B)-site and to reduce the higher S-states of the Mn cluster.  相似文献   

12.
Two different bypasses around the antimycin block of electron transport from succinate to cytochrome c via the ubiquinol-cytochrome c oxidoreductase of intact rat liver mitochondria were analyzed, one promoted by N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) and the other by 2,6-dichlorophenolindophenol (DCIP). Both bypasses are inhibited by myxothiazol, which blocks electron flow from ubiquinol to the Rieske iron-sulfur center, and by 2-hydroxy-3-undecyl-1,4-naphthoquinone, which inhibits electron flow from the iron-sulfur center to cytochrome c1. In the bypass promoted by TMPD its oxidized form (Wurster's blue) acts as an electron acceptor from some reduced component prior to the antimycin block, which by exclusion of other possibilities is ubisemiquinone. In the DCIP bypass its reduced form acts as an electron donor, by reducing ubisemiquinone to ubiquinol; reduced DCIP is regenerated again at the expense of either succinate or ascorbate. The observations described are consistent with and support current models of the Q cycle. Bypasses promoted by artificial electron carriers provide an independent approach to analysis of electron flow through ubiquinol-cytochrome c oxidoreductase.  相似文献   

13.
Purified cytochrome c oxidase was reconstituted into phospholipid vesicles having high internal pH buffering capacity. In the presence of valinomycin, 2 K+ ions were taken up by the vesicles per electron transferred from cytochrome c to oxygen. The charge stoichiometry of 2 was obtained from simultaneous measurement of changes of K+, H+, and oxygen in the medium after addition of the reductant ascorbate/TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine). The changes in oxygen concentration were measured with a fast responding oxygen electrode (90% response time, 0.4 s). The existence of a proton pump in cytochrome c oxidase could thus be confirmed, and its charge stoichiometry measured, in a reconstituted system uncomplicated by other respiratory chain components.  相似文献   

14.
The kinetic parameters of the redox transitions subsequent to the two-electron transfer implied in the glutathione (GSH) reductive addition to 2- and 6-hydroxymethyl-1,4-naphthoquinone bioalkylating agents were examined in terms of autoxidation, GSH consumption in the arylation reaction, oxidation of the thiol to glutathione disulfide (GSSG), and free radical formation detected by the spin-trapping electron spin resonance method. The position of the hydroxymethyl substituent in either the benzenoid or the quinonoid ring differentially influenced the initial rates of hydroquinone autoxidation as well as thiol oxidation. Thus, GSSG- and hydrogen peroxide formation during the GSH reductive addition to 6-hydroxymethyl-1,4-naphthoquinone proceeded at rates substantially higher than those observed with the 2-hydroxymethyl derivative. The distribution and concentration of molecular end products, however, was the same for both quinones, regardless of the position of the hydroxymethyl substituent. The [O2]consumed/[GSSG]formed ratio was above unity in both cases, thus indicating the occurrence of autoxidation reactions other than those involved during GSSG formation. EPR studies using the spin probe 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) suggested that the oxidation of GSH coupled to the above redox transitions involved the formation of radicals of differing structure, such as hydroxyl and thiyl radicals. These were identified as the corresponding DMPO adducts. The detection of either DMPO adduct depended on the concentration of GSH in the reaction mixture: the hydroxyl radical adduct of DMPO prevailed at low GSH concentrations, whereas the thiyl radical adduct of DMPO prevailed at high GSH concentrations. The production of the former adduct was sensitive to catalase, whereas that of the latter was sensitive to superoxide dismutase as well as to catalase. The relevance of free radical formation coupled to thiol oxidation is discussed in terms of the thermodynamic and kinetic properties of the reactions involved as well as in terms of potential implications in quinone cytotoxicity.  相似文献   

15.
Mitochondrial respiration at low levels of oxygen and cytochrome c   总被引:7,自引:0,他引:7  
In the intracellular microenvironment of active muscle tissue, high rates of respiration are maintained at near-limiting oxygen concentrations. The respiration of isolated heart mitochondria is a hyperbolic function of oxygen concentration and half-maximal rates were obtained at 0.4 and 0.7 microM O(2) with substrates for the respiratory chain (succinate) and cytochrome c oxidase [N,N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD)+ascorbate] respectively at 30 degrees C and with maximum ADP stimulation (State 3). The respiratory response of cytochrome c-depleted mitoplasts to external cytochrome c was biphasic with TMPD, but showed a monophasic hyperbolic function with succinate. Half-maximal stimulation of respiration was obtained at 0.4 microM cytochrome c, which was nearly identical to the high-affinity K(')(m) for cytochrome c of cytochrome c oxidase supplied with TMPD. The capacity of cytochrome c oxidase in the presence of TMPD was 2-fold higher than the capacity of the respiratory chain with succinate, measured at environmental normoxic levels. This apparent excess capacity, however, is significantly decreased under physiological intracellular oxygen conditions and declines steeply under hypoxic conditions. Similarly, the excess capacity of cytochrome c oxidase declines with progressive cytochrome c depletion. The flux control coefficient of cytochrome c oxidase, therefore, increases as a function of substrate limitation of oxygen and cytochrome c, which suggests a direct functional role for the apparent excess capacity of cytochrome c oxidase in hypoxia and under conditions of intracellular accumulation of cytochrome c after its release from mitochondria.  相似文献   

16.
Electrochemical kinetic measurements were carried out for electron-transfer between NADH and the oxidized forms of mediators (ferrocenylmethanol (FMA), ferrocenyl-1-ethanol (FEA), N,N,N',N'-tetramethylphenylenediamine (TMPD), Co(Phen)2+(3) and Fe(CN)4-(6)) catalyzed by diaphorase (NADH: acceptor oxidoreductase, EC 1.6.99.-) purified from Bacillus stearothermophilus. Cyclic voltammograms for the mediators with excess NADH in the presence of diaphorase gave steady-state currents. The quantitative analysis of the dependence of the current on the mediator concentration yielded a Michaelis constant (Km) and molecular activity (ko), which are difficult to determine by the conventional spectrophotometric method. Small Km and large ko values were observed for the oxidized forms of FMA, FEA and TMPD compared to those for Co(Phen)3+(3) and Fe(CN)3-(6). It is suggested that the reaction pocket of the present diaphorase is hydrophobic. The present electrochemical procedure for the determination of the kinetic parameters is applicable widely to similar enzyme reactions.  相似文献   

17.
The caa3-type terminal oxidase of Bacillus firmus OF4 has been proposed to play an important role in the growth and bioenergetics of this alkaliphile (A. A. Guffanti and T. A. Krulwich, J. Biol. Chem. 267:9580-9588, 1992). A mutant strain was generated in which the cta operon encoding the oxidase was disrupted by insertion of a spectinomycin resistance cassette. The mutant was unable to oxidize ascorbate in the presence of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). Absorption spectra of membranes confirmed the loss of the enzyme and indicated the presence of a cytochrome bd-type terminal oxidase. The mutant could grow on glucose but was unable to grow on malate or other nonfermentative carbon sources, despite the presence of the cytochrome bd. The cytochrome bd was purified from the mutant. The enzyme consisted of two subunits and, with menadiol as substrate, consumed oxygen with a specific activity of 12 micromol of O2 x min(-1) x mg(-1). In contrast to both cytochromes bd of Escherichia coli, the enzyme did not utilize TMPD as an electron source. A number of additional features, including subunit size and spectral properties, distinguish this cytochrome bd from its counterparts in E. coli and Azotobacter vinelandii.  相似文献   

18.
The transmembrane reaction of ferricyanide reduction by exogenous ascorbate in the liposomes in the presence of N,N,N',N'-tetramethylparaphenylenediamine (TMPD) or 2,3,5,6-tetramethylphenylenediamine (DAD) was investigated. The reaction equilibrium was shown to depend on the intraliposomal pH. At alkaline pH values under the experimental conditions used TMPD functions mainly as an electron carrier, while at acidic pH values TMPD effectuates a coupled transmembrane electron and proton transfer. This reaction is paralleled with local changes in the pH values in the unstirred layer near the membrane.  相似文献   

19.
The velocity of the oxidative renaturation of reduced ribonuclease A catalyzed by protein disulfide isomerase (PDI) is strongly dependent on the composition of a glutathione/glutathione disulfide redox buffer. As with the uncatalyzed, glutathione-mediated oxidative folding of ribonuclease, the steady-state velocity of the PDI-catalyzed reaction displays a distinct optimum with respect to both the glutathione (GSH) and glutathione disulfide (GSSG) concentrations. Optimum activity is observed at [GSH] = 1.0 mM and [GSSG] = 0.2 mM. The apparent kcat at saturating RNase concentration is 0.46 +/- 0.05 mumol of RNase renatured min-1 (mumol of PDI)-1 compared to the apparent first-order rate constant for the uncatalyzed reaction of 0.02 +/- 0.01 min-1. Changes in GSH and GSSG concentration have a similar effect on the rate of both the PDI-catalyzed and uncatalyzed reactions except under the more oxidizing conditions employed, where the catalytic effectiveness of PDI is diminished. The ratio of the velocity of the catalyzed reaction to that of the uncatalyzed reaction increases as the quantity [GSH]2/[GSSG] increases and approaches a constant, limiting value at [GSH]2/[GSSG] greater than 1 mM, suggesting that a reduced, dithiol form of PDI is required for optimum activity. As long as the glutathione redox buffer is sufficiently reducing to maintain PDI in an active form [( GSH]2/[GSSG] greater than 1 mM), the rate acceleration provided by PDI is reasonably constant, although the actual rate may vary by more than an order of magnitude. PDI exhibits half of the maximum rate acceleration at a [GSH]2/[GSSG] of 0.06 +/- 0.01 mM.  相似文献   

20.
Abstract The rates of thiosulfate, elemental sulfur (S0) and sulfite oxidation were measured respirometrically with an oxygen electrode using young cells of Thiobacillus versutus growing chemolithoautotrophically on thiosulfate under normal air pressure. Myxothiazol, an inhibitor of the cytochrome b−c1 segment, and HQNO (2-N-heptyl-4-hydroxyquiniline N-oxide), acting in the quinone-cytochrome b region, both significantly inhibited the thiosulfate oxidation rate. The effect on the oxidation rate of S0 was even stronger. The oxidation of sulfite or ascorbate + TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) (substrates releasing electrons at the level of cytochrome c) was not inhibited by myxothiazol and HQNO. Thiosulfate, S0, sulfite and ascorbate + TMPD oxidations were strongly inhibited by KCN. These respiratory activities were almost completely eliminated by cell breakage. The reduction of b-type cytochrome was observed in thiosulfate-reduced minus sulfite-reduced difference spectra. This study confirms that S0 is an important intermediate of thiosulfate oxidation in Thiobacillus versutus , and that electrons released by S0 oxidation enter the respiratory chain in the quinone-cytochrome b region. This would allow an increased gain of energy, while less energy would probably be required for pyridine-nucleotide reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号