首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Different cytochromes P450 are involved in steroid biosynthesis. These cytochromes have heme as the prosthetic group. We previously reported that ACTH, an activator of glucocorticoid biosynthesis in adrenal, requires heme biosynthesis for a maximal response. In the present study, we investigated the effect of ACTH, and the effect of two activators of the adrenal mineralocorticoid synthesis, endothelin-1 and low sodium diet on 5-aminolevulinate-synthase (ALA-s) mRNA. ALA-s is the rate-limiting enzyme in heme biosynthesis. It was found that infusion of rats with ACTH for 1 h caused an increase of adrenal ALA-s mRNA and activity accompanied by an increase in plasma corticosterone. CYP21, a cytochrome involved in the synthesis of both corticosterone and aldosterone, was not modified at the RNA level in adrenal glands by 1 h of ACTH infusion. Consistently, infusion of endothelin-1 for 1 h increased ALA-s mRNA and aldosterone content in adrenal gland without modifying CYP21 mRNA levels. To study if ALA-s is also regulated by the main physiological stimuli that increase adrenal mineralocorticoid secretion, we fed rats with low salt diet for 2 or 15 days. Low salt diet treatment increased adrenal gland ALA-s mRNA levels. On the other hand, the rapid stimulation of ALA-s mRNA by ACTH which acts through cyclic AMP was confirmed in H295R human adrenocortical cells, the only human adrenal cell line that has a steroid secretion pattern and regulation similar to primary cultures of adrenal cells. Our findings suggest that the acute activation of adrenal steroidogenic cytochromes by trophic hormones involves an increase in heme biosynthesis which will favor the production of active cytochromes.  相似文献   

3.
The aim of the present study was to verify if human FSH influences the adrenal gland of the newt, Triturus carnifex. Newts were given intraperitoneal injections of human FSH throughout the periods of February-March, and December-January; periods in which newt FSH levels are normally very low. The effects of human FSH on adrenal gland activity were observed in the morphological features of the steroidogenic and chromaffin adrenal cells, and in the serum levels of aldosterone, corticosterone, norepinephrine and epinephrine. The effect of human FSH on the steroidogenic cells was significant during the February-March period; the quantity of cytoplasmic lipids decreased, and the corticosteroid serum levels increased. During the December-January period, the human FSH effects were negligible. The effect of human FSH on the chromaffin cells was significant during both the February-March, and the December-January periods. During February-March, the human FSH increased the numeric ratio of norepinephrine granules to epinephrine granules, and increased the epinephrine serum levels. During December-January, the human FSH decreased the numeric ratio of norepinephrine granules to epinephrine granules, and increased the norepinephrine serum levels. The results of the present study show that human follicle-stimulating hormone influences the activity of the newt adrenal gland, thus indicating a relationship between the annual sexual cycle and the annual adrenal cycle of the newt.  相似文献   

4.
It is well known that ascorbic acid (Asc) is highly concentrated in the adrenal gland, but its function in the gland is not thoroughly elucidated. We therefore examined the possibility that Asc participates in steroidogenic monooxygenase systems of the adrenal cortex with the aid of the regenerating system including outer mitochondrial membrane cytochrome b (OMb). When Asc availability was limited in rat mutants unable to synthesize Asc, the increase in plasma aldosterone concentration under Na-deficiency was suppressed without effect on plasma corticosterone concentration. Aldosterone formation in the isolated mitochondrial fraction of the zona glomerulosa (zG) of the adrenal cortex was stimulated by the addition of Asc and NADH, while corticosterone formation was not. Consistently zG showed a high level of Asc regeneration activity and was rich in OMb among adrenocortical zones. Taken together, the enhanced aldosterone formation that is catalyzed by one of the steroidogenic monooxygenases, P450aldo, may be supported by Asc with its regenerating system.  相似文献   

5.
Homer 1 gene products are involved in synaptic transmission and plasticity, and hence, distinct behavioral abnormalities, including anxiety- and depression-like behaviors, have been observed in Homer 1 knockout (KO) mice. Here we report that Homer 1 KO mice additionally exhibit a pronounced endocrine phenotype, displaying a profoundly increased adrenal gland weight and increased adrenal/body weight ratio. Histological examinations of Homer 1 deficient adrenal glands revealed an increased size of the adrenal cortex, especially the sizes of the zona fasciculata and zona glomerulosa. Moreover, the plasma corticosterone and aldosterone were higher in Homer 1 KO than wild-type (WT) mice while the plasma ACTH levels were not different between the genotypes. The in vivo ACTH test revealed that corticosterone and aldosterone plasma levels were higher in saline injected Homer 1 KO mice than in WT mice (saline injected mice served as controls for the respective groups of ACTH-injected animals), but the magnitude of steroid responses to ACTH was similar in both genotypes. In contrast, an in vitro experiment performed on isolated cells of adrenal cortex clearly showed increased production of both steroids in response to ACTH in Homer 1 KO cells, which is in line with an ~8-fold increase in the expression of ACTH receptor mRNA in the adrenal cortex of these mutants. These results, together with the detection of Homer 1 mRNA and protein in the adrenal cortex of WT mice, indicate that Homer 1 directly affects the steroidogenic function of the adrenal glands.  相似文献   

6.
We previously reported that in utero exposure of the male fetus to the plasticizer di-(2-ethylhexyl) phthalate (DEHP) resulted in decreased circulating levels of testosterone in the adult without affecting Leydig cell numbers, luteinizing hormone levels, or steroidogenic enzyme expression. Fetal exposure to DEHP resulted in reduced mineralocorticoid receptor (MR; NR3C2) expression in adult Leydig cells. In the present studies, treatment of pregnant Sprague-Dawley dams from Gestational Day 14 until birth with 20, 50, 100, 300, or 750 mg kg(-1) day(-1) of DEHP resulted in significant sex-specific decreases in serum aldosterone but not corticosterone levels at Postnatal Day 60 (PND60) but not at PND21. There was no effect on circulating levels of potassium, angiotensin II or adrenocorticotropin hormone (ACTH). However, there was reduced expression of AT receptor Agtr1a, Agtr1b, and Agtr2 mRNAs. The mRNA levels of proteins and enzymes implicated in aldosterone biosynthesis were not affected by in utero DEHP treatment except for Cyp11b2, which was decreased at high (≥ 500 mg kg(-1) day(-1)) doses. The data presented herein, together with our previous observation that aldosterone stimulates testosterone production via an MR-mediated mechanism, suggest that in utero exposure to DEHP causes reduction in both adrenal aldosterone synthesis and MR expression in Leydig cells, leading to reduced testosterone production in the adult. Moreover, these results suggest the existence of a DEHP-sensitive adrenal-testis axis regulating androgen formation.  相似文献   

7.
8.
Estrus female behind holed transparent partition produced sexual motivation and sexual arousal in males. It was manifested in behavioral changes (an increase in time spent near the partition) and the testosterone level augmentation in blood. Female mice were exposed to stress (1 h/day restraint) in the last week of gestation. Prenatal stress was shown to decrease the blood corticosterone level as well as to diminish sexual motivation and sexual arousal in adult male mice. Estrus female exposure produced a lesser behavioral response and a lesser testosterone level augmentation. No changes in weight of testicles, seminal vesicles or adrenal glands were found, but preputial gland weight increased. In prenatally stressed males, a female preference decrease and a male preference increase were revealed in the partner preference test. These data suggest that prenatal stress decreases sexual motivation in males and leads to clear predisposition to homosexuality, although it does not produce complete inversion of sexual orientation.  相似文献   

9.
Path analysis was used to examine the effects of grouping/individual housing, duration of differential housing (13 days or 10 weeks), and the age at which differential housing was initiated (at weaning or 4 months) on the physiology of male TT strain mice. Variables studied included body and relative ventral prostate, left testis and left adrenal gland weights, and plasma corticosterone level and (Na+) /(K+) ratio. Compared with grouped counterparts, individual housing produced lower adrenal weights and plasma corticosterone levels, but higher prostate weights. This housing condition also suppressed the plasma (Na+)/(K+) ratio, probably through an action on aldosterone secretion. The adrenal response to differential housing thus appears to be at a number of levels, involving at least two separate components. No evidence was found to support the notion that the gonadal response to grouping is mediated via the adrenal gland, although prolonged grouping does generate reduced testicular weights.  相似文献   

10.
The potential role of endogenous sex hormones in regulating hypothalamo-pituitary-adrenal (HPA) axis function was investigated after a single injection of endotoxin in adult (8 week old) BALB/c mice of both sexes. The effect of LPS on plasma ACTH, corticosterone (B), testosterone and oestradiol (E) levels and on anterior pituitary (AP) ACTH and adrenal B contents at different times after treatment was studied. The results indicate that: (a) basal B but not ACTH plasma levels were significantly higher in female than in male mice; (b) LPS significantly increased both ACTH and B plasma levels over the baseline 2 h after injection, both hormone levels being higher in female than in male mice; (c) although plasma ACTH concentrations recovered the basal value at 72 h after LPS in animals of both sexes, plasma B levels returned to the baseline only at 120 h after treatment; (d) E plasma levels significantly increased 2 h after LPS and returned to the baseline at 72 h post-treatment, in both sexes; (e) at 2 h after LPS, testosterone plasma levels significantly decreased in male mice and increased in female mice, recovering the baseline level at 120 and 72 h after LPS, respectively; (f) AP ACTH content was similar in both sexes in basal condition and it was significantly diminished 72 h post-treatment without sex difference; whereas AP ACTH returned to basal content 120 h after LPS in males, it remained significantly decreased in females; (g) basal adrenal B content was higher in female than in male mice, and it significantly increased in both sexes 2 h post-LPS, maintaining this sex difference. Whereas adrenal B returned to basal content 72 h after treatment in male mice, it remained significantly enhanced up to 120 h post-LPS in female animals. The data demonstrate the existence of a clear sexual dimorphism in basal condition and during the acute phase response as well as in the recovery of the HPA axis function shortly after infection.  相似文献   

11.
The present work was undertaken in order to investigate the influence of endocrine pancreas on the adrenal gland of Triturus carnifex. Our experiments aimed at studying the effects of intraperitoneal injections of glucagon on ultrastructural morphological and morphometrical features of steroidogenic and chromaffin tissues, as well as serum levels of aldosterone, corticosterone, norepinephrine (NE) and epinephrine (E). With regard to steroidogenic tissue, in January and November, glucagon decreased lipid droplet content in steroidogenic cells, that showed clear signs of increased activity. Moreover, increased corticosteroid serum levels were found. With regard to chromaffin tissue, in January glucagon played a stimulatory role on PNMT enzyme, eliciting an increase in the presence of E granules, and a decrease in the presence of NE granules, in the chromaffin cells. Moreover, increased E serum levels and decreased NE serum levels were found. In November, glucagon gave rise to a decrease in the presence of NE and E granules in the cells; E serum levels were strongly increased, whereas NE serum levels did not undergo any significant change. These findings suggest an involvement of the endocrine pancreas of the newt in the modulation of adrenal gland activity.  相似文献   

12.
Previous studies have indicated that androgen regulation of certain gene products in murine kidney is genetically controlled. In the present work, the expression of renal ornithine decarboxylase (ODC) gene(s) was used as a biological marker to study androgen responsiveness of eight inbred strains of mice (A/J, C57BR/cdJ, 129/J, C57L/J, BALB/cJ, SM/J, RF/J, and C57BL/6J). Kidneys of untreated females from these strains did not have significantly different basal ODC activities or ODC mRNA concentrations. However, renal enzyme concentrations in intact male mice exhibited marked strain-dependent variation; three strains (RF/J, SM/J, and C57BR/cdJ) had 5- to 20-fold higher activities than the other five strains. Renal ODC mRNA content showed similar genetic variability in the male mice; animals with highest enzyme activity had higher mRNA levels than those with low activity. These results could not be explained by differences in either serum testosterone levels or renal nuclear androgen receptor content, suggesting that the animals were differentially sensitive to endogenous androgens. To evaluate further the androgen regulation of ODC gene expression, female mice were treated with testosterone-releasing implants for 5-7 days. The two strains (A/J and C57BL/6J) that had low enzyme activity in response to endogenous testosterone in male mice also showed blunted responses to exogenous androgen administration, as measured by the induction of ODC and its mRNA. The relative distribution of the two mRNA species coding for ODC (2.2 and 2.7 kb in size) exhibited strain-dependent variation that did not, however, correlate with the androgen responsiveness. Studies of the mRNA levels in reciprocal F1 hybrids of C57BR/cdJ and C57BL/6J mice suggested that androgen sensitivity of ODC gene expression, at least in these crosses, was inherited in an autosomal dominant manner.  相似文献   

13.
Ontogenic adrenocortical function of the domestic was investigated using adrenocortical cells isolated from embryonic chicks (18, 19, 20, and 21 days old) and male and female posthatch birds (1 day, 1 week, and 3 weeks old). Production of the predominant corticosteroids secreted by the chicken adrenal gland, corticosterone, cortisol, and aldosterone, was measured by radioimmunoassay after 2-hr incubation of cells with or without steroidogenic agents. Approaching hatch, basal and maximal ACTH-(1-24) (ACTH)-induced corticosteroid production increased steadily and peaked around 1 day posthatch (5-18 times and 3-9 times, respectively, the production values at 18 days embryonic life). Thereafter, corticosteroid production values decreased steadily to 3 weeks posthatch. Corticosterone predominated over the ages studied: Maximal ACTH-induced corticosterone production averaged 52 and 115 times the production values of aldosterone and cortisol, respectively. In addition, maximal ACTH-induced aldosterone production was roughly 2.2 times greater than cortisol production over the ages studied except for a short-lived, disproportionately greater aldosterone production at 1 day posthatch. In addition to perihatch and age-related differences in cellular corticosteroid production, there were also differences in cellular sensitivity to steroidogenic agents as indicated by the differences in half-maximal steroidogenic concentration values (ED50 values) of the steroidogenic agents. Sensitivity to ACTH increased 2.7 times from Day 18 of embryonic life to 1 day posthatch and then decreased steadily to 3 weeks posthatch. In addition, sensitivity to 8-bromo-cAMP (8-Br-cAMP) increased abruptly at 1 day posthatch (nearly 3 times) but then remained constant thereafter. However, a consistent change in cellular sensitivity to 25-hydroxycholesterol was not observed until 3 weeks posthatch (an increase in sensitivity of 3 times that at Day 18 of embryonic life). These data of cellular sensitivity suggest that there were distinct development and maturational alterations in the cellular loci at which ACTH, 8-Br-cAMP, and 25-hydroxycholesterol acted. Thus, during the transition from embryonic to postembryonic life of the domestic fowl, there are alterations in adrenocortical cell steroidogenic capacity and in the function of some cellular loci comprising the corticosteroidogenic pathway.  相似文献   

14.
K Sawada  T Noumura 《Acta anatomica》1991,140(2):97-103
The aims of this study were to characterize sexual dimorphism in the submandibular glands of young adult mice and to determine how sex differences arise during postnatal development. In the mouse submandibular glands, prominent sexual dimorphism was observed at 30 days of age, when the male gland was superior in both the relative occupied area (ROA) and the mitotic rate of the granular convoluted tubules (GCT) to those of the female. By neonatal castration, this sexual dimorphism was abolished, and the intraglandular structures of castrated males were similar to those of normal females. In castrated mice of both sexes, daily treatment with testosterone and 5 alpha-dihydrotestosterone for 10 days from 20 days induced only the ROA of the GCT to increase to the normal male levels but not those of the other three regions of the glands, the acini, intercalated ducts and excretory striated ducts. Testosterone responsiveness of the glands, considering both the glandular weight gain and the mitotic rate of the GCT, was significantly higher in castrated males than in castrated females. On the other hand, 17 beta-estradiol had no effect on the glands of castrated mice. Therefore, the present study suggests that the testicular hormones are responsible for the masculine development of GCT of the glands, but not the ovarian hormones, and that there is a sex difference in the responsiveness of the glands to testosterone, which is more effective in males than in females.  相似文献   

15.
Administration of pharmacological doses of glucocorticoid to male rats in vivo suppresses adrenal steroidogenesis and inhibits testicular steroidogenesis by inhibiting the anterior pituitary secretion of LH. In contrast, administration of ACTH to these pharmacologically-suppressed rats stimulates the adrenal secretion of progesterone and testicular steroidogenesis. The mechanism by which ACTH increases testicular steroidogenesis is dependent on the presence of the adrenal gland and is reproduced by the administration of progesterone. The conclusion from these data is that the adrenal gland has an important role in generating external signals that modulate the hypothalamic-pituitary-gonadal axis in male rats. The adrenal secretion of glucocorticoid acts as a negative signal to testicular steroidogenesis whereas progesterone acts as a positive signal. The adrenal secretion of progesterone and its conversion to testosterone by steroidogenic enzymes in the cytoplasm of the Leydig cell may provide an alternative pathway for testosterone biosynthesis and may account for the increased plasma testosterone levels during the acute phase of stress and mating.  相似文献   

16.
In these studies it was found that i.p. injection of thymosin fraction 5 (TF5) caused a dose-dependent increase in serum corticosterone in male Swiss Webster mice and in male Wistar rats. The maximum responses were seen at 1 and 2 hr, respectively. There was no effect on serum corticosterone in mice when Thymosin alpha 1 (a 28 amino acid peptide isolated from TF5) was injected i.p. at doses up to 100 micrograms. The steroidogenic effects of TF5 were seen only when the basal levels of serum corticosterone were low (less than 80 ng/ml). In studies in which the baseline levels in the animal colony were elevated (greater than 80 ng/ml), there were no steroidogenic effects, or they were minimal. These results suggest that some component of TF5 may influence pituitary adrenal function.  相似文献   

17.
Previous studies suggest the hypothesis that apoE produced by adrenocortical cells modulates cellular cholesterol metabolism to enhance the storage of esterified cholesterol (EC) at the expense of cholesterol delivery to the steroidogenic pathway. In the present study, parameters of adrenal cholesterol metabolism and corticosteroid production were examined in wild type and apoE-deficient (apoe(-/-)) mice. Adrenal gland EC content and the EC/free cholesterol (FC) ratio in mice stressed by adrenocorticotropin (ACTH) treatment or saline injection were reduced in apoe(-/-) compared to apoe(+/+) mice. Relative to apoe(+/+) mice, apoE deficiency also resulted in increased levels of plasma corticosterone in the basal state, in response to acute or long-term ACTH treatment, and after a swim-induced neuroendocrine-directed stress test. Measurements of adrenal gland scavenger receptor class B, type I (SR-BI), LDL receptor, and LDL receptor related protein (LRP) levels and the activities of ACAT or HMG-CoA reductase showed no difference between genotypes. Apoe(-/-) and apoe(+/+) mice showed similar quantitative increases in LDL receptors, SR-BI, adrenal weight gain, and ACAT activities in response to ACTH, and both genotypes had similar basal plasma ACTH concentrations. These results suggest that the effects of apoE deficiency reflect events at the level of the adrenal gland and are specific to changes in cholesterol accumulation and corticosterone production. Further, these findings support the hypothesis that apoE acts to enhance adrenocortical EC accumulation and diminish corticosterone production.  相似文献   

18.
The aim of our study was to verify whether environmental concentrations of nonylphenol influenced the adrenal gland of Triturus carnifex. Newts were exposed to 19 μg/L nominal concentration of nonylphenol throughout the periods of December-January and March-April, corresponding to different stages of the chromaffin cell functional cycle. The morphological features of the steroidogenic and chromaffin tissues, and the serum levels of ACTH, aldosterone, corticosterone, norepinephrine and epinephrine were evaluated. Nonylphenol did not influence ACTH serum levels. During the two periods examined, the steroidogenic tissue had the same reaction: the quantity of cytoplasmic lipids, and the corticosteroid serum levels, decreased, suggesting the inhibition of synthesis and release of corticosteroids. During the two periods examined, the chromaffin tissue reacted differently to nonylphenol. During December-January, the numeric ratio of norepinephrine granules to epinephrine granules, and the epinephrine serum levels, increased, suggesting the stimulation of epinephrine release. During March-April, the numeric ratio of norepinephrine granules to epinephrine granules did not change, and the norepinephrine serum levels decreased, suggesting the inhibition of norepinephrine release. Our results show that nonylphenol influences the activity of the newt adrenal gland; considering the physiological role of this gland, our results suggest that nonylphenol may contribute to amphibian decline.  相似文献   

19.
Testosterone mediates the expression of many fitness-related traits in male vertebrates and is thought to account for numerous sex differences in trait expression. Testosterone is also secreted by females; however, far less is known regarding its effects on female physiology and behavior. Using a bird species in which the effects of testosterone on males are well characterized, the dark-eyed junco (Junco hyemalis), we tested whether an increase in exogenous testosterone in females would alter the phenotypic expression of a suite of behavioral and physiological traits. We found that increased testosterone levels in female dark-eyed juncos led to decreased cell-mediated immune function and increased intrasexual aggression, hypothalamo-pituitary-adrenal (HPA) axis responsiveness, baseline corticosterone and corticosterone-binding globulin (CBG) levels. Furthermore, immunosuppression following testosterone implantation was negatively correlated with total and free testosterone but did not appear to be related to either total or free corticosterone. These results demonstrate that the phenotypic impact of elevated testosterone is not confined to males in dark-eyed juncos, and that the impact in adults can be similar in males and females. We discuss these results in the context of potential endocrine-immune interactions and the evolution of sexual dimorphism.  相似文献   

20.
采用高效液相色谱和原位杂交技术研究了皮质酮对大鼠再生肝细胞鸟氨酸脱羧酶 (ODC)活性及ODCmRNA表达的影响。结果显示 ,大鼠完整肝脏中ODC水平较低 ,2 / 3肝切除 (PH)后 3h ,不同处理组ODC活性开始升高 ,6h达到最高值 ,其中 ,去肾上腺 NaCl组和糖皮质激素受体拮抗剂RU4 86处理组的酶活性高于对照组 (去肾上腺假手术组 ) ,而去肾上腺 皮质酮处理组的酶活性低于对照组 ,36h恢复到肝切除前水平 ;完整肝脏的ODCmRNA水平极低 ,PH后表达量迅速增加 ,5h达到最大值 ,不同处理组mRNA水平的高低顺序与酶活性一致 ,12h降至肝切除前水平 ;在PH前 12h给大鼠注射RU4 86 (10mg/kg体重 ) ,取得了与去肾上腺 NaCl处理鼠相似的结果。以上结果表明 ,在PH诱导的再生肝细胞中 ,ODCmRNA表达量的增加和 /或减少是造成ODC活性改变的原因之一 ,皮质酮对ODC活性及其mRNA的表达具有抑制作用 ,主要表现在肝再生的早期 ,该作用可能是通过受体实现的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号