首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cDNA expression libraries that produce correct proteins are essential in facilitating the identification of protein-protein interactions. The 5′-untranslated regions (UTRs) that are present in the majority of mammalian and non-mammalian genes are predicted to alter the expression of correct proteins from cDNA libraries. We developed a novel cDNA expression library from which 5′-UTRs were removed using a mixture of polymerase chain reaction primers that complement the Kozak sequences we refer to as an “in-frame cDNA library.” We used this library with the protein complementation assay to identify two novel binding partners for ras-related ADP-ribosylation factor-like 11 (ARL11), cellular retinoic acid binding protein 2 (CRABP2), and phosphoglycerate mutase 1 (PGAM1). Thus, the in-frame cDNA library without 5′-UTRs we describe here increases the chance of correctly identifying protein interactions and will have wide applications in both mammalian and non-mammalian detection systems.  相似文献   

2.
D. G. Fish  G. G. Clarke 《CMAJ》1966,94(14):701-707
An examination of applicants to Canadian medical schools for 1965-66 revealed that 4660 applications were received by the 12 schools for approximately 900 places available; 2852 of these were from Canadians, but because many applicants applied to more than one school, these 2852 applications represented only 1767 individuals. Evaluations made by the schools concerning the acceptability of these applicants showed that only 36 persons rated as “acceptable” by one or more schools failed to gain admission to any Canadian school for 1965-66. Furthermore, 66 “marginal” applicants were accepted, as were 130 multiple applicants who were rated as “acceptable” by one school but “marginal” and/or “unacceptable” by one or more other schools. Of the 464 multiple applicants, only 40% received the same evaluation from all schools to which they applied. If those multiple applicants who were rated as acceptable by all schools to which they applied are added to single applicants rated as acceptable, the pool of these clearly acceptable candidates (40% of all Canadian applicants) is sufficient only to fill 78% of places available. It was thus concluded that it is erroneous to speak of a surplus of well-qualified Canadian applicants at the present time.  相似文献   

3.
Coliphage N4 is a lytic bacteriophage discovered nearly half a century ago, and it was considered to be a “genetic orphan” until very recently, when several additional N4-like phages were discovered to infect nonenteric bacterial hosts. Interest in this genus of phages is stimulated by their unique genetic features and propagation strategies. To better understand the ecology of N4-like phages, we investigated the diversity and geographic patterns of N4-like phages by examining 56 Chesapeake Bay viral communities, using a PCR-clone library approach targeting a diagnostic N4-like DNA polymerase gene. Many new lineages of N4-like phages were found in the bay, and their genotypes shift from the lower to the upper bay. Interestingly, signature sequences of N4-like phages were recovered only from winter month samples, when water temperatures were below 4°C. An analysis of existing metagenomic libraries from various aquatic environments supports the hypothesis that N4-like phages are most prolific in colder waters. In particular, a high number of N4-like phages were detected in Organic Lake, Antarctica, a cold and hypersaline system. The prevalence of N4-like phages in the cold biosphere suggests these viruses possess yet-to-be-determined mechanisms that facilitate lytic infections under cold conditions.  相似文献   

4.
5.
G. Grant Clarke  David G. Fish 《CMAJ》1967,96(13):927-935
An examination of applicants to Canadian medical schools for 1966-67 revealed that 4534 applications were received for the approximately 974 available places. The number of Canadian applications was 2866 and these were made by 1815 individual applicants, an increase of 48 over 1965-66. United States applicants declined from 1143 to 1013.Evaluations made by the schools concerning the acceptability of the Canadian applicants disclosed that 55 applicants who rated as “acceptable” by one or more schools failed to gain admission to any medical school in 1966-67 (as compared to 36 in 1965-66). However, of those applicants who did find a place 76 were evaluated as “marginal” or “unacceptable”, while another 126 were rated as “acceptable” by one school but “marginal” and/or “acceptable” by one or more other schools.These results were interpreted to imply that the Canadian medical schools were still experiencing difficulty in attracting well-qualified applicants for study in medicine.  相似文献   

6.
As the COVID‐19 pandemic has largely increased the utilization of telehealth, mobile mental health technologies – such as smartphone apps, vir­tual reality, chatbots, and social media – have also gained attention. These digital health technologies offer the potential of accessible and scalable interventions that can augment traditional care. In this paper, we provide a comprehensive update on the overall field of digital psychiatry, covering three areas. First, we outline the relevance of recent technological advances to mental health research and care, by detailing how smartphones, social media, artificial intelligence and virtual reality present new opportunities for “digital phenotyping” and remote intervention. Second, we review the current evidence for the use of these new technological approaches across different mental health contexts, covering their emerging efficacy in self‐management of psychological well‐being and early intervention, along with more nascent research supporting their use in clinical management of long‐term psychiatric conditions – including major depression; anxiety, bipolar and psychotic disorders; and eating and substance use disorders – as well as in child and adolescent mental health care. Third, we discuss the most pressing challenges and opportunities towards real‐world implementation, using the Integrated Promoting Action on Research Implementation in Health Services (i‐PARIHS) framework to explain how the innovations themselves, the recipients of these innovations, and the context surrounding innovations all must be considered to facilitate their adoption and use in mental health care systems. We conclude that the new technological capabilities of smartphones, artificial intelligence, social media and virtual reality are already changing mental health care in unforeseen and exciting ways, each accompanied by an early but promising evidence base. We point out that further efforts towards strengthening implementation are needed, and detail the key issues at the patient, provider and policy levels which must now be addressed for digital health technologies to truly improve mental health research and treatment in the future.  相似文献   

7.
The power of genome sequencing depends on the ability to understand what those genes and their proteins products actually do. The automated methods used to assign functions to putative proteins in newly sequenced organisms are limited by the size of our library of proteins with both known function and sequence. Unfortunately this library grows slowly, lagging well behind the rapid increase in novel protein sequences produced by modern genome sequencing methods. One potential source for rapidly expanding this functional library is the “back catalog” of enzymology – “orphan enzymes,” those enzymes that have been characterized and yet lack any associated sequence. There are hundreds of orphan enzymes in the Enzyme Commission (EC) database alone. In this study, we demonstrate how this orphan enzyme “back catalog” is a fertile source for rapidly advancing the state of protein annotation. Starting from three orphan enzyme samples, we applied mass-spectrometry based analysis and computational methods (including sequence similarity networks, sequence and structural alignments, and operon context analysis) to rapidly identify the specific sequence for each orphan while avoiding the most time- and labor-intensive aspects of typical sequence identifications. We then used these three new sequences to more accurately predict the catalytic function of 385 previously uncharacterized or misannotated proteins. We expect that this kind of rapid sequence identification could be efficiently applied on a larger scale to make enzymology’s “back catalog” another powerful tool to drive accurate genome annotation.  相似文献   

8.
All applicants and those who subsequently enrolled for the 1964-65 session in the Western medical schools were studied with the hope that it would encourage a national registration of applicants. Seven hundred and sixty-four applicants completed 865 applications for 288 places in four schools. Although the principal factor in selecting medical students in all Western schools is pre-medical performance, 49 “good-quality” (academically of good standing and under 30 years of age) resident applicants were not accepted in their own provincial school, and 49 places were filled with “poor-quality” students.The loss of good applicants to the Western medical schools and the 20% overlap of each school''s applicant pool with that of other schools suggests that objective standards of quality must be developed, and that a regular annual national assessment of applicants should be conducted by the Association of Canadian Medical Colleges.  相似文献   

9.
Maras salterns are located 3,380 m above sea level in the Peruvian Andes. These salterns consist of more than 3,000 little ponds which are not interconnected and act as crystallizers where salt precipitates. These ponds are fed by hypersaline spring water rich in sodium and chloride. The microbiota inhabiting these salterns was examined by fluorescence in situ hybridization (FISH), 16S rRNA gene clone library analysis, and cultivation techniques. The total counts per milliliter in the ponds were around 2 × 106 to 3 × 106 cells/ml, while the spring water contained less than 100 cells/ml and did not yield any detectable FISH signal. The microbiota inhabiting the ponds was dominated (80 to 86% of the total counts) by Archaea, while Bacteria accounted for 10 to 13% of the 4′,6′-diamidino-2-phenylindole (DAPI) counts. A total of 239 16S rRNA gene clones were analyzed (132 Archaea clones and 107 Bacteria clones). According to the clone libraries, the archaeal assemblage was dominated by microorganisms related to the cosmopolitan square archaeon “Haloquadra walsbyi,” although a substantial number of the sequences in the libraries (31% of the 16S rRNA gene archaeal clones) were related to Halobacterium sp., which is not normally found in clone libraries from solar salterns. All the bacterial clones were closely related to each other and to the γ-proteobacterium “Pseudomonas halophila” DSM 3050. FISH analysis with a probe specific for this bacterial assemblage revealed that it accounted for 69 to 76% of the total bacterial counts detected with a Bacteria-specific probe. When pond water was used to inoculate solid media containing 25% total salts, both extremely halophilic Archaea and Bacteria were isolated. Archaeal isolates were not related to the isolates in clone libraries, although several bacterial isolates were very closely related to the “P. halophila” cluster found in the libraries. As observed for other hypersaline environments, extremely halophilic bacteria that had ecological relevance seemed to be easier to culture than their archaeal counterparts.  相似文献   

10.
Fragment-based approaches are the current standard for de novo protein structure prediction. These approaches rely on accurate and reliable fragment libraries to generate good structural models. In this work, we describe a novel method for structure fragment library generation and its application in fragment-based de novo protein structure prediction. The importance of correct testing procedures in assessing the quality of fragment libraries is demonstrated. In particular, the exclusion of homologs to the target from the libraries to correctly simulate a de novo protein structure prediction scenario, something which surprisingly is not always done. We demonstrate that fragments presenting different predominant predicted secondary structures should be treated differently during the fragment library generation step and that exhaustive and random search strategies should both be used. This information was used to develop a novel method, Flib. On a validation set of 41 structurally diverse proteins, Flib libraries presents both a higher precision and coverage than two of the state-of-the-art methods, NNMake and HHFrag. Flib also achieves better precision and coverage on the set of 275 protein domains used in the two previous experiments of the the Critical Assessment of Structure Prediction (CASP9 and CASP10). We compared Flib libraries against NNMake libraries in a structure prediction context. Of the 13 cases in which a correct answer was generated, Flib models were more accurate than NNMake models for 10. “Flib is available for download at: http://www.stats.ox.ac.uk/research/proteins/resources”.  相似文献   

11.
The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today''s important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a “middle-out” strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from “-omics” signatures are identified as key elements of a successful systems biology modeling approach in nutrition research—one that integrates physiological mechanisms and data at multiple space and time scales.  相似文献   

12.
Bacteria navigate environments full of various chemicals to seek favorable places for survival by controlling the flagella’s rotation using a complicated signal transduction pathway. By influencing the pathway, bacteria can be engineered to search for specific molecules, which has great potential for application to biomedicine and bioremediation. In this study, genetic circuits were constructed to make bacteria search for a specific molecule at particular concentrations in their environment through a synthetic biology method. In addition, by replacing the “brake component” in the synthetic circuit with some specific sensitivities, the bacteria can be engineered to locate areas containing specific concentrations of the molecule. Measured by the swarm assay qualitatively and microfluidic techniques quantitatively, the characteristics of each “brake component” were identified and represented by a mathematical model. Furthermore, we established another mathematical model to anticipate the characteristics of the “brake component”. Based on this model, an abundant component library can be established to provide adequate component selection for different searching conditions without identifying all components individually. Finally, a systematic design procedure was proposed. Following this systematic procedure, one can design a genetic circuit for bacteria to rapidly search for and locate different concentrations of particular molecules by selecting the most adequate “brake component” in the library. Moreover, following simple procedures, one can also establish an exclusive component library suitable for other cultivated environments, promoter systems, or bacterial strains.  相似文献   

13.
Humans need to solve computationally intractable problems such as visual search, categorization, and simultaneous learning and acting, yet an increasing body of evidence suggests that their solutions to instantiations of these problems are near optimal. Computational complexity advances an explanation to this apparent paradox: (1) only a small portion of instances of such problems are actually hard, and (2) successful heuristics exploit structural properties of the typical instance to selectively improve parts that are likely to be sub-optimal. We hypothesize that these two ideas largely account for the good performance of humans on computationally hard problems. We tested part of this hypothesis by studying the solutions of 28 participants to 28 instances of the Euclidean Traveling Salesman Problem (TSP). Participants were provided feedback on the cost of their solutions and were allowed unlimited solution attempts (trials). We found a significant improvement between the first and last trials and that solutions are significantly different from random tours that follow the convex hull and do not have self-crossings. More importantly, we found that participants modified their current better solutions in such a way that edges belonging to the optimal solution (“good” edges) were significantly more likely to stay than other edges (“bad” edges), a hallmark of structural exploitation. We found, however, that more trials harmed the participants'' ability to tell good from bad edges, suggesting that after too many trials the participants “ran out of ideas.” In sum, we provide the first demonstration of significant performance improvement on the TSP under repetition and feedback and evidence that human problem-solving may exploit the structure of hard problems paralleling behavior of state-of-the-art heuristics.  相似文献   

14.

Background

Chronic blood shortages in the U.S. would be alleviated by small increases, in percentage terms, of people donating blood. The current research investigated the effects of subtle changes in charity-seeking messages on the likelihood of people responses to a call for help. We predicted that “avoid losses” messages would lead to more helping behavior than “promote gains” messages would.

Method

Two studies investigated the effects of message framing on helping intentions and behaviors. With the help and collaboration of the Red Cross, Study 1, a field experiment, directly assessed the effectiveness of a call for blood donations that was presented as either death-preventing (losses) or life-saving (gains), and as being of either more or less urgent need. With the help and collaboration of a local charity, Study 2, a lab experiment, assessed the effects of the gain-versus-loss framing of a donation-soliciting flyer on individuals’ expectations of others’ monetary donations as well their own volunteering behavior. Study 2 also assessed the effects of three emotional motivators - feelings of empathy, positive affect, and relational closeness.

Result

Study 1 indicated that, on a college campus, describing blood donations as a way to “prevent a death” rather than “save a life” boosted the donation rate. Study 2 showed that framing a charity’s appeals as helping people to avoid a loss led to larger expected donations, increased intentions to volunteer, and more helping behavior, independent of other emotional motivators.

Conclusion

This research identifies and demonstrates a reliable and effective method for increasing important helping behaviors by providing charities with concrete ideas that can effectively increase helping behavior generally and potentially death-preventing behavior in particular.  相似文献   

15.
The cognitive and neural mechanisms for recognizing and categorizing behavior are not well understood in non-human animals. In the current experiments, pigeons and humans learned to categorize two non-repeating, complex human behaviors (“martial arts” vs. “Indian dance”). Using multiple video exemplars of a digital human model, pigeons discriminated these behaviors in a go/no-go task and humans in a choice task. Experiment 1 found that pigeons already experienced with discriminating the locomotive actions of digital animals acquired the discrimination more rapidly when action information was available than when only pose information was available. Experiments 2 and 3 found this same dynamic superiority effect with naïve pigeons and human participants. Both species used the same combination of immediately available static pose information and more slowly perceived dynamic action cues to discriminate the behavioral categories. Theories based on generalized visual mechanisms, as opposed to embodied, species-specific action networks, offer a parsimonious account of how these different animals recognize behavior across and within species.  相似文献   

16.
17.
Functional environmental screening of metagenomic libraries is a powerful means to identify and assign function to novel genes and their encoded proteins without any prior sequence knowledge. In the current study we describe the identification and subsequent analysis of a salt-tolerant clone from a human gut metagenomic library. Following transposon mutagenesis we identified an unknown gene (stlA, for “salt tolerance locus A”) with no current known homologues in the databases. Subsequent cloning and expression in Escherichia coli MKH13 revealed that stlA confers a salt tolerance phenotype in its surrogate host. Furthermore, a detailed in silico analysis was also conducted to gain additional information on the properties of the encoded StlA protein. The stlA gene is rare when searched against human metagenome datasets such as MetaHit and the Human Microbiome Project and represents a novel and unique salt tolerance determinant which appears to be found exclusively in the human gut environment.  相似文献   

18.
The potential for antibodies to act as “magic bullets” for treatment of human disease was recognized a century ago, but its full realization has began to occur only during the last decade. A key to their current success is the ability to make libraries of antibodies/B cells, isolate a single species, and engineer it to be safe, efficacious and of high quality. Despite this progress, major challenges to the effective prevention, diagnosis and treatment of a vast majority of diseases remain. Limited success in the development of effective vaccines against diseases such as AIDS and cancer reflects our incomplete understanding of how antibodies are generated and function. Only a miniscule number of antibodies are characterized out of the universe of antibodies generated by the immune system. Knowledge of antibodyomes—the complete sets of antibodies—could help solve these and other challenges.Key words: antibodies, therapeutics, vaccines, antibodyome, biologicals  相似文献   

19.
Debates over the pros and cons of a “publish or perish” philosophy have inflamed academia for at least half a century. Growing concerns, in particular, are expressed for policies that reward “quantity” at the expense of “quality,” because these might prompt scientists to unduly multiply their publications by fractioning (“salami slicing”), duplicating, rushing, simplifying, or even fabricating their results. To assess the reasonableness of these concerns, we analyzed publication patterns of over 40,000 researchers that, between the years 1900 and 2013, have published two or more papers within 15 years, in any of the disciplines covered by the Web of Science. The total number of papers published by researchers during their early career period (first fifteen years) has increased in recent decades, but so has their average number of co-authors. If we take the latter factor into account, by measuring productivity fractionally or by only counting papers published as first author, we observe no increase in productivity throughout the century. Even after the 1980s, adjusted productivity has not increased for most disciplines and countries. These results are robust to methodological choices and are actually conservative with respect to the hypothesis that publication rates are growing. Therefore, the widespread belief that pressures to publish are causing the scientific literature to be flooded with salami-sliced, trivial, incomplete, duplicated, plagiarized and false results is likely to be incorrect or at least exaggerated.  相似文献   

20.
Next-generation sequencing (NGS) has caused a revolution in biology. NGS requires the preparation of libraries in which (fragments of) DNA or RNA molecules are fused with adapters followed by PCR amplification and sequencing. It is evident that robust library preparation methods that produce a representative, non-biased source of nucleic acid material from the genome under investigation are of crucial importance. Nevertheless, it has become clear that NGS libraries for all types of applications contain biases that compromise the quality of NGS datasets and can lead to their erroneous interpretation. A detailed knowledge of the nature of these biases will be essential for a careful interpretation of NGS data on the one hand and will help to find ways to improve library quality or to develop bioinformatics tools to compensate for the bias on the other hand. In this review we discuss the literature on bias in the most common NGS library preparation protocols, both for DNA sequencing (DNA-seq) as well as for RNA sequencing (RNA-seq). Strikingly, almost all steps of the various protocols have been reported to introduce bias, especially in the case of RNA-seq, which is technically more challenging than DNA-seq. For each type of bias we discuss methods for improvement with a view to providing some useful advice to the researcher who wishes to convert any kind of raw nucleic acid into an NGS library.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号