首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Electromyographic models to assess muscle fatigue   总被引:1,自引:0,他引:1  
Muscle fatigue is a common experience in daily life. Many authors have defined it as the incapacity to maintain the required or expected force, and therefore, force, power and torque recordings have been used as direct measurements of muscle fatigue. In addition, the measurement of these variables combined with the measurement of surface electromyography (sEMG) recordings (which can be measured during all types of movements) during exercise may be useful to assess and understand muscle fatigue. Therefore, there is a need to develop muscle fatigue models that relate changes in sEMG variables with muscle fatigue. However, the main issue when using conventional sEMG variables to quantify fatigue is their poor association with direct measures of fatigue. Therefore, using different techniques, several authors have combined sets of sEMG parameters to assess muscle fatigue. The aim of this paper is to serve as a state-of-the-art summary of different sEMG models used to assess muscle fatigue. This paper provides an overview of linear and non-linear sEMG models for estimating muscle fatigue, their ability to assess power loss and their limitations due to neuromuscular changes after a training period.  相似文献   

3.
This study analysed the changes in the electromyographic activity (EMG) of the vastus lateralis muscle (VL) during an incremental maximal oxygen uptake test on a treadmill. A breakpoint in the integrated electromyogram (iEMG)-velocity relationship has already been interpreted in two ways: either as a sign of neuromuscular fatigue or as an expression of the iEMG-velocity relationship characteristics. The aim of this study was to test a method of distinguishing fatigue effects from those due to increases in exercise power. Eight well-trained male runners took part in the study. They completed a running protocol consisting of 4-min stages of increments in power output. Between each stage (about 15 s after the start of a minute at rest), the subjects had to maintain a standard effort: a 10-s isometric leg extension contraction [50% isometric maximal voluntary contraction (IMVC)]. The EMG was recorded during the running and isometric protocols, a change in the EMG signal during the isometric exercise being considered as the sign of fatigue. The iEMG-velocity relationships were strongly fitted by a second-order polynomial function for data taken at both the start (r = 0.98) and the end (r = 0.98) of the stage. Based on the stability of the 50%IMVC-iEMG relationship noted between stages, the start-iEMG has been identified as expressing the iEMG-velocity relationship without fatigue. The stage after which end-iEMG increased significantly more steeply than start-iEMG was considered as the iEMG threshold and was simultaneous with the ventilatory equivalent for carbon dioxide threshold. The parallel changes of minute ventilation and iEMG would suggest the existence of common regulation stimuli linked either to effort intensity and/or to metabolic conditions. The fall in intracellular [K+] has been discussed as being one of the main factors in regulating ventilation. Accepted: 16 December 1997  相似文献   

4.
5.
6.
7.
8.
To investigate whether the power spectrum of the electromyogram of a fatiguing muscle can be used to infer the degree to which the muscle is fatigued, we recorded isometric tension and two monopolar electromyograms from eight isolated rat diaphragm preparations suspended in an organ bath containing a balanced salt solution. Each preparation was excited with a fixed phrenic nerve impulse pattern made up of a 70-Hz train of impulses of supramaximal voltage delivered for 170 ms with a 500-ms recovery period. Tension fell rapidly over the first 60 s of the fatigue run and more slowly for the remaining 60 s analysed. The duration of extracellular action potentials increased and their amplitude decreased as the tension developed by the diaphragm decreased; conduction velocity along muscle fibres also decreased. The centroid frequency (fcen) of the power spectrum of the first action potential elicited by each train of stimuli decreased rapidly until tension fell to approximately 70% of the initial value; thereafter little change in fcen occurred, although tension continued to fall to 33% of its initial value. Our results demonstrated that under controlled conditions, fcen provided a sensitive index of fatigue in its early stages, but provided no information once fatigue was pronounced.  相似文献   

9.
10.
The purpose of this investigation was to determine the effect of creatine (Cr) loading on the onset of neuromuscular fatigue by monitoring electromyographic fatigue curves from the vastus lateralis muscle using the physical working capacity at the fatigue threshold (PWC(FT)) test. Using a double-blind random design, 15 women athletes [mean age 19.0 +/- 2.0 (SD) yr] from the university crew team received a placebo (n = 8; 20 g glucose) or Cr (n = 7; 5 g Cr monohydrate + 20 g glucose) four times per day for 5 consecutive days. Analysis of covariance was used to analyze the data (covaried for presupplementation PWC(FT) values). The adjusted mean postsupplementation PWC(FT) value for the Cr group (mean = 186 W) was significantly (P < 0.05) higher than that of the placebo group (mean = 155 W). These findings suggest that Cr loading may delay the onset of neuromuscular fatigue.  相似文献   

11.
The purpose of the study was to investigate the effects of two fatigue protocols on landing performance. A repeated measures design was used to examine the effects of fatigue and fatigue protocol on neuromuscular and biomechanical performance variables. Ten volunteers performed non-fatigued and fatigued landings on two days using different fatigue protocols. Repeated maximum isometric squats were used to induce fatigue on day one. Sub-maximum cycling was used to induce fatigue on day two. Isometric squat maximum voluntary contraction (MVC) was measured before and after fatigued landings on each day. During the landings, ground reaction force (GRF), knee kinematics, and electromyographic (EMG) data were recorded. Isometric MVC, GRF peaks, loading rates, impulse, knee flexion at contact, range of motion, max angular velocity, and EMG root mean square (RMS) values were compared pre- and post-fatiguing exercise and between fatigue protocols using repeated ANOVA. Fatigue decreased MVC strength (p ? 0.05), GRF second peak, and initial impulse (p ? 0.01), but increased quadriceps medium latency stretch reflex EMG activity (p ? 0.012). Knee flexion at contact was 5.2° greater (p ? 0.05) during fatigued landings following the squat exercise compared to cycling. Several variables exhibited non-significant but large effect sizes when comparing the effects of fatigue and fatigue protocol. In conclusion, fatigue alters landing performance and different fatigue protocols result in different performance changes.  相似文献   

12.
13.
《Current biology : CB》2021,31(17):3810-3819.e4
  1. Download : Download high-res image (123KB)
  2. Download : Download full-size image
  相似文献   

14.
As a result of selection of rats possessing a high threshold of neuro-muscular exitability in comparison with rats possessing a low threshold of neuro-muscular exitability, certain changes take place in the structures that are connected with the learning process: the visual cortex is wider, volumes of the pyramidal cells in the fields CA1 and CA3 of the hippocampus are increased, density of the glial elements in the fornix is essentially increased and that of neurons in the septal nucleus is decreased.  相似文献   

15.
The study examined the relationship between psychometric status, neuromuscular, and biochemical markers of fatigue in response to an intensified training (IT) period in soccer. Fifteen professional soccer players volunteered to participate in the study (mean ± SD: age: 25 ± 1 years; body height: 179 ± 7 cm, body mass: 73.7 ± 16.2 kg, experience: 13.2 ± 3 years). Training load, monotony, strain, Hooper index and total quality recovery (TQR) were determined for each training session during a 2-week of IT. Counter-movement jump (CMJ) and biochemical responses [testosterone, cortisol, testosterone-to-cortisol ratio (T/C ratio), creatine kinase, and C-reactive protein] were collected before and after IT. Results showed that IT induced significant increases in cortisol, creatine kinase and C-reactive protein and significant decreases in T/C ratio and CMJ performance from before to after IT (p < 0.01, p < 0.001, p < 0.001, p < 0.01, p < 0.05, respectively). However, testosterone did not differ from before to after IT (p > 0.05). Training loads were positively correlated with Hooper index (p < 0.05) and negatively correlated with total quality recovery (p < 0.05). Hooper index was positively correlated with cortisol (p < 0.05), T/C ratio (p < 0.01), and creatine kinase (p < 0.01), and negatively correlated with CMJ (p < 0.05). Furthermore, TQR was negatively correlated with T/C ratio (p < 0.01), creatine kinase (p < 0.001), and C-reactive protein (p < 0.05), and positively correlated with CMJ (p < 0.01). Neuromuscular fatigue, muscle damage, and change in the anabolic/catabolic state induced by the IT were related to well-being and perceived recovery state among professional soccer players.  相似文献   

16.
17.
18.
This study compared the activation pattern and the fatigue rate among the superficial muscles of the quadriceps femoris (QF) during severe cycling exercise. Peak oxygen consumption (VO(2)peak) and maximal accumulated oxygen Deficit (MAOD) were established by 10 well-trained male cyclists (27.5 ± 4.1 years, 71.0 ± 10.3 kg, 173.4 ± 6.6 cm, mean VO(2)peak 56.7 ± 4.4 ml·kg·min(-1), mean MAOD 5.7 ± 1.1 L). Muscle activity (electromyographic [EMG] signals) was obtained during the supramaximal constant workload test (MAOD) and expressed by root mean square (RMS) and median frequency (MF slope). The RMS of the QF, vastus lateralis (VL) and vastus medialis (VM) muscles were significantly higher than at the beginning after 75% of exercise duration, whereas for the rectus femoris (RF), this was observed after 50% of exercise duration (p ≤ 0.05). The slope of the MF was significantly higher in the RF, followed by the VL and VM (-3.13 ± 0.52 vs. -2.61 ± 0.62 vs. -1.81 ±0.56, respectively; p < 0.05). We conclude that RF may play an important role in limiting performance during severe cycling exercise.  相似文献   

19.
Ten male subjects were tested to determine the effects of muscle fatigue upon the activation pattern of the two main ankle extensor muscles, the 'slow-twitch' soleus (SOL) and the relatively 'fast-twitch' medial gastrocnemius (MG), during a fatiguing 60-s trial of hopping to maximal height. The myoelectric signals from SOL and MG were recorded together with the vertical ground reaction force signal and analysed by means of a computer-aided electromyograph (EMG) contour analysis, i.e. two-dimensional frequency distributions were obtained relating the activation patterns of the two synergists. The EMGs were also full-wave rectified and integrated (IEMG) according to three phases of the hopping movement (PRE, pre-activation phase; ECC, eccentric phase; CON, concentric phase). Results indicated that there were significant decreases (P less than 0.01) in the peak ground reaction force, the height of hopping and the mechanical power per unit body weight at the end of the fatiguing contractions. These decreases in mechanical parameters were accompanied by significant (P less than 0.01) decreases in all three phases of MG IEMG while SOL IEMG showed no such significant declines, except in the CON phase. Thus, the decreased mechanical parameters could in large part be accounted for by the substantial and selective decline of the excitation level of the relatively fast-twitch MG muscle. Our data suggest that the centrally mediated pre-activation of the fatiguable MG muscle as well as the MG activation during the eccentric phase, which is largely controlled by supraspinal inputs and stretch-reflex modulation, are most affected by fatigue changes during repeated maximal stretch/shortening cycles of the ankle extensors.  相似文献   

20.
Electrical stimulation of skeletal muscle flaps is used clinically in applications that require contraction of muscle and force generation at the recipient site, for example, to assist a failing myocardium (cardiomyoplasty) or to reestablish urinary or fecal continence as a neo-sphincter (dynamic graciloplasty). A major problem in these applications (muscle fatigue) results from the nonphysiologic manner in which most of the fibers within the muscle are recruited in a single burst-like contraction. To circumvent this problem, current protocols call for the muscle to be put through a rigorous training regimen to transform it from a fatigue-prone to a fatigue-resistant state. This process takes several weeks during which, aside from becoming fatigue-resistant, the muscle loses power and contraction speed. This study tested the feasibility of electrically stimulating a muscle flap in a more physiologic way; namely, by stimulating different anatomical parts of the muscle sequentially rather than the entire muscle all at once. Sequential segmental neuromuscular stimulation (SSNS) allows parts of the muscle to rest while other parts are contracting. In a paired designed study in dogs (n = 7), the effects of SSNS on muscle fatigability and muscle blood perfusion in gracilis muscles were compared with conventional stimulation: SSNS on one side and whole muscle stimulation on the other. In SSNS, electrodes were implanted in the muscles in such a way that four separate segments of each muscle could be stimulated separately. Then, each segment was stimulated so that part of the muscle was always contracted while part was always resting. This type of stimulation permitted sequential yet continuous force generation. Muscles in both groups maintained an equal amount of continuous force. In SSNS muscles, separate segments were stimulated so that the duty cycle for any one segment was 25, 50, 75, or 100 percent, thus varying the amount of work and rest that any segment experienced at any one time. With duty cycles of 25, 50, and 75 percent, SSNS produced significantly (p < 0.01) enhanced resistance to fatigue. In addition, muscle perfusion was significantly (p < 0.01) increased in these sequentially stimulated muscles compared with the controls receiving whole muscle stimulation. It was concluded that SSNS reduces muscle fatigue and enhances muscle blood flow during stimulation. These findings suggest that using SSNS in clinical myoplasty procedures could obviate the need for prolonged training protocols and minimize problems associated with muscle training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号