首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate the response of astrocytes in the auditory pathway to increased neuronal signaling elicited by acoustic stimulation, conscious rats were presented with a unilateral broadband click stimulus and functional activation was assessed by quantitative autoradiography using three tracers to pulse label different metabolic pools in brain: [2-14C]acetate labels the 'small' (astrocytic) glutamate pool, [1-14C]hydroxybutyrate labels the 'large' glutamate pool, and [14C]deoxyglucose, reflects overall glucose utilization (CMR(glc)) in all brain cells. CMR(glc) rose during brain activation, and increased activity of the oxidative pathway in working astrocytes during acoustic stimulation was registered with [2-14C]acetate. In contrast, the stimulation-induced increase in metabolic activity was not reflected by greater trapping of products of [1-14C]hydroxybutyrate. The [2-14C]acetate uptake coefficient in the inferior colliculus and lateral lemniscus during acoustic stimulation was 15% and 18% (p < 0.01) higher in the activated compared to contralateral hemisphere, whereas CMR(glc) in these structures rose by 66% (p < 0.01) and 42% (p < 0.05), respectively. Calculated rates of brain utilization of blood-borne acetate (CMR(acetate)) are about 15-25% of total CMR(glc) in non-stimulated tissue and 10-20% of CMR(glc) in acoustically activated structures; they range from 28 to 115% of estimated rates of glucose oxidation in astrocytes. The rise in acetate utilization during acoustic stimulation is modest compared to total CMR(glc), but astrocytic oxidative metabolism of 'minor' substrates present in blood can make a significant contribution to the overall energetics of astrocytes and astrocyte-neuron interactions in working brain.  相似文献   

2.
Glycogen is degraded during brain activation but its role and contribution to functional energetics in normal activated brain have not been established. In the present study, glycogen utilization in brain of normal conscious rats during sensory stimulation was assessed by three approaches, change in concentration, release of (14)C from pre-labeled glycogen and compensatory increase in utilization of blood glucose (CMR(glc)) evoked by treatment with a glycogen phosphorylase inhibitor. Glycogen level fell in cortex, (14)C release increased in three structures and inhibitor treatment caused regionally selective compensatory increases in CMR(glc) over and above the activation-induced rise in vehicle-treated rats. The compensatory rise in CMR(glc) was highest in sensory-parietal cortex where it corresponded to about half of the stimulus-induced rise in CMR(glcf) in vehicle-treated rats; this response did not correlate with metabolic rate, stimulus-induced rise in CMR(glc) or sequential station in sensory pathway. Thus, glycogen is an active fuel for specific structures in normal activated brain, not simply an emergency fuel depot and flux-generated pyruvate greatly exceeded net accumulation of lactate or net consumption of glycogen during activation. The metabolic fate of glycogen is unknown, but adding glycogen to the fuel consumed during activation would contribute to a fall in CMR(O2)/CMR(glc) ratio.  相似文献   

3.
LIPID COMPOSITION AND METABOLISM OF CULTURED HAMSTER BRAIN ASTROCYTES   总被引:1,自引:1,他引:0  
Abstract— The lipid composition and metabolism of confluent cultures of cells derived from newborn hamster brain and having morphology characteristic of immature astrocytes or spongioblasts was investigated and compared to that of newborn hamster brain dispersions and cloned glioma cells (C6). The cells displayed stable morphology for at least 30 subcultures; thereafter spontaneous transformation occurred. No appreciable changes were observed in either composition or metabolic characteristics of any major neutral lipid or phospholipid class in successive subcultures or following transformation. The overall lipid composition of the hamster astrocyte cultures closely resembled that of newborn hamster brain, but the phospholipid composition showed substantial differences. The cells contained as a percent of lipid P relatively more ethanolamine plasmalogen, choline plasmalogen and sphingomyelin and somewhat less phosphatidylcholine and phosphatidylethanolamine. The phospholipids of the hamster astrocyte and C6 cells were similar. Of the lipid precursors examined, [U-14C]glucose was incorporated best into all preparations. C6 glioma cells incorporated both [U-14C]glucose and [1-14C]acetate most actively. From 69–88% of 32P incorporated into hamster astrocyte phospholipids was present in choline phosphoglycerides, whereas the corresonding figure for hamster brain dispersions was 53%. The ratio of specific activities of phosphatidylcholine to phosphatidylinositol was substantially higher in the cultured cells than in the brain preparations. The small pool of choline plasmalogen in the hamster astrocytes usually achieved the highest specific activity of any phospholipid. When [U-14C]glucose and [1-14C]acetate were precursors, the bulk of label in the astrocytes appeared in choline phosphoglycerides and triacyglycerol. Our results indicate that the hamster astrocyte cell line as grown expresses distinctive features of lipid composition and metabolism which are nearly constant through many generations.  相似文献   

4.
Reactive gliosis, in which astrocytes as well as other types of glial cells undergo massive proliferation, is a common hallmark of all brain pathologies. Brain-type fatty acid-binding protein (FABP7) is abundantly expressed in neural stem cells and astrocytes of developing brain, suggesting its role in differentiation and/or proliferation of glial cells through regulation of lipid metabolism and/or signaling. However, the role of FABP7 in proliferation of glial cells during reactive gliosis is unknown. In this study, we examined the expression of FABP7 in mouse cortical stab injury model and also the phenotype of FABP7-KO mice in glial cell proliferation. Western blotting showed that FABP7 expression was increased significantly in the injured cortex compared with the contralateral side. By immunohistochemistry, FABP7 was localized to GFAP(+) astrocytes (21% of FABP7(+) cells) and NG2(+) oligodendrocyte progenitor cells (62%) in the normal cortex. In the injured cortex there was no change in the population of FABP7(+)/NG2(+) cells, while there was a significant increase in FABP7(+)/GFAP(+) cells. In the stab-injured cortex of FABP7-KO mice there was decrease in the total number of reactive astrocytes and in the number of BrdU(+) astrocytes compared with wild-type mice. Primary cultured astrocytes from FABP7-KO mice also showed a significant decrease in proliferation and omega-3 fatty acid incorporation compared with wild-type astrocytes. Overall, these data suggest that FABP7 is involved in the proliferation of astrocytes by controlling cellular fatty acid homeostasis.  相似文献   

5.
Astrocytes convert n-6 fatty acids primarily to arachidonic acid (20:4n-6), whereas n-3 fatty acids are converted to docosapentaenoic (22:5n-3) and docosahexaenoic (22:6n-3) acids. The utilization of 20-, 22- and 24-carbon n-3 and n-6 fatty acids was compared in differentiated rat astrocytes to determine the metabolic basis for this difference. The astrocytes retained 81% of the arachidonic acid ([(3)H]20:4n-6) uptake and retroconverted 57% of the docosatetraenoic acid ([3-(14)C]22:4n-6) uptake to 20:4n-6. By contrast, 68% of the eicosapentaenoic acid ([(3)H]20:5n-3) uptake was elongated, and only 9% of the [3-(14)C]22:5n-3 uptake was retroconverted to 20:5n-3. Both tetracosapentaenoic acid ([3-(14)C]24:5n-3) and tetracosatetraenoic acid ([3-(14)C]24:4n-6) were converted to docosahexaenoic acid (22:6n-3) and 22:5n-6, respectively. Therefore, the difference in the n-3 and n-6 fatty acid products formed is due primarily to differences in the utilization of their 20- and 22-carbon intermediates. This metabolic difference probably contributes to the preferential accumulation of docosahexaenoic acid in the brain.  相似文献   

6.
Several major proteins of synaptic vesicles from rat or cow brain sediment as a large complex on sucrose density gradients when solubilized in nonionic detergents. A vacuolar H(+)-ATPase identified by sensitivity to bafilomycin A1 appears to be associated with this oligomeric protein complex. Two subunits of this complex, synaptic vesicle proteins S and U, correspond to the 57-kDa (B) and 39-kDa accessory (Ac39) subunits, respectively, of bovine chromaffin granule vacuolar H(+)-ATPase as shown by Western immunoblot analysis. The five subunits of the oligomeric complex constitute approximately 20% of the total protein of rat brain synaptic vesicles. Taken together, these results strongly suggest that the abundant, multisubunit complex partially purified from brain synaptic vesicles by density gradient centrifugation is a vacuolar H(+)-ATPase. Bafilomycin A1 completely blocks proton pumping in rat brain synaptic vesicles as measured by [14C]methylamine uptake and also blocks catecholamine accumulation measured by [3H]dopamine uptake. Moreover, ATPase activity, [14C]methylamine uptake, and [3H]dopamine uptake are inhibited by bafilomycin A1 at similar I50 values of approximately 1.7 nmol/mg of protein. These findings indicate that the vacuolar H(+)-ATPase is essential for proton pumping as well as catecholamine uptake by mammalian synaptic vesicles.  相似文献   

7.
Bone morphogenetic protein (BMP) and leukemia inhibitory factor (LIF) signaling both promote the differentiation of neural stem/progenitor cells into glial fibrillary acidic protein (GFAP) immunoreactive cells. This study compares the cellular and molecular characteristics, and the potentiality, of GFAP(+) cells generated by these different signaling pathways. Treatment of cultured embryonic subventricular zone (SVZ) progenitor cells with LIF generates GFAP(+) cells that have a bipolar/tripolar morphology, remain in cell cycle, contain progenitor cell markers and demonstrate self-renewal with enhanced neurogenesis - characteristics that are typical of adult SVZ and subgranular zone (SGZ) stem cells/astrocytes. By contrast, BMP-induced GFAP(+) cells are stellate, exit the cell cycle, and lack progenitor traits and self-renewal--characteristics that are typical of astrocytes in the non-neurogenic adult cortex. In vivo, transgenic overexpression of BMP4 increases the number of GFAP(+) astrocytes but depletes the GFAP(+) progenitor cell pool, whereas transgenic inhibition of BMP signaling increases the size of the GFAP(+) progenitor cell pool but reduces the overall numbers of astrocytes. We conclude that LIF and BMP signaling generate different astrocytic cell types, and propose that these cells are, respectively, adult progenitor cells and mature astrocytes.  相似文献   

8.
2-Deoxy-d-[14C]glucose ([14C]DG) is commonly used to determine local glucose utilization rates (CMRglc) in living brain and to estimate CMRglc in cultured brain cells as rates of [14C]DG phosphorylation. Phosphorylation rates of [14C]DG and its metabolizable fluorescent analog, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), however, do not take into account differences in the kinetics of transport and metabolism of [14C]DG or 2-NBDG and glucose in neuronal and astrocytic cells in cultures or in single cells in brain tissue, and conclusions drawn from these data may, therefore, not be correct. As a first step toward the goal of quantitative determination of CMRglc in astrocytes and neurons in cultures, the steady-state intracellular-to-extracellular concentration ratios (distribution spaces) for glucose and [14C]DG were determined in cultured striatal neurons and astrocytes as functions of extracellular glucose concentration. Unexpectedly, the glucose distribution spaces rose during extreme hypoglycemia, exceeding 1.0 in astrocytes, whereas the [14C]DG distribution space fell at the lowest glucose levels. Calculated CMRglc was greatly overestimated in hypoglycemic and normoglycemic cells because the intracellular glucose concentrations were too high. Determination of the distribution space for [14C]glucose revealed compartmentation of intracellular glucose in astrocytes, and probably, also in neurons. A smaller metabolic pool is readily accessible to hexokinase and communicates with extracellular glucose, whereas the larger pool is sequestered from hexokinase activity. A new experimental approach using double-labeled assays with DG and glucose is suggested to avoid the limitations imposed by glucose compartmentation on metabolic assays.  相似文献   

9.
Transport and metabolism of acetate in rat brain cortex in vitro   总被引:5,自引:4,他引:1  
1. [1-(14)C]Acetate undergoes metabolism when incubated aerobically at 37 degrees in the presence of rat brain-cortex slices, forming (14)CO(2) and (14)C-labelled amino acids (glutamate, glutamine, aspartate and relatively small quantities of gamma-aminobutyrate). In the absence of glucose the yield of (14)C-labelled aspartate exceeds that of (14)C-labelled glutamate and glutamine. The addition of glucose brings about a doubling of the rate of formation of (14)CO(2) and a greatly increased yield of (14)C-labelled glutamate or glutamine, whereas that of (14)C-labelled aspartate is diminished. 2. The addition of potassium chloride (100mm) to the incubation medium causes an increased rate of (14)CO(2) formation in the presence or absence of glucose and an increased rate of utilization of acetate. 3. The addition of 2,4-dinitrophenol (0.1mm) suppresses the rate of utilization of [1-(14)C]acetate. 4. The presence of ouabain (10mum) suppresses the rate of formation of (14)CO(2) from [1-(14)C]acetate and the rate of acetate utilization. Acetate conversion into carbon dioxide in the rat brain cortex is both Na(+)- and K(+)-dependent and controlled by operation of the active sodium-transport process. Only the Na(+)-stimulated rate is suppressed by ouabain. 5. Sodium fluoroacetate (1mm) decreases the rate of (14)CO(2) evolution from [1-(14)C]acetate in the presence of rat brain cortex without affecting the respiratory rate. The results are consistent with the conclusion that fluoroacetate competes with, or blocks, a transport carrier for acetate, so that in its presence only the passive diffusion rate of acetate takes place. 6. The presence of sodium propionate or sodium butyrate suppresses the utilization of [1-(14)C]acetate in rat brain cortex and leads to a concentration ratio (tissue/medium) of [1-(14)C]-acetate greater than unity. 7. The presence of NH(4) (+) diminishes acetate utilization, this being attributed to a diminished ATP concentration. Glycine is also inhibitory. It is concluded that acetate transport into the brain is carrier-mediated and dependent on the operation of the sodium pump.  相似文献   

10.
Proliferation and differentiation of neural stem cells (NSCs) have a crucial role to ensure neurogenesis and gliogenesis in the mammalian brain throughout life. As there is growing evidence for the significance of metabolism in regulating cell fate, knowledge on the metabolic programs in NSCs and how they evolve during differentiation into somatic cells may provide novel therapeutic approaches to address brain diseases. In this work, we applied a quantitative analysis to assess how the central carbon metabolism evolves upon differentiation of NSCs into astrocytes. Murine embryonic stem cell (mESC)-derived NSCs and astrocytes were incubated with labelled [1-13C]glucose and the label incorporation into intracellular metabolites was followed by GC-MS. The obtained 13C labelling patterns, together with uptake/secretion rates determined from supernatant analysis, were integrated into an isotopic non-stationary metabolic flux analysis (13C-MFA) model to estimate intracellular flux maps. Significant metabolic differences between NSCs and astrocytes were identified, with a general downregulation of central carbon metabolism during astrocytic differentiation. While glucose uptake was 1.7-fold higher in NSCs (on a per cell basis), a high lactate-secreting phenotype was common to both cell types. Furthermore, NSCs consumed glutamine from the medium; the highly active reductive carboxylation of alpha-ketoglutarate indicates that this was converted to citrate and used for biosynthetic purposes. In astrocytes, pyruvate entered the TCA cycle mostly through pyruvate carboxylase (81%). This pathway supported glutamine and citrate secretion, recapitulating well described metabolic features of these cells in vivo. Overall, this fluxomics study allowed us to quantify the metabolic rewiring accompanying astrocytic lineage specification from NSCs.  相似文献   

11.
Chemokine receptors, particularly CCR5 and CXCR4, act as essential coreceptors in concert with CD4 for cellular entry by human immunodeficiency virus type 1 (HIV-1; reviewed in [1]). But infection of CD4(-) cells has also been encountered in various tissues in vivo, including astrocytes, neurons and microvascular endothelial cells of the brain [2] [3] [4] [5] [6], epithelial cells [5] [7], CD4(-) lymphocytes and thymocytes [8] [9], and cardiomyocytes [10]. Here, we present evidence for the infection of CD4(-) cell lines bearing coreceptors by well-known HIV-1 strains when co-cultured with CD4(+) cells. This process requires contact between the coreceptor-bearing and CD4(+) cells and supports the full viral replication cycle within the coreceptor-bearing target cell. Furthermore, CD4 provided in trans facilitates infection of primary human cells, such as brain-derived astrocytes. Although the pathobiological significance of infection of CD4(-) cells in vivo remains to be elucidated, this trans-receptor mechanism may facilitate generation of hidden reservoirs of latent virus that confound antiviral therapies and that contribute to specific AIDS-associated clinical syndromes.  相似文献   

12.
13.
Mice were anaesthetized with nembutal and the effects of intraventricularly injected excitant amino acids on [U-14C]acetate metabolism were investigated. The natural excitant amino acids, l -glutamate and l -aspartate, reduced the incorporation of 14C from [U-14C]acetate into glutamine, GAB A and possibly alanine. The synthetic excitant amino acid, N-methyl-d -aspartate caused a reduction in the incorporation of 14C from intraventricularly injected [U-14C]acetate into all of the brain amino acids labelled by [U-14C]acetate within 5 min. It is suggested that these effects may be due to changes in pool sizes of tricarboxylic cycle intermediates, to inhibition of acetyl-CoA formation, or both. Differences in the metabolic effects of the synthetic and natural excitants are interpreted in terms of the uptake of the natural amino acids into glutamine-forming pool(s) of glutamate metabolism.  相似文献   

14.
Increased l-Arg (Arg) uptake to astrocytes and neurons is thought to contribute to enhanced nitric oxide (NO) synthesis and oxidative/nitrosative stress associated with hyperammonemia (HA). Recently we had shown that HA increases the expression in the brain of y(+)LAT2, an isoform of the y(+)L heteromeric transporter which promotes [(3)H]Arg efflux form brain cells in the presence of l-glutamine (Gln) (Zielińska et al., 2011). In this study, we demonstrate that a significant proportion of [(3)H]Arg uptake to cultured cortical astrocytes is likewise mediated by system y(+)L, in addition to the uptake showing characteristics of systems y(+), B(0+) and b(0+). However, stimulation of [(3)H]Arg uptake by treatment with 5mM ammonium chloride ("ammonia") for 48h could be solely ascribed to the y(+)L-mediated component of the uptake. Ammonia treatment increased the expression of the brain specific y(+)L isoform, y(+)LAT2, both at the mRNA and protein level, and silencing of the Slc7a6 gene coding for y(+)LAT2 protein specifically reduced the ammonia-induced [(3)H]Arg uptake. This study suggests an important role of y(+)LAT2 in the modulation of NO synthesis in the ammonia-exposed astrocytes.  相似文献   

15.
Stem cells and progenitor cells derived from the developing human brain have been shown to differentiate into neurons and astrocytes. However, few studies have examined the functional, physiological properties of these differentiated neurons and astrocytes. In this study we have used immunocytochemistry in combination with electrophysiology to examine protein machinery and functional properties of neurons and astrocytes differentiated from human brain progenitor cells (hBPCs).Our results show that serum induces mainly astrocytic phenotype cells that express GFAP and have physiological properties that are typical of astrocytes. hBPCs differentiated with BDNF and PDGF develop mainly into neurons expressing mature neuronal proteins MAP-2, synaptobrevin II and vesicular glutamate transporter I in the process, plus a small population of GFAP-positive radial cells. Based on electrophysiology of BDNF/PDGF-treated cells two classes of cell were identified. Class I cells have functional neuronal properties, including functional voltage-gated Na(+) and K(+) currents, functional AMPA receptors and the ability to generate action potentials. A smaller subpopulation of cells (Class II cells) expresses GFAP and exhibit functional properties of astrocytes, including linear current-voltage relationship and dye-coupling.  相似文献   

16.
Na(+)-dependent excitatory amino acid transporters (EAATs) normally function to remove extracellular glutamate from brain extracellular space, but EAATs can also increase extracellular glutamate by reversal of uptake. Effects of inhibitors on EAATs can be complex, depending on cell type, whether conditions favor glutamate uptake or uptake reversal and whether the inhibitor itself is a substrate for the transporters. The present study assessed EAAT inhibitors for their ability to inhibit glutamate uptake, act as transporter substrates and block uptake reversal in astrocyte and neuron cultures. L-threo-beta-hydroxyaspartate (L-TBHA), DL-threo-beta-benzyloxyaspartate (DL-TBOA), L-trans-pyrrolidine-2,4-dicarboxylic acid (L-trans-2,4-PDC) (+/-)-cis-4-methy-trans-pyrrolidine-2,4-dicarboxylic acid (cis-4-methy-trans-2,4-PDC) and L-antiendo-3,4-methanopyrrolidine-2,4-dicarboxylic acid (L-antiendo-3,4-MPDC) inhibited L-[14C]glutamate uptake in astrocytes with equilibrium binding constants ranging from 17 microM (DL-TBOA and L-TBHA) - 43 microM (cis-4-methy-trans-2,4-PDC). Transportability of inhibitors was assessed in astrocytes and neurons. While L-TBHA, L-trans-2,4-PDC, cis-4-methy-trans-2,4-PDC and L-antiendo-3,4-MPDC displayed significant transporter substrate activities in neurons and astrocytes, DL-TBOA was a substrate only in astrocytes. This effect of DL-TBOA was concentration-dependent, leading to complex effects on glutamate uptake reversal. At concentrations low enough to produce minimal DL-TBOA uptake velocity (< or = 10 microM), DL-TBOA blocked uptake reversal in ATP-depleted astrocytes; this blockade was negated at concentrations that drove substantial DL-TBOA uptake (> 10 microM). These findings indicate that the net effects of EAAT inhibitors can vary with cell type and exposure conditions.  相似文献   

17.
Since acetylcarnitine has been identified in the epididymal plasma of many mammalian species, we investigated whether acetylcarnitine could serve as an energy substrate for epididymal bull and hamster spermatozoa. Intact caudal cells from both species oxidized [I-14C]acetyl-l-carnitine to 14CO2, in vitro, and the amount oxidized was dependent on time, substrate concentration, and cell number. Within each species, the rate of oxidation was the same as the rate at which free [1-14C]acetate was oxidized. Spermatozoa incubated with [3H]acetyl-L-carnitine hydrolyzed the compound and [3H]acetate accumulated in the medium. Unlabeled acetate added to the incubation medium competed with cellular uptake of [3H]acetate and resulted in further increase in [3H]acetate accumulation in the medium. Furthermore, the acetyl group of acetylcarnitine was oxidized by spermatozoa without concomitant uptake of the carnitine group. Purified plasma membrane vesicles contained an acetylcarnitine hydrolase activity that was solubilized from whole cells by detergents and that could be distinguished from acetylcholinesterase also present in the cells. The solubilized acetylcarnitine hydrolase activity was inhibited by p-hydroxymercuriphenylsulfonate, but not by the specific acetylcholinesterase inhibitors, eserine or BW63C47. The sulfhydryl blocker also inhibited the production of 14CO2 from [1-14C]acetylcarnitine by intact cells; acetylcholinesterase inhibitors did not. From estimates of sperm energy requirements, our results indicate that extracellular acetylcarnitine serves as a physiologically important energy substrate for maturing sperm cells.  相似文献   

18.
Degradation of (+)-isothujone biosynthesized by Tanacetum vulgare or Thuja plicata from acetate-[1-14C], -[2-14C] and -[2-3H3] or from CO2-[14C] at physiological concentration revealed a pattern of asymmetric labelling whereby tracer predominantly (72–98% resided in that part of the skeleton derived from IPP. This is similar to the patterns previously obtained for uptake of MVA-[2-14C] but differed from those reported in other species with acetate-[14C] as precursor. Within the IPP-derived moiety the 3 parts derived from acetate units were not equivalently labelled. Partial degradations of geraniol and (+)-pulegone formed in Pelargonium graveolens and Mentha pulegium after uptake of 14C-labelled acetate or CO2 showed that the C-2 units of the skeletons of these monoterpenes were also labelled to widely differing extents and these patterns persisted over a range of feeding and seasonal conditions. These results suggest that metabolic pools of acetyl-CoA and/or acetoacetyl-CoA exist in these plants. The general occurrence of such pools and the consequent nonequivalent labelling patterns in secondary metabolism could invalidate biosynthetic conclusions drawn from partial degradations of labelled natural products.  相似文献   

19.
Elongated, highly polyunsaturated derivatives of linoleic acid (18:2 omega-6) and linolenic acid (18:3 omega-3) accumulate in brain, but their sites of synthesis are not fully characterized. To investigate whether neurons themselves are capable of essential fatty acid elongation and desaturation or are dependent upon the support of other brain cells, primary cultures of rat neurons and astrocytes were incubated with [1-14C] 18:2 omega-6, [1-14C]20:4 omega-6, [1-14C]18:3 omega-3, or [1-14C]20:5 omega-3 and their elongation/desaturation products determined. Neuronal cultures were routinely incapable of producing significant amounts of delta 4-desaturase products. They desaturated fatty acids very poorly at every step of the pathway, producing primarily elongation products of the 18- and 20-carbon precursors. In contrast, astrocytes actively elongated and desaturated the 18- and 20-carbon precursors. The major metabolite of 18:2 omega-6 was 20:4 omega-6, whereas the primary products from 18:3 omega-3 were 20:5 omega-3, 22:5 omega-3, and 22:6 omega-3. The majority of the long-chain fatty acids formed by astrocyte cultures, particularly 20:4 omega-6 and 22:6 omega-3, was released into the extracellular fluid. Although incapable of producing 20:4 omega-6 and 22:6 omega-3 from precursor fatty acids, neuronal cultures readily took up these fatty acids from the medium. These findings suggest that astrocytes play an important supportive role in the brain by elongating and desaturating omega-6 and omega-3 essential fatty acid precursors to 20:4 omega-6 and 22:6 omega-3, then releasing the long-chain polyunsaturated fatty acids for uptake by neurons.  相似文献   

20.
Ascorbate Transport and Intracellular Concentration in Cerebral Astrocytes   总被引:3,自引:1,他引:2  
Abstract: Regulation of the initial rate of uptake and steady-state concentration of ascorbate (reduced vitamin C) was investigated in rat cerebral astrocytes. Although these cells did not synthesize vitamin C, they accumulated millimolar concentrations of ascorbate when incubated with medium containing the vitamin at a level (200 µ M ) typical of brain extracellular fluid. Initial rate of [14C]-ascorbate uptake and intracellular ascorbate concentration were dependent on extracellular Na+ and sensitive to the anion transport inhibitor sulfinpyrazone. Comparison of the efflux profiles of ascorbate and 2',7'-bis(carboxyethyl)-5 (or -6)-carboxyfluorescein from astrocytes permeabilized with digitonin localized most intracellular ascorbate to the cytosol. Pretreatment of astrocytes with dibutyryl cyclic AMP (dBcAMP) doubled their initial rate of sulfinpyrazone-sensitive [14C]ascorbate uptake compared with cells treated with either n -butyric acid or vehicle. dBcAMP also increased steady-state intracellular ascorbate concentration by 39%. The relatively small size of the change in astrocytic ascorbate concentration was explained by the finding that dBcAMP increased the rate of efflux of the vitamin from ascorbate-loaded cells. These results indicate that uptake and efflux pathways are stimulated by cyclic AMP-dependent mechanisms and that they regulate the cytosolic concentration of ascorbate in astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号