首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
植物病毒表达载体研究进展   总被引:4,自引:0,他引:4  
利用DNA或RNA植物病毒作载体表达外源蛋白是几年发展较快的一种新的遗传转化方式,它具有以下几个优点,表达量大,表达速度快,地进行基因操作和接种以及适用对象广泛。已发展的四种载体构建策略包括:基因取代,基因插入,融合抗原和基因互补。植物病毒表达载体可以用于基因的重组、病毒的移动和基因功能的检测等基础性研究,也可用于商业上表达多种药用蛋白或疫苗,植物病毒表达载体的稳定性主要取决于存在同源序列而引起的  相似文献   

2.
利用病毒载体在烟草中瞬时表达融合HBsAg基因   总被引:1,自引:0,他引:1  
利用马铃薯PVX病毒载体构建了外源人工融合乙肝表面抗原HBsAg基因的表达载体,在烟草中利用农杆菌介导进行瞬时表达,以快速鉴定外源基因瞬时表达的状况以及重组蛋白的免疫活性。利用PCR技术从含有人工融合HBsAg基因的表达载体中分别扩增出LP PreS1 PreS2 S、PreS1 PreS2 S、PreS2 S序列,将其分别与PVX病毒载体pgR106连接,构建成PVX-LP、PVX-S1和PVX-S2等3个转化载体,并将此载体导入农杆菌菌株GV3101中用于侵染烟草植株叶片。感染植株经RT-PCR、RNA Dot blotting和HBsAg蛋白的ELISA检测显示,3个人工融合的HBsAg基因均可在植物体内得到转录,翻译成具有活性的蛋白。结果表明,外源融合HB-sAg基因经过植物病毒载体瞬时表达系统可以在植物系统中正常转录和翻译。  相似文献   

3.
李琦涵  赵红玲  王丽春  孙明  姜莉  董承红  王炯 《中国病毒学》1999,14(2):geMap1-500mmol
为探索可表达较大片段外源基因的脊灰病毒重组载体,以HBV-S基因置换脊灰病毒的P1基因,同时以另一途径提供脊灰病毒P1结构蛋白,经转染入Hela细胞中形成缺陷型重组病毒颗粒,此病毒可以感染新的细胞,并表达其重组的外源基因,但不产生子代病毒.实验结果表明,这种瞬时表达系统的构建,为脊灰病毒缺陷型重组载体用于基因转导技术打下基础.  相似文献   

4.
目的:构建Pri-miRNA-21/23A基因的重组病毒载体,并在L-02肝细胞中获得表达。方法:设计并合成Pri-miRNA-21/23a的基因产物,插入含绿色荧光蛋白Zsgreen基因的真核表达载体pCI Mamma Lian中,以重组质粒为模板,设计扩增含Zsgreen基因的Pri-miRNA序列产物,并将其与pCDH-CMV-MCS-EF1-Puro病毒载体连接,将Pri-miRNA重组病毒载体转染293T细胞后进行病毒包装,病毒上清转染L-02肝细胞后用荧光显微镜及实时荧光定量PCR确认转染效果。结果:荧光定量PCR结果显示重组病毒上清转染L-02肝细胞感染效果良好,经荧光显微镜观察,证实重组病毒载体能在细胞中表达蛋白。结论:构建了Pri-miRNA21/23a重组病毒表达载体并在L-02肝细胞中表达,奠定了miRNA进一步功能研究的基础。  相似文献   

5.
杆状病毒(Baculovirus)是一种以昆虫为唯一宿主的病毒, 可用做生物杀虫剂或作为表达载体在昆虫细胞中大量表达外源蛋白, 制备疫苗。研究发现, 在哺乳动物细胞中携带哺乳动物启动子的重组杆状病毒能启动下游外源基因的表达但病毒不能在哺乳动物细胞中增值, 对细胞毒性小, 转导成功的细胞可以稳定传代并有效表达外源基因, 哺乳动物细胞比昆虫细胞对蛋白质具有更好的翻译后修饰, 表达出的蛋白结构更接近天然蛋白。因此, 杆状病毒可作为一种新型的哺乳动物细胞基因转移载体, 用于表达外源基因及作为一种基因治疗载体, 具有巨大潜力, 日益受到人们的关注。本文对杆状病毒作为一种表达载体在哺乳动物细胞中表达的研究进展进行了综述。  相似文献   

6.
为探索可表达较大片段外源基因的脊灰病毒重组载体,以HBVS基因置换脊灰病毒的P1基因,同时以另一途径提供脊灰病毒P1结构蛋白,经转染入Hela细胞中形成缺陷型重组病毒颗粒,此病毒可以感染新的细胞,并表达其重组的外源基因,但不产生子代病毒。实验结果表明,这种瞬时表达系统的构建,为脊灰病毒缺陷型重组载体用于基因转导技术打下基础。  相似文献   

7.
为探索可表达较大片段外源基因的脊灰病毒重组载体,以HBV-S基因置换脊灰病毒的P1基因,同时以另一途径提供脊灰病毒P1结构蛋白,经转染入Hela细胞中形成缺陷型重组病毒颗粒,此病毒可以感染新的细胞,并表达其重组的外源基因,但不产生子代病毒。实验结果表明,这种瞬时表达系统的构建,为脊灰病毒缺陷型重组载体用于基因转导技术打下基础。  相似文献   

8.
目的:构建携带TRAIL基因的慢病毒表达载体并实现其在肝癌细胞株HepG2中的稳定高表达。方法:构建TRAIL重组慢病毒表达载体pCDH-CMV-TRAIL-EF1-GFP-T2A-Puro,脂质体法将重组慢病毒载体和包装质粒混合物共转染293T细胞,包装产生慢病毒颗粒,纯化并测定病毒滴度。利用Western blotting检测TRAIL蛋白在HepG2中的表达。结果:酶切以及测序证实,成功构建TRAIL基因重组慢病毒载体,纯化的慢病毒滴度为1.02×104ifμ/μL。利用嘌呤霉素筛选获得稳定表达TRAIL的细胞系,经Western blot方法检测到TRAIL蛋白的稳定高表达。结论:成功构建了带有TRAIL基因的慢病毒载体,并实现其在HepG2的稳定高表达。  相似文献   

9.
植物基因工程的兴起,使寻找适当的外来基因载体成了一个很迫切的问题。除了Ti质粒外,植物病毒的基因也能很好地在植物体内表达,有可能成为一种很好的基因载体。从七十年代末起,有一些植物病毒学家开始注意花椰菜花叶病毒(CaMV),这是因为:1.该病毒的基因组是一个比较小的双链DNA(约8000bP),便于体外操作;2.克隆的病毒DNA可以通过摩擦接种侵染植物,重组后的DNA便能直接用于  相似文献   

10.
利用植物病毒表达载体表达外源蛋白是近年来发展起来的具有表达量大,速度快和廉价等优势的生产系统,其有4种构建策略;基因取代,基因插入,融合抗原和基因互补,此外还从病毒表达载体的基础性研究和商业应用方面进行了详细讨论。  相似文献   

11.
In recent years, several studies have demonstrated the use of autonomously replicating plant viruses as vehicles to express a variety of therapeutic molecules of pharmaceutical interest. Plant virus vectors for expression of heterologous proteins in plants represent an attractive biotechnological tool to complement the conventional production of recombinant proteins in bacterial, fungal, or mammalian cells. Virus vectors are advantageous when high levels of gene expression are desired within a short time, although the instability of the foreign genes in the viral genome may present problems. Similar levels of foreign protein production in transgenic plants often are unattainable, in some cases because of the toxicity of the foreign protein. Now virus-based vectors are for the first time investigated as a means of producing recombinant allergens in plants. Several plant virus vectors have been developed for the expression of foreign proteins. Here, we describe the utilization of tobacco mosaic virus- and potato virus X-based vectors for the transient expression of plant allergens in Nicotiana benthamiana plants. One approach involves the inoculation of tobacco plants with infectious RNA transcribed in vitro from a cDNA copy of the recombinant viral genome. Another approach utilizes the transfection of whole plants from wounds inoculated with Agrobacterium tumefaciens containing cDNA copies of recombinant plus-sense RNA viruses.  相似文献   

12.
Summary The study of plant viruses and their interaction with the plant host has contributed greatly to our understanding of plant biology. The recent development of plant viruses as transient expression vectors has not only enhanced our understanding of virus biology and antiviral defense mechanisms in plants, but has also led to the use of plant viral-based vectors as tools for gene discovery and production of recombinant proteins in plants for control of human and animal diseases. An overview of the state-of-the-art of viral expression systems, is presented, as well as examples from our laboratory on their use in identifying nuclear targeting motifs on viroid molecules and development of therapeutic proteins for control of animal diseases.  相似文献   

13.
Knowledge of gene function is critical to the development of new plant traits for improved agricultural and industrial applications. Viral expression vectors offer a rapid and proven method to provide epigenetic expression of foreign sequences throughout infected plants. Expression of these sequences from viral vectors can lead to gain- or loss-of-function phenotypes, allowing gene function to be determined by phenotypic or biochemical effects in the infected plant. Tobacco mosaic virus and barley stripe mosaic virus expression vectors have been developed to express foreign gene sequences in dicotyledonous and monocotyledonous hosts, respectively. Large-scale application of both viral vector systems for gene function discovery in Nicotiana and barley hosts resulted in high infection rates and produced distinctive visual phenotypes in approximately 5% of transfected plants. Novel genes expressing potential herbicide target proteins in addition to genes promoting stem elongation, leaf development and apical dominance were identified in the large-scale screening. This report illustrates the adaptability of viral vectors for gene function discovery in higher plants.  相似文献   

14.
Plants and plant tissue cultures are used as host systems for expression of foreign proteins including antibodies, vaccines and other therapeutic agents. Recombinant or stably transformed plants and plant cell cultures have been applied for foreign protein production for about 20 years. Because the product concentration achieved exerts a major influence on process economics, considerable efforts have been made by commercial and academic research groups to improve foreign protein expression levels. However, post-synthesis product losses due to protease activity within plant tissues and/or extracellular protein adsorption in plant cell cultures can negate the benefits of molecular or genetic enhancement of protein expression. Transient expression of foreign proteins using plant viral vectors is also a practical approach for producing foreign proteins in plants. Adaptation of this technology is required to allow infection and propagation of engineered viruses in plant tissue cultures for transient protein expression in vitro.  相似文献   

15.
Medicago truncatula, the model plant of legumes, is well characterized, but there is only a little knowledge about it as a viral host. Viral vectors can be used for expressing foreign genes or for virus-induced gene silencing (VIGS), what is a fast and powerful tool to determine gene functions in plants. Viral vectors effective on Nicotiana benthamiana have been constructed from a number of viruses, however, only few of them were effective in other plants. A Tobamovirus, Sunnhemp mosaic virus (SHMV) systemically infects Medicago truncatula without causing severe symptoms. To set up a viral vector for Medicago truncatula, we prepared an infectious cDNA clone of SHMV. We constructed two VIGS vectors differing in the promoter element to drive foreign gene expression. The vectors were effective both in the expression and in the silencing of a transgene Green Fluorescent Protein (GFP) and in silencing of an endogenous gene Phytoene desaturase (PDS) on N. benthamiana. Still only one of the vectors was able to successfully silence the endogenous Chlorata 42 gene in M. truncatula.  相似文献   

16.
Many plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet necrotic yellow vein virus (BNYVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genome composed of five positive‐stranded RNAs. Here, we have established a BNYVV full‐length infectious cDNA clone under the control of the Cauliflower mosaic virus 35S promoter. We further developed a set of BNYVV‐based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co‐localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV‐based vectors were used to deliver NbPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNYVV‐based vectors will facilitate genomic research and expression of multiple proteins, in sugar beet and related crop plants.  相似文献   

17.
烟草花叶病毒(Tobaccomosaicvirus,TMV)为Tobamovirus代表成员,以此病毒介导的外源蛋白在植物中表达,经过了十几年的研究和不断完善,已被证实为一种有效的表达外源蛋白的途径.这项技术已经在医用活性多肽以及疫苗的研制、功能基因的鉴定、植物体内生物合成途径的研究等方面发挥越来越重要的作用.重点阐述了TMV基因组RNA的结构和分子生物学特征,并着重对重组载体的构建及其利用加以了论述.  相似文献   

18.
Plant virus infectious clones are important tools with wide‐ranging applications in different areas of biology and medicine. Their uses in plant pathology include the study of plant–virus interactions, and screening of germplasm as part of prebreeding programmes for virus resistance. They can also be modified to induce transient plant gene silencing (Virus Induced Gene Silencing – VIGS) and as expression vectors for plant or exogenous proteins, with applications in both plant pathology and more generally for the study of plant gene function. Plant viruses are also increasingly being investigated as expression vectors for in planta production of pharmaceutical products, known as molecular farming. However, plant virus infectious clones may pose a risk to the environment due to their ability to reconstitute fully functional, transmissible viruses. These risks arise from both their inherent pathogenicity and the effect of any introduced genetic modifications. Effective containment measures are therefore required. There has been no single comprehensive review of the biosafety considerations for the contained use of genetically modified plant viruses, despite their increasing importance across many biological fields. This review therefore explores the biosafety considerations for working with genetically modified plant viruses in contained environments, with focus on plant growth facilities. It includes regulatory frameworks, risk assessment, assignment of biosafety levels, facility features and working practices. The review is based on international guidance together with information provided by plant virus researchers.  相似文献   

19.
Lindbo JA 《Plant physiology》2007,145(4):1232-1240
Transient expression is a rapid, useful approach for producing proteins of interest in plants. Tobacco mosaic virus (TMV)-based transient expression vectors can express very high levels of foreign proteins in plants. However, TMV vectors are, in general, not efficiently delivered to plant cells by agroinfection. It was determined that agroinfection was very efficient with a 35S promoter-driven TMV replicon that lacked the TMV coat protein gene sequence. This coat protein deletion vector had several useful features as a transient expression system, including improved ease of use, higher protein expression rates, and improved biocontainment. Using this TMV expression vector, some foreign proteins were expressed at levels of 3 to 5 mg/g fresh weight of plant tissue. It is proposed that this new transient expression vector will be a useful tool for expressing recombinant proteins in plants for either research or production purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号