首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Nectin-1 is a member of the immunoglobulin superfamily and a Ca(2+)-independent adherens junction protein involved in synapse formation. Here we show that nectin-1alpha undergoes intramembrane proteolytic processing analogous to that of the Alzheimer's disease amyloid precursor protein, mediated by a presenilin (PS)-dependent gamma-secretase-like activity. 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment of Chinese hamster ovary cells activated a first proteolytic event, resulting in ectodomain shedding of nectin-1alpha. Subsequent cleavage of the remaining 26-kDa membrane-anchored C-terminal fragment (CTF) was inhibited independently by three specific gamma-secretase inhibitors and by expression of the dominant negative form of PS1. The PS/gamma-secretase-like cleavage product was detected in vivo following proteasome inhibitor treatment of cells. An in vitro gamma-secretase assay confirmed the generation of a 24-kDa nectin-1alpha intracellular domain, peripherally associated with the membrane fraction. We also found nectin-1alpha to interact with the N-terminal fragment of PS1. Finally, gamma-secretase inhibition resulted in beta-catenin release from cell junctions, concomitantly with the accumulation of the 26-kDa nectin-1alpha CTF, suggesting that high levels of nectin-1alpha CTF interfere with TPA-induced remodeling of cell-cell junctions. Our results are consistent with a previously reported role for PS/gamma-secretase in adherens junction function involving cleavage of cadherins. Similar to nectin-1, other members of the immunoglobulin superfamily involved in synapse formation may also serve as substrates for PS/gamma-secretase-like intramembrane proteolytic activity.  相似文献   

2.
The presenilin (PS)/gamma-secretase system promotes production of the A beta (A beta) peptides by mediating cleavage of amyloid precursor protein (APP) at the gamma-sites. This system is also involved in the processing of type-I transmembrane proteins, including APP, cadherins and Notch1 receptors, at the epsilon-cleavage site, resulting in the production of peptides containing the intracellular domains (ICDs) of the cleaved proteins. Emerging evidence shows that these peptides have important biological functions, raising the possibility that their inhibition by gamma-secretase inhibitors may be detrimental to the cell. Here, we show that peptide E-Cad/CTF2, produced by the PS1/gamma-secretase processing of E-cadherin, promotes the lysosomal/endosomal degradation of the transmembrane APP derivatives, C99 and C83, and inhibits production of the APP ICD (AICD). In addition, E-Cad/CTF2 decreases accumulation of total secreted A beta. These data suggest a novel method to promote the non-amyloidogenic degradation of A beta precursors and to inhibit A beta production.  相似文献   

3.
4.
Alzheimer's disease is characterized by the deposits of the 4-kDa amyloid beta peptide (A beta). The A beta protein precursor (APP) is cleaved by beta-secretase to generate a C-terminal fragment, CTF beta, which in turn is cleaved by gamma-secretase to generate A beta. Alternative cleavage of the APP by alpha-secretase at A beta 16/17 generates the C-terminal fragment, CTFalpha. In addition to A beta, endoproteolytic cleavage of CTF alpha and CTF beta by gamma-secretase should yield a C-terminal fragment of 57-59 residues (CTF gamma). However, CTF gamma has not yet been reported in either brain or cell lysates, presumably due to its instability in vivo. We detected the in vitro generation of A beta as well as an approximately 6-kDa fragment from guinea pig brain membranes. We have provided biochemical and pharmacological evidence that this 6-kDa fragment is the elusive CTF gamma, and we describe an in vitro assay for gamma-secretase activity. The fragment migrates with a synthetic peptide corresponding to the 57-residue CTF gamma fragment. Three compounds previously identified as gamma-secretase inhibitors, pepstatin-A, MG132, and a substrate-based difluoroketone (t-butoxycarbonyl-Val-Ile-(S)-4-amino-3-oxo-2, 2-difluoropentanoyl-Val-Ile-OMe), reduced the yield of CTF gamma, providing additional evidence that the fragment arises from gamma-secretase cleavage. Consistent with reports that presenilins are the elusive gamma-secretases, subcellular fractionation studies showed that presenilin-1, CTF alpha, and CTF beta are enriched in the CTF gamma-generating fractions. The in vitro gamma-secretase assay described here will be useful for the detailed characterization of the enzyme and to screen for gamma-secretase inhibitors.  相似文献   

5.
6.
The proteolytic cleavage of a precursor protein into alpha- and beta-subunits by furin is required to form functional insulin receptor (IR). In this study, we examined if IR undergoes the additional presenilin (PS)/gamma-secretase-dependent processing. In cells treated with gamma-secretase inhibitors or expressing the dominant-negative PS1 variant led to the accumulation of an endogenous IR C-terminal fragment. In the presence of proteasome inhibitors, we detected a PS/gamma-secretase cleavage product of the IR, termed the IR intracellular domain (ICD). Cellular fractionation and confocal microscopy analyses showed that the IR-ICD is predominantly detected in the nucleus. These data indicate that IR is a tyrosine kinase receptor, which undergoes PS/gamma-secretase-dependent processing. We also show that the autophosphorylation levels of the IR beta-subunit upon insulin stimulation were decreased by the inactivation of PS/gamma-secretase, raising the possibility that the PS/gamma-secretase proteolysis of IR may play a modulatory role in insulin signaling.  相似文献   

7.
The voltage-gated sodium channel beta2-subunit (beta2) is a member of the IgCAM superfamily and serves as both an adhesion molecule and an auxiliary subunit of the voltage-gated sodium channel. Here we found that beta2 undergoes ectodomain shedding followed by presenilin (PS)-dependent gamma-secretase-mediated cleavage. 12-O-Tetradecanoylphorbol-13-acetate treatment or expression of an alpha-secretase enzyme, ADAM10, resulted in ectodomain cleavage of beta2 in Chinese hamster ovary cells. Subsequent cleavage of the remaining 15-kDa C-terminal fragment (beta2-CTF) was independently inhibited by three specific gamma-secretase inhibitors, expression of the dominant negative form of PS1, and in PS1/PS2 knock-out cells. gamma-Secretase inhibitor treatment also increased endogenous beta2-CTF levels in neuroblastoma cells and mouse primary neuronal cultures. In a cell-free gamma-secretase assay, we detected gamma-secretase activity-dependent generation of a 12 kDa beta2 intracellular domain (ICD), which was loosely associated with the membrane fraction. To assess the functional role of beta2 processing by gamma-secretase, we tested whether N-[N-(3,5-difluorophenylacetyl-l-alanyl)]-S-phenylglycine t-butylester (DAPT), a specific gamma-secretase inhibitor, would alter beta2-mediated cell adhesion and migration. We found that DAPT inhibited cell-cell aggregation and migration in a wound healing assay carried out with Chinese hamster ovary cells expressing beta2. DAPT also reduced migration of neuroblastoma cells in a modified Boyden chamber assay. Since DAPT treatment resulted in increased beta2-CTF levels, we also tested whether beta2-CTFs or beta2-ICDs would directly affect cell migration by overexpressing recombinant proteins. Interestingly, elevated levels of beta2-CTFs, but not ICDs, also blocked cell migration by 81 to 93%. Together, our findings show for the first time that beta2 is a PS/gamma-secretase substrate and gamma-secretase mediated cleavage of beta2-CTF is required for cell-cell adhesion and migration of beta2-expressing cells.  相似文献   

8.
Markers for caspase activation and apoptosis have been shown in brains of Alzheimer's disease (AD) patients and AD-mouse models. In neurons, caspase activation is associated with elevated amyloid β-peptide (Aβ) production. Caspases cleave numerous substrates including presenilin-1 (PS1). The cleavage takes place in the large cytosolic loop of PS1-C-terminal fragment (PS1CTF), generating a truncated PS1CTF lacking half of the loop domain (caspCTF). The loop has been shown to possess important regulatory functions with regard to Aβ(40) and Aβ(42) production. Previously, we have demonstrated that γ-secretase complexes are active during apoptosis regardless of caspase cleavage in the PS1CTF-loop. Here, a PS1/PS2-knockout mouse blastocyst-derived cell line was used to establish stable or transient cell lines expressing either caspCTF or full-length CTF (wtCTF). We show that caspCTF restores γ-secretase activity and forms active γ-secretase complexes together with Nicastrin, Pen-2, Aph-1 and PS1-N-terminal fragment. Further, caspCTF containing γ-secretase complexes have a sustained capacity to cleave amyloid precursor protein (APP) and Notch, generating APP and Notch intracellular domain, respectively. However, when compared to wtCTF cells, caspCTF cells exhibit increased intracellular production of Aβ(42) accompanied by increased intracellular Aβ(42) /Aβ(40) ratio without changing the Aβ secretion pattern. Similarly, induction of apoptosis in wtCTF cells generate a similar shift in intracellular Aβ pattern with increased Aβ(42) /Aβ(40) ratio. In summary, we show that caspase cleavage of PS1 generates a γ-secretase complex that increases the intracellular Aβ(42) /Aβ(40) ratio. This can have implications for AD pathogenesis and suggests caspase inhibitors as potential therapeutic agents.  相似文献   

9.
10.
The intramembranous cleavage of Alzheimer beta-amyloid precursor protein and the signaling receptor Notch is mediated by the presenilin (PS, PS1/PS2)-gamma-secretase complex, the components of which also include nicastrin, APH-1, and PEN-2. In addition to its essential role in gamma-secretase activity, we and others have reported that PS1 plays a role in intracellular trafficking of select membrane proteins including nicastrin. Here we examined the fate of PEN-2 in the absence of PS expression or gamma-secretase activity. We found that PEN-2 is retained in the endoplasmic reticulum and has a much shorter half-life in PS-deficient cells than in wild type cells, suggesting that PSs are required for maintaining the stability and proper subcellular trafficking of PEN-2. However, the function of PS in PEN-2 trafficking is distinct from its contribution to gamma-secretase activity because inhibition of gamma-secretase activity by gamma-secretase inhibitors did not affect the PEN-2 level or its egress from the endoplasmic reticulum. Instead, membrane-permeable gamma-secretase inhibitors, but not a membrane-impermeable derivative, markedly increased the cell surface levels of PS1 and PEN-2 without affecting that of nicastrin. In support of its role in PEN-2 trafficking, PS1 was also required for the gamma-secretase inhibitor-induced plasma membrane accumulation of PEN-2. We further showed that gamma-secretase inhibitors specifically accelerated the Golgi to the cell surface transport of PS1 and PEN-2. Taken together, we demonstrate an essential role for PSs in intracellular trafficking of the gamma-secretase components, and that selective gamma-secretase inhibitors differentially affect the trafficking of the gamma-secretase components, which may contribute to an inactivation of gamma-secretase.  相似文献   

11.
Bidirectional signaling triggered by interacting ephrinB receptors (EphB) and ephrinB ligands is crucial for development and function of the vascular and nervous systems. A signaling cascade triggered by this interaction involves activation of Src kinase and phosphorylation of ephrinB. The mechanism, however, by which EphB activates Src in the ephrinB-expressing cells is unknown. Here we show that EphB stimulates a metalloproteinase cleavage of ephrinB2, producing a carboxy-terminal fragment that is further processed by PS1/gamma-secretase to produce intracellular peptide ephrinB2/CTF2. This peptide binds Src and inhibits its association with inhibitory kinase Csk, allowing autophosphorylation of Src at residue tyr418. EphrinB2/CTF2-activated Src phosphorylates ephrinB2 and inhibits its processing by gamma-secretase. These data show that the PS1/gamma-secretase system controls Src activation and ephrinB phosphorylation by regulating production of Src activator ephrinB2/CTF2. Accordingly, gamma-secretase inhibitors prevented the EphB-induced sprouting of endothelial cells and the recruitment of Grb4 to ephrinB. PS1 FAD and gamma-secretase dominant-negative mutants inhibited the EphB-induced cleavage of ephrinB2 and Src autophosphorylation, raising the possibility that FAD mutants interfere with the functions of Src and ephrinB2 in the CNS.  相似文献   

12.
The enzyme gamma-secretase catalyzes the intramembrane proteolytic cleavage that generates the amyloid beta-peptide from the beta-amyloid precursor protein. The presenilin (PS) protein is one of the four integral membrane protein components of the mature gamma-secretase complex. The PS protein is itself subjected to endoproteolytic processing, generating stable N- and C-terminal fragment (NTF and CTF, respectively) heterodimers. Here we demonstrate that coexpression of PS1 NTF and CTF functionally mimics expression of the full-length PS1 protein and restores gamma-secretase activity in PS-deficient mammalian cells. The coexpressed fragments re-associate with each other inside the cell, where they also interact with nicastrin, another gamma-secretase complex component. Analysis of gamma-secretase activity following the expression of mutant forms of NTF and CTF, under conditions bypassing endoproteolysis, indicated that the putatively catalytic Asp257 and Asp385 residues have a direct effect on gamma-secretase activity. Moreover, we demonstrate that expression of the wild-type CTF rescues endoproteolytic cleavage of C-terminally truncated PS1 molecules that are otherwise uncleaved and inactive. Recovery of cleavage is critically dependent on the integrity of Asp385. Taken together, our findings indicate that ectopically expressed NTF and CTF restore functional gamma-secretase complexes and that the presence of full-length PS1 is not a requirement for proper complex assembly.  相似文献   

13.
Following ectodomain shedding, Notch-1 undergoes presenilin (PS)-dependent constitutive intramembranous endoproteolysis at site-3. This cleavage is similar to the PS-dependent gamma-secretase cleavage of the beta-amyloid precursor protein (betaAPP). However, topological differences in cleavage resulting in amyloid beta-peptide (Abeta) or the Notch-1 intracellular domain (NICD) indicated independent mechanisms of proteolytic cleavage. We now demonstrate the secretion of an N-terminal Notch-1 Abeta-like fragment (Nbeta). Analysis of Nbeta by MALDI-TOF MS revealed that Nbeta is cleaved at a novel site (site-4, S4) near the middle of the transmembrane domain. Like the corresponding cleavage of betaAPP at position 40 and 42 of the Abeta domain, S4 cleavage is PS dependent. The precision of this cleavage is affected by familial Alzheimer's disease-associated PS1 mutations similar to the pathological endoproteolysis of betaAPP. Considering these similarities between intramembranous processing of Notch and betaAPP, we conclude that these proteins are cleaved by a common mechanism utilizing the same protease, i.e. PS/gamma-secretase.  相似文献   

14.
15.
Presenilin (PS)-dependent gamma-secretase cleavage is the final proteolytic step in generating amyloid beta protein (A beta), a key peptide involved in the pathogenesis of Alzheimer's disease. PS undergoes endoproteolysis by an unidentified 'presenilinase' to generate the functional N-terminal and C-terminal fragment heterodimers (NTF/CTF) that may harbor the gamma-secretase active site. To better understand the relationship between presenilinase and gamma-secretase, we characterized the biochemical properties of presenilinase and compared them with those of gamma-secretase. Similar to gamma-secretase, presenilinase was most active at acidic pH 6.3. Aspartyl protease inhibitor pepstatin A blocked presenilinase activity with an IC50 of approximately 1 microM. Difluoroketone aspartyl protease transition state analogue MW167 was relatively selective for presenilinase (IC50 < 1 microM) over gamma-secretase (IC50-16 microM). Importantly, removing the transition state mimicking moiety simultaneously abolished both presenilinase and gamma-secretase inhibition, suggesting that presenilinase, like gamma-secretase, is an aspartyl protease. Interestingly, several of the most potent gamma-secretase inhibitors (IC50 = 0.3 or 20 nM) failed to block presenilinase activity. Although de novo generation of PS1 fragments coincided with production of A beta in vitro, blocking presenilinase activity without reducing pre-existing fragment levels permitted normal de novo generation of A beta and amyloid intracellular domain. Therefore, presenilinase has characteristics of an aspartyl protease, but this activity is distinct from gamma-secretase.  相似文献   

16.
Presenilins (PSs) are polytopic membrane proteins that have been implicated as potential therapeutic targets in Alzheimer's disease because of their role in regulating the gamma-secretase cleavage that generates the amyloid beta protein (Abeta). It is not clear how PSs regulate gamma-secretase cleavage, but there is evidence that PSs could be either essential cofactors in the gamma-secretase cleavage, gamma-secretase themselves, or regulators of intracellular trafficking that indirectly influence gamma-secretase cleavage. Using presenilin 1 (PS1) mutants that inhibit Abeta production in conjunction with transmembrane domain mutants of the amyloid protein precursor that are cleaved by pharmacologically distinct gamma-secretases, we show that PS1 regulates multiple pharmacologically distinct gamma-secretase activities as well as inducible alpha-secretase activity. It is likely that PS1 acts indirectly to regulate these activities (as in a trafficking or chaperone role), because these data indicate that for PS1 to be gamma-secretase it must either have multiple active sites or exist in a variety of catalytically active forms that are altered to an equivalent extent by the mutations we have studied.  相似文献   

17.
We previously showed that beta-amyloid precursor protein (APP) is cleaved not only in the middle of the membrane (gamma-cleavage) but also at novel cleavage sites close to the membrane/cytoplasmic boundary (epsilon-cleavage), releasing APP intracellular domains (AICDs) 49-99 and 50-99. To learn more about the relationship between gamma- and epsilon-cleavage, C-terminally truncated carboxyl-terminal fragments (CTFs) of APP, especially CTFs1-48 and 1-49 (the postulated products that are generated by epsilon-cleavage), were transiently expressed in CHO cells. Most importantly, the cells expressing CTF1-49 secreted predominantly amyloid beta-protein (Abeta) 40, while those expressing CTF1-48 secreted preferentially Abeta42. This supports our assumption that epsilon-cleavage precedes Alphabeta production and that preceding epsilon-cleavage determines the preference for the final Abeta species. The gamma-secretase inhibitors, L-685,458 and DAPT, suppressed Abeta production from CTF1-49. Regarding Abeta production from CTF1-48, L-685,458 suppressed it, but DAPT failed to do so. A dominant negative mutant of presenilin 1 suppressed the production of Abeta40 and 42 from both CTFs1-48 and 1-49. These data should shed significant light into the mechanism of Abeta production.  相似文献   

18.
Presenilin 1 (PS1) is a critical component of the gamma-secretase complex, which is involved in the cleavage of several substrates including the amyloid precursor protein (APP) and the Notch receptor. Recently, the low density receptor-related protein (LRP) has been shown to be cleaved by a gamma-secretase-like activity. We postulated that LRP may interact with PS1 and tested its role as a competitive substrate for gamma-secretase. In this report we show that LRP colocalizes and interacts with endogenous PS1 using coimmunoprecipitation and fluorescence lifetime imaging microscopy. In addition, we found that gamma-secretase active site inhibitors do not disrupt the interaction between LRP and PS1, suggesting that the substrate associates with a gamma-secretase docking site located in close proximity to PS1. This is analogous to APP-gamma-secretase interactions. Finally, we show that LRP competes with APP for gamma-secretase activity. Overexpression of a truncated LRP construct consisting of the C terminus, the transmembrane domain, and a short extracellular portion leads to a reduction in the levels of the Abeta40, Abeta42, and p3 peptides without changing the total level of APP expression. In addition, transfection with the beta-chain of LRP causes an increase in uncleaved APP C-terminal fragments and a concomitant decrease in the signaling effects of the APP intracellular domain. In conclusion, LRP is a PS1 interactor and can compete with APP for gamma-secretase enzymatic activity.  相似文献   

19.
Campbell WA  Iskandar MK  Reed ML  Xia W 《Biochemistry》2002,41(10):3372-3379
The final proteolytic step to generate the amyloid beta-protein (Abeta) of Alzheimer's disease (AD) from beta-amyloid precursor protein (APP) is achieved by presenilin (PS)-dependent gamma-secretase cleavage. AD-causing mutations in PS1 and PS2 result in a selective and significant increase in production of the more amyloidogenic Abeta42 peptide. PS1 and PS2 undergo endoproteolysis by an unknown enzyme termed presenilinase to generate the functional complex of N- and C-terminal fragments (NTF/CTF). To investigate the endoproteolytic activity that generates active PS, we used a mammalian cell-free system that allows de novo human PS NTF and CTF generation. PS NTF and CTF generation in vitro was observed in endoplasmic reticulum (ER)-enriched fractions of membrane vesicles and to a lesser extent in Golgi/trans-Golgi-network (TGN)-enriched fractions. AD-causing mutations in PS1 and PS2 did not alter de novo generation of PS fragments. Removal of peripheral membrane-associated and cytosolic proteins did not prevent de novo generation of fragments, indicating that presenilinase activity corresponds to an integral membrane protein. Among several general inhibitors of different protease classes that blocked the presenilinase activity, pepstatin A was the most potent inhibitor. Screening available transition state analogue gamma-secretase inhibitors led to the identification of two compounds that were able to prevent the de novo generation of PS fragments, with an expected inhibition of Abeta generation. Our studies provide a biochemical approach to characterize and identify this elusive presenilinase.  相似文献   

20.
Biochemical and genetic studies have revealed that the presenilins interact with several proteins and are involved in the regulated intramembrane proteolysis of numerous type 1 membrane proteins, thereby linking presenilins to a range of cellular processes. In this study, we report the characterization of a highly conserved tumor necrosis factor receptor-associated factor-6 (TRAF6) consensus-binding site within the hydrophilic loop domain of presenilin-1 (PS-1). In coimmunoprecipitation studies we indicate that presenilin-1 interacts with TRAF6 and interleukin-1 receptor-associated kinase 2. Substitution of presenilin-1 residues Pro-374 and Glu-376 by site-directed mutagenesis greatly reduces the ability of PS1 to associate with TRAF6. By studying these interactions, we also demonstrate that the interleukin-1 receptor type 1 (IL-1R1) undergoes intramembrane proteolytic processing, mediated by presenilin-dependent gamma-secretase activity. A metalloprotease-dependent proteolytic event liberates soluble IL-1R1 ectodomain and produces an approximately 32-kDa C-terminal domain. This IL-1R1 C-terminal domain is a substrate for subsequent gamma-secretase cleavage, which generates an approximately 26-kDa intracellular domain. Specific pharmacological gamma-secretase inhibitors, expression of dominant negative presenilin-1, or presenilin deficiency independently inhibit generation of the IL-1R1 intracellular domain. Attenuation of gamma-secretase activity also impairs responsiveness to IL-1beta-stimulated activation of the MAPKs and cytokine secretion. Thus, TRAF6 and interleukin receptor-associated kinase 2 are novel binding partners for PS1, and IL-1R1 is a new substrate for presenilin-dependent gamma-secretase cleavage. These findings also suggest that regulated intramembrane proteolysis may be a control mechanism for IL-1R1-mediated signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号