首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hypothesis that fatigue during prolonged exercise arises from insufficient intramuscular glycogen, which limits tricarboxylic acid cycle (TCA) activity due to reduced TCA cycle intermediates (TCAI), was tested in this experiment. Seven endurance-trained men cycled at approximately 70% of peak O(2) uptake (Vo(2 peak)) until exhaustion with low (LG) or high (HG) preexercise intramuscular glycogen content. Muscle glycogen content was lower (P < 0.05) at fatigue than at rest in both trials. However, the increase in the sum of four measured TCAI (>70% of the total TCAI pool) from rest to 15 min of exercise was not different between trials, and TCAI content was similar after 103 +/- 15 min of exercise (2.62 +/- 0.31 and 2.59 +/- 0.28 mmol/kg dry wt for LG and HG, respectively), which was the point of volitional fatigue during LG. Subjects cycled for an additional 52 +/- 9 min during HG, and although glycogen was markedly reduced (P < 0.05) during this period, no further change in the TCAI pool was observed, thus demonstrating a clear dissociation between exercise duration and the size of the TCAI pool. Neither the total adenine nucleotide pool (TAN = ATP + ADP + AMP) nor IMP was altered compared with rest in either trial, whereas creatine phosphate levels were not different when values measured at fatigue were compared with those measured after 15 min of exercise. These data demonstrate that altered glycogen availability neither compromises TCAI pool expansion nor affects the TAN pool or creatine phosphate or IMP content during prolonged exercise to fatigue. Therefore, our data do not support the concept that a decrease in muscle TCAI during prolonged exercise in humans compromises aerobic energy provision or is the cause of fatigue.  相似文献   

2.
The relationship between changes in the muscle total adenine nucleotide pool (TAN = ATP + ADP + AMP) and IMP during and after 30 s of sprint cycling was examined. Skeletal muscle samples were obtained from the vastus lateralis muscle of seven untrained men (23. 9 +/- 2.3 yr, 74.4 +/- 3.6 kg, and 55.0 +/- 2.9 ml. kg(-1). min(-1) peak oxygen consumption) before and immediately after exercise and after 5 and 10 min of passive recovery. The exercise-induced increase in muscle IMP was linearly related to the decrease in muscle TAN (r = -0.97, P < 0.01), and the slope of this relationship (-0.83) was not different from 1.0 (P > 0.05), indicating a 1:1 stoichiometric relationship. This interpretation must be treated cautiously, because all subjects displayed a greater decrease in TAN compared with the increase in IMP content, and the TAN + IMP + inosine + hypoxanthine content was lower (P < 0.05) immediately after exercise compared with during rest. During the first 5 min of recovery, the increase in TAN was not correlated with the decrease in IMP (r = -0.18, P > 0.05). In all subjects, the magnitude of TAN increase was higher than the magnitude of IMP decrease over this recovery period. In contrast, the increase in TAN was correlated with the decrease in IMP throughout the second 5 min of recovery (r = -0.80, P < 0.05), and it was a 1:1 stoichiometric relationship (slope = -1.12). These data indicate that a small proportion of the TAN pool was temporarily lost from the muscle purine stores during sprinting but was rapidly recovered after exercise.  相似文献   

3.
To examine the effect of exercise on heat shock protein (HSP) 72 mRNA expression in skeletal muscle, five healthy humans (20 +/- 1 yr; 64 +/- 3 kg; peak O(2) uptake of 2.55 +/- 0.2 l/min) cycled until exhaustion at a workload corresponding to 63% peak O(2) uptake. Muscle was sampled from the vastus lateralis, and muscle temperature was measured at rest (R), 10 min of exercise (Min10), approximately 40 min before fatigue (F-40 = 144 +/- 7 min), and fatigue (F = 186 +/- 15 min). Muscle samples were analyzed for HSP72 mRNA expression, as well as glycogen and lactate concentration. Muscle temperature increased (P < 0.05) during the first 10 min of exercise but then remained constant for the duration of the exercise. Similarly, lactate concentration increased (P < 0.05) when Min10 was compared with R but decreased (P < 0.05) thereafter, such that concentrations at F-40 and F were not different from those at R. In contrast, muscle glycogen concentration fell progressively throughout exercise (486 +/- 74 vs. 25 +/- 7 mmol/kg dry weight for R and F, respectively; P < 0.05). HSP72 mRNA was detected at R but did not increase by Min10. However, HSP72 mRNA increased (P < 0.05) 2.2 +/- 0.5- and 2.6 +/- 0.9-fold, respectively, when F-40 and F were compared with R. These data demonstrate that HSP72 mRNA increases progressively during acute cycling, suggesting that processes that take place throughout concentric exercise are capable of initiating a stress response.  相似文献   

4.
A depletion of phosphocreatine (PCr), fall in the total adenine nucleotide pool (TAN = ATP + ADP + AMP), and increase in TAN degradation products inosine 5'-monophosphate (IMP) and hypoxanthine are observed at fatigue during prolonged exercise at 70% maximal O(2) uptake in untrained subjects [J. Baldwin, R. J. Snow, M. F. Carey, and M. A. Febbraio. Am. J. Physiol. 277 (Regulatory Integrative Comp. Physiol. 46): R295-R300, 1999]. The present study aimed to examine whether these metabolic changes are also prevalent when exercise is performed below the blood lactate threshold (LT). Six healthy, untrained humans exercised on a cycle ergometer to voluntary exhaustion at an intensity equivalent to 93 +/- 3% of LT ( approximately 65% peak O(2) uptake). Muscle biopsy samples were obtained at rest, at 10 min of exercise, approximately 40 min before fatigue (F-40 =143 +/- 13 min), and at fatigue (F = 186 +/- 31 min). Glycogen concentration progressively declined (P < 0.01) to very low levels at fatigue (28 +/- 6 mmol glucosyl U/kg dry wt). Despite this, PCr content was not different when F-40 was compared with F and was only reduced by 40% when F was compared with rest (52. 8 +/- 3.7 vs. 87.8 +/- 2.0 mmol/kg dry wt; P < 0.01). In addition, TAN concentration was not reduced, IMP did not increase significantly throughout exercise, and hypoxanthine was not detected in any muscle samples. A significant correlation (r = 0.95; P < 0. 05) was observed between exercise time and glycogen use, indicating that glycogen availability is a limiting factor during prolonged exercise below LT. However, because TAN was not reduced, PCr was not depleted, and no correlation was observed between glycogen content and IMP when glycogen stores were compromised, fatigue may be related to processes other than those involved in muscle high-energy phosphagen metabolism.  相似文献   

5.
To examine the role of a reduction in plasma volume (PV) on the cardiovascular and thermoregulatory responses to submaximal exercise, ten untrained males (VO2 peak = 3.96 +/- 0.14 L x min(-1); mean +/- SE) performed 60 min of cycle exercise at -61% of VO2 peak while on a diuretic (DIU) and under control (CON) conditions. Participants consumed either Novotriamazide (100 mg triameterene + 50 mg hydrochlorothiazide, a diuretic) or a placebo, in random order, for 4 days prior to the exercise. Diuretic resulted in a calculated 14.6% reduction (P < 0.05) in resting PV. Heart rate was higher (P < 0.05) at rest and throughout exercise for DIU compared with CON. No differences were observed for cardiac output (Qc) and stroke volume (SV) at rest for the two conditions, but during exercise both Qc and SV were lower (P < 0.05) with DIU. Exercise VO2 (L x min(-1)) for CON and DIU at 30 min (2.39 +/- 0.09 vs 2.43 +/- 0.08) and 60 min (2.56 +/- 0.08 vs 2.53 +/- 0.12) were similar between conditions. Whole body a-vO2 difference was significantly greater (P < 0.05) for DIU both at rest and during exercise as compared with CON. Rectal temperature (Tre) was significantly higher (P < 0.05) during DIU from 15 min to the end of exercise. Blood concentrations of norepinephrine were higher (P < 0.05) with DIU compared to CON at 15 min of exercise and beyond. For blood epinephrine, no differences were observed between DIU and CON. These results suggest that reductions in PV led to greater circulating concentrations of norepinephrine which likely resulted from increased cardiac and thermoregulatory stresses. In addition, reductions in PV do not appear to increase cardiovascular instability during prolonged dynamic exercise.  相似文献   

6.
Interstitial K+ ([K+]i) was measured in human skeletal muscle by microdialysis during exhaustive leg exercise, with (AL) and without (L) previous intense arm exercise. In addition, the reproducibility of the [K+]i determinations was examined. Possible microdialysis-induced rupture of the sarcolemma was assessed by measurement of carnosine in the dialysate, because carnosine is only expected to be found intracellularly. Changes in [K+]i could be reproduced, when exhaustive leg exercise was performed on two different days, with a between-day difference of approximately 0.5 mM at rest and 1.5 mM at exhaustion. The time to exhaustion was shorter in AL than in L (2.7 +/- 0.3 vs. 4.0 +/- 0.3 min; P < 0.05). Furthermore, [K+]i was higher from 0 to 1.5 min of the intense leg exercise period in AL compared with L (9.2 +/- 0.7 vs. 6.4 +/- 0.9 mM; P < 0.001) and at exhaustion (11.9 +/- 0.5 vs. 10.3 +/- 0.6 mM; P < 0.05). The dialysate content of carnosine was elevated by exercise, but low-intensity exercise resulted in higher dialysate carnosine concentrations than subsequent intense exercise. Furthermore, no relationship was found between carnosine concentrations and [K+]i. Thus the present data suggest that microdialysis can be used to determine muscle [K+]i kinetics during intense exercise, when low-intensity exercise is performed before the intense exercise. The high [K+]i levels reached at exhaustion can be expected to cause fatigue, which is supported by the finding that a faster accumulation of interstitial K+, induced by prior arm exercise, was associated with a reduced time to fatigue.  相似文献   

7.
Prolonged exhaustive submaximal exercise in humans induces marked metabolic changes, but little is known about effects on muscle Na+-K+-ATPase activity and sarcoplasmic reticulum Ca2+ regulation. We therefore investigated whether these processes were impaired during cycling exercise at 74.3 +/- 1.2% maximal O2 uptake (mean +/- SE) continued until fatigue in eight healthy subjects (maximal O2 uptake of 3.93 +/- 0.69 l/min). A vastus lateralis muscle biopsy was taken at rest, at 10 and 45 min of exercise, and at fatigue. Muscle was analyzed for in vitro Na+-K+-ATPase activity [maximal K+-stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase) activity], Na+-K+-ATPase content ([3H]ouabain binding sites), sarcoplasmic reticulum Ca2+ release rate induced by 4 chloro-m-cresol, and Ca2+ uptake rate. Cycling time to fatigue was 72.18 +/- 6.46 min. Muscle 3-O-MFPase activity (nmol.min(-1).g protein(-1)) fell from rest by 6.6 +/- 2.1% at 10 min (P <0.05), by 10.7 +/- 2.3% at 45 min (P <0.01), and by 12.6 +/- 1.6% at fatigue (P <0.01), whereas 3[H]ouabain binding site content was unchanged. Ca2+ release (mmol.min(-1).g protein(-1)) declined from rest by 10.0 +/- 3.8% at 45 min (P <0.05) and by 17.9 +/- 4.1% at fatigue (P < 0.01), whereas Ca2+ uptake rate fell from rest by 23.8 +/- 12.2% at fatigue (P=0.05). However, the decline in muscle 3-O-MFPase activity, Ca2+ uptake, and Ca2+ release were variable and not significantly correlated with time to fatigue. Thus prolonged exhaustive exercise impaired each of the maximal in vitro Na+-K+-ATPase activity, Ca2+ release, and Ca2+ uptake rates. This suggests that acutely downregulated muscle Na+, K+, and Ca2+ transport processes may be important factors in fatigue during prolonged exercise in humans.  相似文献   

8.
The hypothesis tested was that disturbances in the sarcoplasmic reticulum (SR) Ca2+-cycling responses to exercise would associate with muscle glycogen reserves. Ten untrained males [peak O2 consumption (VO2 peak) = 3.41 +/- 0.20 (SE) l/min] performed a standardized cycle test (approximately 70% VO2 peak) on two occasions, namely, following 4 days of a high (Hi CHO)- and 4 days of a low (Lo CHO)-carbohydrate diet. Both Hi CHO and Lo CHO were preceded by a session of prolonged exercise designed to deplete muscle glycogen. SR Ca2+ cycling in crude homogenates prepared from vastus lateralis samples indicated higher (P < 0.05) Ca2+ uptake (microM x g protein(-1) x min(-1)) in Hi CHO compared with Lo CHO at 30 min (2.93 +/- 0.10 vs. 2.23 +/- 0.12) and at 67 min (2.77 +/- 0.16 vs. 2.10 +/- 0.12) of exercise, the point of fatigue in Lo CHO. Similar effects (P < 0.05) were noted between conditions for maximal Ca2+-ATPase (microM x g protein(-1) x min(-1)) at 30 min (142 +/- 8.5 vs. 107 +/- 5.0) and at 67 min (130 +/- 4.5 vs. 101 +/- 4.7). Both phase 1 and phase 2 Ca2+ release were 23 and 37% higher (P < 0.05) at 30 min of exercise and 15 and 34% higher (P < 0.05), at 67 min during Hi CHO compared with Lo CHO, respectively. No differences between conditions were observed at rest for any of these SR properties. Total muscle glycogen (mmol glucosyl units/kg dry wt) was higher (P < 0.05) in Hi CHO compared with Lo CHO at rest (+36%), 30 min (+53%), and at 67 min (+44%) of cycling. These results indicate that exercise-induced reductions in SR Ca2+-cycling properties occur earlier in exercise during low glycogen states compared with high glycogen states.  相似文献   

9.
Regulation of maximal Na(+)-K(+)-ATPase activity in vastus lateralis muscle was investigated in response to prolonged exercise with (G) and without (NG) oral glucose supplements. Fifteen untrained volunteers (14 males and 1 female) with a peak aerobic power (Vo(2)(peak)) of 44.8 +/- 1.9 ml.kg(-1).min(-1); mean +/- SE cycled at approximately 57% Vo(2)(peak) to fatigue during both NG (artificial sweeteners) and G (6.13 +/- 0.09% glucose) in randomized order. Consumption of beverage began at 30 min and continued every 15 min until fatigue. Time to fatigue was increased (P < 0.05) in G compared with NG (137 +/- 7 vs. 115 +/- 6 min). Maximal Na(+)-K(+)-ATPase activity (V(max)) as measured by the 3-O-methylfluorescein phosphatase assay (nmol.mg(-1).h(-1)) was not different between conditions prior to exercise (85.2 +/- 3.3 or 86.0 +/- 3.9), at 30 min (91.4 +/- 4.7 vs. 91.9 +/- 4.1) and at fatigue (92.8 +/- 4.3 vs. 100 +/- 5.0) but was higher (P < 0.05) in G at 90 min (86.7 +/- 4.2 vs. 109 +/- 4.1). Na(+)-K(+)-ATPase content (beta(max)) measured by the vanadate facilitated [(3)H]ouabain-binding technique (pmol/g wet wt) although elevated (P < 0.05) by exercise (0<30, 90, and fatigue) was not different between NG and G. At 60 and 90 min of exercise, blood glucose was higher (P < 0.05) in G compared with NG. The G condition also resulted in higher (P < 0.05) serum insulin at similar time points to glucose and lower (P < 0.05) plasma epinephrine and norepinephrine at 90 min of exercise and at fatigue. These results suggest that G results in an increase in V(max) by mechanisms that are unclear.  相似文献   

10.
Eight healthy men cycled at a work load corresponding to approximately 70% of maximal O2 uptake (VO2max) to fatigue (exercise I). Exercise to fatigue at the same work load was repeated after 75 min of rest (exercise II). Exercise duration averaged 65 and 21 min for exercise I and II, respectively. Muscle (quadriceps femoris) content of glycogen decreased from 492 +/- 27 to 92 +/- 20 (SE) mmol/kg dry wt and from 148 +/- 17 to 56 +/- 17 (SE) mmol/kg dry wt during exercise I and II, respectively. Muscle and blood lactate were only moderately increased during exercise. The total adenine nucleotide pool (TAN = ATP + ADP + AMP) decreased and inosine 5'-monophosphate (IMP) increased in the working muscle during both exercise I (P less than 0.001) and II (P less than 0.01). Muscle content of ammonia (NH3) increased four- and eight-fold during exercise I and II, respectively. The working legs released NH3, and plasma NH3 increased progressively during exercise. The release of NH3 at the end of exercise II was fivefold higher than that at the same time point in exercise I (P less than 0.001, exercise I vs. II). It is concluded that submaximal exercise to fatigue results in a breakdown of the TAN in the working muscle through deamination of AMP to IMP and NH3. The relatively low lactate levels demonstrate that acidosis is not a necessary prerequisite for activation of AMP deaminase. It is suggested that the higher average rate of AMP deamination during exercise II vs. exercise I is due to a relative impairment of ATP resynthesis caused by the low muscle glycogen level.  相似文献   

11.
To evaluate the contribution of working muscle to whole body lipid oxidation, we examined the effects of exercise intensity and endurance training (9 wk, 5 days/wk, 1 h, 75% Vo(2 peak)) on whole body and leg free fatty acid (FFA) kinetics in eight male subjects (26 +/- 1 yr, means +/- SE). Two pretraining trials [45 and 65% Vo(2 max) (45UT, 65UT)] and two posttraining trials [65% of pretraining Vo(2 peak) (ABT), and 65% of posttraining Vo(2 peak) (RLT)] were performed using [1-(13)C]palmitate infusion and femoral arteriovenous sampling. Training increased Vo(2 peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 ml.kg(-1).min(-1), P < 0.05). Muscle FFA fractional extraction was lower during exercise (EX) compared with rest regardless of workload or training status ( approximately 20 vs. 48%, P < 0.05). Two-leg net FFA balance increased from net release at rest ( approximately -36 micromol/min) to net uptake during EX for 45UT (179 +/- 75), ABT (236 +/- 63), and RLT (136 +/- 110) (P < 0.05), but not 65UT (51 +/- 127). Leg FFA tracer measured uptake was higher during EX than rest for all trials and greater during posttraining in RLT (716 +/- 173 micromol/min) compared with pretraining (45UT 450 +/- 80, 65UT 461 +/- 72, P < 0.05). Leg muscle lipid oxidation increased with training in ABT (730 +/- 163 micromol/min) vs. 65UT (187 +/- 94, P < 0.05). Leg muscle lipid oxidation represented approximately 62 and 30% of whole body lipid oxidation at lower and higher relative intensities, respectively. In summary, training can increase working muscle tracer measured FFA uptake and lipid oxidation for a given power output, but both before and after training the association between whole body and leg lipid metabolism is reduced as exercise intensity increases.  相似文献   

12.
To investigate the influence of heat stress on the regulation of skeletal muscle carbohydrate metabolism, six active, but not specifically trained, men performed 5 min of cycling at a power output eliciting 70% maximal O2 uptake in either 20 degrees C (Con) or 40 degrees C (Heat) after 20 min of passive exposure to either environmental condition. Although muscle temperature (T(mu)) was similar at rest when comparing trials, 20 min of passive exposure and 5 min of exercise increased (P < 0.05) T(mu) in Heat compared with Con (37.5 +/- 0.1 vs. 36.9 +/- 0.1 degrees C at 5 min for Heat and Con, respectively). Rectal temperature and plasma epinephrine were not different at rest, preexercise, or 5 min of exercise between trials. Although intramuscular glycogen phosphorylase and pyruvate dehydrogenase activity increased (P < 0.05) at the onset of exercise, there were no differences in the activities of these regulatory enzymes when comparing Heat with Con. Accordingly, glycogen use in the first 5 min of exercise was not different when comparing Heat with Con. Similarly, no differences in intramuscular concentrations of glucose 6-phosphate, lactate, pyruvate, acetyl-CoA, creatine, phosphocreatine, or ATP were observed at any time point when comparing Heat with Con. These results demonstrate that, whereas mild heat stress results in a small difference in contracting T(mu), it does not alter the activities of the key regulatory enzymes for carbohydrate metabolism or glycogen use at the onset of exercise, when plasma epinephrine levels are unaltered.  相似文献   

13.
We examined the effects of exercise intensity and a 10-wk cycle ergometer training program [5 days/wk, 1 h, 75% peak oxygen consumption (VO2 peak)] on plasma free fatty acid (FFA) flux, total fat oxidation, and whole body lipolysis in healthy male subjects (n = 10; age = 25.6 +/- 1.0 yr). Two pretraining trials (45 and 65% of VO2 peak) and two posttraining trials (same absolute workload, 65% of old VO2 peak; and same relative workload, 65% of new VO2 peak) were performed by using an infusion of [1-13C]palmitate and [1,1,2,3, 3-2H]glycerol. An additional nine subjects (age 25.4 +/- 0.8 yr) were treated similarly but were infused with [1,1,2,3,3-2H]glycerol and not [1-13C]palmitate. Subjects were studied postabsorptive for 90 min of rest and 1 h of cycling exercise. After training, subjects increased VO2 peak by 9.4 +/- 1.4%. Pretraining, plasma FFA kinetics were inversely related to exercise intensity with rates of appearance (Ra) and disappearance (Rd) being significantly higher at 45 than at 65% VO2 peak (Ra: 8.14 +/- 1.28 vs. 6.64 +/- 0.46, Rd: 8. 03 +/- 1.28 vs. 6.42 +/- 0.41 mol. kg-1. min-1) (P 相似文献   

14.
This study was designed to assess differences in the intensity of exercise to attenuate postprandial lipemia (PPL). Thirteen healthy men (age 23.8 +/- 0.9 yr) participated in three random-ordered trials: in low-(25% peak oxygen consumption; Low) and moderate-intensity (65% peak oxygen consumption; Mod) exercise trials, which were completed 1 h before a high-fat meal (1.3 g fat/kg body mass), and a control (Con), fat meal only, trial. Venous blood samples were obtained before the fat meal, and at 2, 4, 6, 8, and 20 h after the fat meal. PPL in the Mod trial (267 +/- 50 mg.dl-1.8 h) was lower compared with that in either Con (439 +/- 81 mg.dl-1.8 h) or Low (403 +/- 91 mg.dl-1.8 h) trials (P < 0.05), whereas there was no difference in PPL between Con and Low trials (P > 0.05). High-density lipoprotein cholesterol (HDL-C) and HDL subtype 2 cholesterol were not different between or within trials (P > 0.05). Postprandial insulinemia was lower in the Mod trial (20.5 +/- 5.7 microIU.ml-1.8 h; P < 0.05), but not in the Low trial (31.4 +/- 4.7 microIU.ml-1.8 h), compared with that in the Con trial (34.9 +/- 5.0 microIU.ml-1.8 h). Postheparin lipoprotein lipase activity at 8 h was higher in the Low trial compared with that in either Con or Mod trials, whereas there were no differences between trials at 20 h. These results suggest that, when exercise is performed 1 h before a fat meal, only exercise of moderate but not of low intensity attenuates PPL and that this effect is not associated with changes in postheparin lipoprotein lipase activity.  相似文献   

15.
The contribution of pH to exercise-induced arterial O2 desaturation was evaluated by intravenous infusion of sodium bicarbonate (Bic, 1 M; 200-350 ml) or an equal volume of saline (Sal; 1 M) at a constant infusion rate during a "2,000-m" maximal ergometer row in five male oarsmen. Blood-gas variables were corrected to the increase in blood temperature from 36.5 +/- 0.3 to 38.9 +/- 0.1 degrees C (P < 0.05; means +/- SE), which was established in a pilot study. During Sal exercise, pH decreased from 7.42 +/- 0.01 at rest to 7.07 +/- 0.02 but only to 7.34 +/- 0.02 (P < 0.05) during the Bic trial. Arterial PO2 was reduced from 103.1 +/- 0.7 to 88.2 +/- 1.3 Torr during exercise with Sal, and this reduction was not significantly affected by Bic. Arterial O2 saturation was 97.5 +/- 0.2% at rest and decreased to 89.0 +/- 0.7% during Sal exercise but only to 94.1 +/- 1% with Bic (P < 0.05). Arterial PCO2 was not significantly changed from resting values in the last minute of Sal exercise, but in the Bic trial it increased from 40.5 +/- 0.5 to 45.9 +/- 2.0 Torr (P < 0.05). Pulmonary ventilation was lowered during exercise with Bic (155 +/- 14 vs. 142 +/- 13 l/min; P < 0.05), but the exercise-induced increase in the difference between the end-tidal O2 pressure and arterial PO2 was similar in the two trials. Also, pulmonary O2 uptake and changes in muscle oxygenation as determined by near-infrared spectrophotometry during exercise were similar. The enlarged blood-buffering capacity after infusion of Bic attenuated acidosis and in turn arterial desaturation during maximal exercise.  相似文献   

16.
Carbohydrate metabolism during intense exercise when hyperglycemic   总被引:2,自引:0,他引:2  
The effects of hyperglycemia on muscle glycogen use and carbohydrate metabolism were evaluated in eight well-trained cyclists (average maximal O2 consumption 4.5 +/- 0.1 l/min) during 2 h of exercise at 73 +/- 2% of maximal O2 consumption. During the control trial (CT), plasma glucose concentration averaged 4.2 +/- 0.2 mM and plasma insulin remained between 6 and 9 microU/ml. During the hyperglycemic trial (HT), 20 g of glucose were infused intravenously after 8 min of exercise, after which a variable-rate infusion of 18% glucose was used to maintain plasma glucose at 10.8 +/- 0.4 mM throughout exercise. Plasma insulin remained low during the 1st h of HT, yet it increased significantly (to 16-24 microU/ml; P less than 0.05) during the 2nd h. The amount of muscle glycogen utilized in the vastus lateralis during exercise was similar during HT and CT (75 +/- 8 and 76 +/- 7 mmol/kg, respectively). As exercise duration increased, carbohydrate oxidation declined during CT but increased during HT. Consequently, after 2 h of exercise, carbohydrate oxidation was 40% higher during HT than during CT (P less than 0.01). The rate of glucose infusion required to maintain hyperglycemia (10 mM) remained very stable at 1.6 +/- 0.1 g/min during the 1st h. However, during the 2nd h of exercise, the rate of glucose infusion increased (P less than 0.01) to 2.6 +/- 0.1 g/min (37 mg.kg body wt-1.min-1) during the final 20 min of exercise. We conclude that hyperglycemia (i.e., 10 mM) in humans does not alter muscle glycogen use during 2 h of intense cycling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
This study investigated 1) red blood cells (RBC) rigidity and 2) lactate influxes into RBCs in endurance-trained athletes with and without exercise-induced hypoxemia (EIH). Nine EIH and six non-EIH subjects performed a submaximal steady-state exercise on a cyclo-ergometer at 60% of maximal aerobic power for 10 min, followed by 15 min at 85% of maximal aerobic power. At rest and at the end of exercise, arterialized blood was sampled for analysis of arterialized pressure in oxygen, and venous blood was drawn for analysis of plasma lactate concentrations and hemorheological parameters. Lactate influxes into RBCs were measured at three labeled [U-14C]lactate concentrations (1.6, 8.1, and 41 mM) on venous blood sampled at rest. The EIH subjects had higher maximal oxygen uptake than non-EIH (P < 0.05). Total lactate influx was significantly higher in RBCs from EIH compared with non-EIH subjects at 8.1 mM (1,498.1 +/- 87.8 vs. 1,035.9 +/- 114.8 nmol.ml(-1).min(-1); P < 0.05) and 41 mM (2,562.0 +/- 145.0 vs. 1,618.1 +/- 149.4 nmol.ml(-1).min(-1); P < 0.01). Monocarboxylate transporter-1-mediated lactate influx was also higher in EIH at 8.1 mM (P < 0.05) and 41 mM (P < 0.01). The drop in arterial oxygen partial pressure was negatively correlated with total lactate influx measured at 8.1 mM (r = -0.82, P < 0.05) and 41 mM (r = -0.84, P < 0.05) in the two groups together. Plasma lactate concentrations and hemorheological data were similar in the two groups at rest and at the end of exercise. The results showed higher monocarboxylate transporter-1-mediated lactate influx in the EIH subjects and suggested that EIH could modify lactate influx into erythrocyte. However, higher lactate influx in EIH subjects was not accompanied by an increase in RBC rigidity.  相似文献   

18.
This study determined whether cutaneous blood flow during exercise is different in endurance-trained (Tr) compared with untrained (Untr) subjects. Ten Tr and ten Untr men (62.4 +/- 1.7 and 44.2 +/- 1.8 ml. kg(-1). min(-1), respectively; P < 0.05) underwent three 20-min cycling-exercise bouts at 50, 70, and 90% peak oxygen uptake in this order, with 30 min rest in between. The environmental conditions were neutral ( approximately 23-24 degrees C, 50% relative humidity, front and back fans at 2.5 m/s). Because of technical difficulties, only seven Tr and seven Untr subjects completed all forearm blood flow and laser-Doppler cutaneous blood flow (CBF) measurements. Albeit similar at rest, at the end of all three exercise bouts, forearm blood flow was approximately 40% higher in Tr compared with Untr subjects (50%: 4.64 +/- 0.50 vs. 3. 17 +/- 0.20, 70%: 6.17 +/- 0.61 vs. 4.41 +/- 0.37, 90%: 6.77 +/- 0. 62 vs. 5.01 +/- 0.37 ml. 100 ml(-1). min(-1), respectively; n = 7; all P < 0.05). CBF was also higher in Tr compared with Untr subjects at all relative intensities (n = 7; all P < 0.05). However, esophageal temperature was not different in Tr compared with Untr subjects at the end of any of the aforementioned exercise bouts (50%: 37.8 +/- 0.1 vs. 37.9 +/- 0.1 degrees C, 70%: 38.1 +/- 0.1 vs. 38.1 +/- 0.1 degrees C, and 90%: 38.8 +/- 0.1 vs. 38.6 +/- 0.1 degrees C, respectively). We conclude that a higher CBF may allow Tr subjects to achieve an esophageal temperature similar to that of Untr, despite their higher metabolic rates and thus higher heat production rates, during exercise at 50-90% peak oxygen uptake.  相似文献   

19.
The effect of arterial O2 content (Ca(O2)) on quadriceps fatigue was assessed in healthy, trained male athletes. On separate days, eight participants completed three constant-workload trials on a bicycle ergometer at fixed workloads (314 +/- 13 W). The first trial was performed while the subjects breathed a hypoxic gas mixture [inspired O2 fraction (Fi(O2)) = 0.15, Hb saturation = 81.6%, Ca(O2) = 18.2 ml O2/dl blood; Hypo] until exhaustion (4.5 +/- 0.4 min). The remaining two trials were randomized and time matched with Hypo. The second and third trials were performed while the subjects breathed a normoxic (Fi(O2) = 0.21, Hb saturation = 95.0%, Ca(O2) = 21.3 ml O2/dl blood; Norm) and a hyperoxic (Fi(O2) = 1.0, Hb saturation = 100%, Ca(O2) = 23.8 ml O2/dl blood; Hyper) gas mixture, respectively. Quadriceps muscle fatigue was assessed via magnetic femoral nerve stimulation (1-100 Hz) before and 2.5 min after exercise. Myoelectrical activity of the vastus lateralis was obtained from surface electrodes throughout exercise. Immediately after exercise, the mean force response across 1-100 Hz decreased from preexercise values (P < 0.01) by -26 +/- 2, -17 +/- 2, and -13 +/- 2% for Hypo, Norm, and Hyper, respectively; each of the decrements differed significantly (P < 0.05). Integrated electromyogram increased significantly throughout exercise (P < 0.01) by 23 +/- 3, 10 +/- 1, and 6 +/- 1% for Hypo, Norm, and Hyper, respectively; each of the increments differed significantly (P < 0.05). Mean power frequency fell more (P < 0.05) during Hypo (-15 +/- 2%); the difference between Norm (-7 +/- 1%) and Hyper (-6 +/- 1%) was not significant (P = 0.32). We conclude that deltaCa(O2) during strenuous systemic exercise at equal workloads and durations affects the rate of locomotor muscle fatigue development.  相似文献   

20.
The purpose of this study was to compare the sympathoadrenergic and metabolic responses following 30 s of maximal high intensity cycle ergometry exercise when cradle resistive forces were derived from total-body mass (TBM) or fat-free mass (FFM). Increases in peak power output (PPO) and pedal velocity were recorded when resistive forces reflected FFM (953 +/- 114 W vs 1020 +/- 134 W; 134 +/- 8 rpm vs 141 +/- 7 rpm ; P < 0.05). No differences were observed between mean power output (MPO), fatigue index (FI%), work done (WD) or heart rate (HR) when the TBM and FFM protocols were compared. There were no differences between the TBM and FFM protocols for adrenaline (A), noradrenaline (NA) or blood lactate concentrations ([La-]B) recorded at rest, immediately post or 24 h post exercise. However, increases in blood concentrations of A and NA (P < 0.05) were recorded for both the TBM and FFM protocol immediately post exercise. Significant correlations (P < 0.05) were recorded between PPOs, immediate post- exercise NA and [La-]B for both the TBM and FFM protocols. [La-]B levels were also significantly elevated (P < 0.01) immediately post exercise for both the TBM and FFM protocols. The results from this study suggest that greater peak power outputs are obtainable with no subsequent differences in neurophysiological or metabolic stress as determined by plasma A, NA and [La-]B concentrations when resistive forces reflect FFM and not TBM during loading procedures. The findings also indicate that immediate post exercise concentrations return to resting levels 24 h post exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号