首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
About 10% of cases of hypertrophic cardiomyopathy (HCM) evolve into dilated cardiomyopathy (DCM) with unknown causes. We studied 11 unrelated patients (pts) with HCM who progressed to DCM (group A) and 11 who showed "typical" HCM (group B). Mutational analysis of the beta-myosin heavy chain (MYH7), myosin-binding protein C (MYBPC3), and cardiac troponin T (TNNT2) genes demonstrated eight mutations affecting MYH7 or MYBPC3 gene, five of which were new mutations. In group A-pts, the first new mutation occurred in the myosin head-rod junction and the second occurred in the light chain-binding site. The third new mutation leads to a MYBPC3 lacking titin and myosin binding sites. In group B, two pts with severe HCM carried two homozygous MYBPC3 mutations and one with moderate hypertrophy was a compound heterozygous for MYBPC3 gene. We identified five unreported mutations, potentially "malignant" defects as for the associated phenotypes, but no specific mutations of HCM/DCM.  相似文献   

2.
In this part of a series on cardiogenetic founder mutations in the Netherlands, we review the Dutch founder mutations in hypertrophic cardiomyopathy (HCM) patients. HCM is a common autosomal dominant genetic disease affecting at least one in 500 persons in the general population. Worldwide, most mutations in HCM patients are identified in genes encoding sarcomeric proteins, mainly in the myosin-binding protein C gene (MYBPC3, OMIM #600958) and the beta myosin heavy chain gene (MYH7, OMIM #160760). In the Netherlands, the great majority of mutations occur in the MYBPC3, involving mainly three Dutch founder mutations in the MYBPC3 gene, the c.2373_2374insG, the c.2864_2865delCT and the c.2827C>T mutation. In this review, we describe the genetics of HCM, the genotype-phenotype relation of Dutch founder MYBPC3 gene mutations, the prevalence and the geographic distribution of the Dutch founder mutations, and the consequences for genetic counselling and testing. (Neth Heart J 2010;18:248-54.)  相似文献   

3.
Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease with autosomal dominant inheritance caused by mutations in genes coding for sarcomeric and/or regulatory proteins expressed in cardiomyocytes. In a small cohort of HCM patients (n = 8), we searched for mutations in the two most common genes responsible for HCM and found four missense mutations in the MYH7 gene encoding cardiac β-myosin heavy chain (R204H, M493V, R719W, and R870H) and three mutations in the myosin-binding protein C3 gene (MYBPC3) including one missense (A848V) and two frameshift mutations (c.3713delTG and c.702ins26bp). The c.702ins26bp insertion resulted from the duplication of a 26-bp fragment in a 54-year-old female HCM patient presenting with clinical signs of heart failure due to diastolic dysfunction. Although such large duplications (> 10 bp) in the MYBPC3 gene are very rare and have been identified only in 4 families reported so far, the identical duplication mutation was found earlier in a Dutch patient, demonstrating that it may constitute a hitherto unknown founder mutation in central European populations. This observation underscores the significance of insertions into the coding sequence of the MYBPC3 gene for the development and pathogenesis of HCM.  相似文献   

4.
L Pezzoli  ME Sana  P Ferrazzi  M Iascone 《Gene》2012,507(2):165-169
We describe a male patient affected by hypertrophic cardiomyopathy (HCM) with no point mutations in the eight sarcomeric genes most commonly involved in the disease. By multiple ligation-dependent probe amplification (MLPA) we have identified a multi-exons C-terminus deletion in the cardiac myosin binding protein C (MYBPC3) gene. The rearrangement has been confirmed by long PCR and breakpoints have been defined by sequencing. The 3.5kb terminal deletion is mediated by Alu-repeat elements and is predicted to result in haploinsufficiency of MYBPC3. To exclude the presence of other rare pathogenic variants in additional HCM genes, we performed targeted next-generation sequencing (NGS) of 88 cardiomyopathy-associated genes but we did not identify any further mutation. Interestingly, the MYBPC3 multi-exons deletion was detectable by NGS. This finding broadens the range of mutational spectrum observed in HCM, contributing to understanding the genetic basis of the most common inherited cardiovascular disease. Moreover, our data suggest that NGS may represent a new tool to achieve a deeper insight into molecular basis of complex diseases, allowing to detect in a single experiment both point mutations and gene rearrangements.  相似文献   

5.
Genotype-phenotype correlation of hypertrophic cardiomyopathy (HCM) has been challenging because of the genetic and clinical heterogeneity. To determine the mutation profile of Chinese patients with HCM and to correlate genotypes with phenotypes, we performed a systematic mutation screening of the eight most commonly mutated genes encoding sarcomere proteins in 200 unrelated Chinese adult patients using direct DNA sequencing. A total of 98 mutations were identified in 102 mutation carriers. The frequency of mutations in MYH7, MYBPC3, TNNT2 and TNNI3 was 26.0, 18.0, 4.0 and 3.5 % respectively. Among the 200 genotyped HCM patients, 83 harbored a single mutation, and 19 (9.5 %) harbored multiple mutations. The number of mutations was positively correlated with the maximum wall thickness. We found that neither particular gene nor specific mutation was correlated to clinical phenotype. In summary, the frequency of multiple mutations was greater in Chinese HCM patients than in the Caucasian population. Multiple mutations in sarcomere protein may be a risk factor for left ventricular wall thickness.  相似文献   

6.
The ubiquitin-proteasome system is responsible for the disappearance of truncated cardiac myosin-binding protein C, and the suppression of its activity contributes to cardiac dysfunction. This study investigated whether missense cardiac myosin-binding protein C gene (MYBPC3) mutation in hypertrophic cardiomyopathy (HCM) leads to destabilization of its protein, causes UPS impairment, and is associated with cardiac dysfunction. Mutations were identified in Japanese HCM patients using denaturing HPLC and sequencing. Heterologous expression was investigated in COS-7 cells as well as neonatal rat cardiac myocytes to examine protein stability and proteasome activity. The cardiac function was measured using echocardiography. Five novel MYBPC3 mutations—E344K, ΔK814, Δ2864-2865GC, Q998E, and T1046M—were identified in this study. Compared with the wild type and other mutations, the E334K protein level was significantly lower, it was degraded faster, it had a higher level of polyubiquination, and increased in cells pretreated with the proteasome inhibitor MG132 (50 μM, 6 h). The electrical charge of its amino acid at position 334 influenced its stability, but E334K did not affect its phosphorylation. The E334K protein reduced cellular 20 S proteasome activity, increased the proapoptotic/antiapoptotic protein ratio, and enhanced apoptosis in transfected Cos-7 cells and neonatal rat cardiac myocytes. Patients carrying the E334K mutation presented significant left ventricular dysfunction and dilation. The conclusion is the missense MYBPC3 mutation E334K destabilizes its protein through UPS and may contribute to cardiac dysfunction in HCM through impairment of the ubiquitin-proteasome system.  相似文献   

7.
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiac disease. Fourteen sarcomeric and sarcomere‐related genes have been implicated in HCM etiology, those encoding β‐myosin heavy chain (MYH7) and cardiac myosin binding protein C (MYBPC3) reported as the most frequently mutated: in fact, these account for around 50% of all cases related to sarcomeric gene mutations, which are collectively responsible for approximately 70% of all HCM cases. Here, we used denaturing high‐performance liquid chromatography followed by bidirectional sequencing to screen the coding regions of MYH7 and MYBPC3 in a cohort (n = 125) of Italian patients presenting with HCM. We found 6 MHY7 mutations in 9/125 patients and 18 MYBPC3 mutations in 19/125 patients. Of the three novel MYH7 mutations found, two were missense, and one was a silent mutation; of the eight novel MYBPC3 mutations, one was a substitution, three were stop codons, and four were missense mutations. Thus, our cohort of Italian HCM patients did not harbor the high frequency of mutations usually found in MYH7 and MYBPC3. This finding, coupled to the clinical diversity of our cohort, emphasizes the complexity of HCM and the need for more inclusive investigative approaches in order to fully understand the pathogenesis of this disease. J. Cell. Physiol. 226: 2894–2900, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

8.

Background

Hypertrophic cardiomyopathy (HCM) due to mutations in genes encoding sarcomere proteins is most commonly inherited as an autosomal dominant trait. Since nearly 50% of HCM cases occur in the absence of a family history, a recessive inheritance pattern may be involved.

Methods

A pedigree was identified with suspected autosomal recessive transmission of HCM. Twenty-six HCM-related genes were comprehensively screened for mutations in the proband with targeted second generation sequencing, and the identified mutation was confirmed with bi-directional Sanger sequencing in all family members and 376 healthy controls.

Results

A novel missense mutation (c.1469G>T, p.Gly490Val) in exon 17 of MYBPC3 was identified. Two siblings with HCM were homozygous for this mutation, whereas other family members were either heterozygous or wild type. Clinical evaluation showed that both homozygotes manifested a typical HCM presentation, but none of others, including 5 adult heterozygous mutation carriers up to 71 years of age, had any clinical evidence of HCM.

Conclusions

Our data identified a MYBPC3 mutation in HCM, which appeared autosomal recessively inherited in this family. The absence of a family history of clinical HCM may be due to not only a de novo mutation, but also recessive mutations that failed to produce a clinical phenotype in heterozygous family members. Therefore, consideration of recessive mutations leading to HCM is essential for risk stratification and genetic counseling.  相似文献   

9.
MYBPC3基因突变是家族性肥厚型心肌病的原因之一。本文对心脏肌球蛋白结合蛋白C基因(cardic myosin binding protein C,MYBPC3)及其编码蛋白(c My BP-C)进行生物信息学分析。运用生物信息学相关数据库和在线生物学软件分析MYBPC3基因的结构与突变位点,对c My BP-C蛋白分子物种间的序列同源性、蛋白质空间结构、理化性质、组织特异性、蛋白质翻译后修饰、蛋白质相互作用网络进行分析。结果表明人MYBPC3基因mRNA全长为4 217 bp,编码区为3 825 bp,MYBPC3基因编码1 274个氨基酸组成的多肽,与物种进化程度一致,属于免疫球蛋白超家族,是酸性亲水蛋白,稳定性不高,其主要二级结构元件为随机卷曲。与c My BP-C存在相互作用的基因和蛋白主要是磷酸激酶与肌小节组成成分。本文对MYBPC3基因进行生物信息学分析,为深入研究MYBPC3基因的分子功能以及靶向治疗遗传性心肌病提供一定的依据。  相似文献   

10.
Novel mutations in sarcomeric protein genes in dilated cardiomyopathy   总被引:11,自引:0,他引:11  
Mutations in sarcomeric protein genes have been reported to cause dilated cardiomyopathy (DCM). In order to detect novel mutations we screened the sarcomeric protein genes beta-myosin heavy chain (MYH7), myosin-binding protein C (MYBPC3), troponin T (TNNT2), and alpha-tropomyosin (TPM1) in 46 young patients with DCM. Mutation screening was done using single-strand conformation polymorphism (SSCP) analysis and DNA sequencing. The mutations in MYH7 were projected onto the protein data bank-structure (pdb) of myosin of striated muscle. In MYH7 two mutations (Ala223Thr and Ser642Leu) were found in two patients. Ser642Leu is part of the actin-myosin interface. Ala223Thr affects a buried residue near the ATP binding site. In MYBPC3 we found one missense mutation (Asn948Thr) in a male patient. None of the mutations were found in 88 healthy controls and in 136 patients with hypertrophic cardiomyopathy (HCM). Thus mutations in HCM causing genes are not rare in DCM and have potential for functional relevance.  相似文献   

11.
为研究中国人家族性肥厚型心肌病(HCM)的致病基因突变位点, 分析基因型与临床表型的相互关系, 文章在1个中国汉族HCM家系中进行心脏肌钙蛋白T (TNNT2) 基因、心脏肌球蛋白结合蛋白C (MYBPC3) 基因和心脏β-肌球蛋白重链 (MYH7) 基因的突变筛查, 聚合酶链式反应(PCR)扩增基因功能区外显子片段并对PCR产物进行测序分析。结果表明: 在该家系接受调查的7名成员中有4名成员携带MYH7基因c.1273G>A杂合突变, 该突变位点位于MYH7基因的14号外显子并使425位的甘氨酸(Gly)转换为精氨酸(Arg)。该突变首次在国内HCM家系中发现, 突变携带者的临床表型在家系内部呈现明显的异质性。该家系成员TNNT2及MYBPC3基因未发现突变且正常对照组相同位置未发现异常。MYH7基因是我国家族性 HCM的致病基因之一, 携带c.1273G>A突变的肥厚型心肌病患者临床表型差异明显, 提示可能有其它因素参与了肥厚型心肌病的发展过程。  相似文献   

12.

Aims

Mutations in the cardiac myosin-binding protein C gene (MYBPC3) are the most common genetic cause of hypertrophic cardiomyopathy (HCM) worldwide. The molecular mechanisms leading to HCM are poorly understood. We investigated the metabolic profiles of mutation carriers with the HCM-causing MYBPC3-Q1061X mutation with and without left ventricular hypertrophy (LVH) and non-affected relatives, and the association of the metabolome to the echocardiographic parameters.

Methods and Results

34 hypertrophic subjects carrying the MYBPC3-Q1061X mutation, 19 non-hypertrophic mutation carriers and 20 relatives with neither mutation nor hypertrophy were examined using comprehensive echocardiography. Plasma was analyzed for molecular lipids and polar metabolites using two metabolomics platforms. Concentrations of branched chain amino acids, triglycerides and ether phospholipids were increased in mutation carriers with hypertrophy as compared to controls and non-hypertrophic mutation carriers, and correlated with echocardiographic LVH and signs of diastolic and systolic dysfunction in subjects with the MYBPC3-Q1061X mutation.

Conclusions

Our study implicates the potential role of branched chain amino acids, triglycerides and ether phospholipids in HCM, as well as suggests an association of these metabolites with remodeling and dysfunction of the left ventricle.  相似文献   

13.
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease. Variants in MYBPC3, the gene encoding cardiac myosin-binding protein C (cMyBP-C), are the leading cause of HCM. However, the pathogenicity status of hundreds of MYBPC3 variants found in patients remains unknown, as a consequence of our incomplete understanding of the pathomechanisms triggered by HCM-causing variants. Here, we examined 44 nontruncating MYBPC3 variants that we classified as HCM-linked or nonpathogenic according to cosegregation and population genetics criteria. We found that around half of the HCM-linked variants showed alterations in RNA splicing or protein stability, both of which can lead to cMyBP-C haploinsufficiency. These protein haploinsufficiency drivers associated with HCM pathogenicity with 100% and 94% specificity, respectively. Furthermore, we uncovered that 11% of nontruncating MYBPC3 variants currently classified as of uncertain significance in ClinVar induced one of these molecular phenotypes. Our strategy, which can be applied to other conditions induced by protein loss of function, supports the idea that cMyBP-C haploinsufficiency is a fundamental pathomechanism in HCM.  相似文献   

14.
Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are caused by mutations in 14 and 15 different disease genes, respectively, in a part of the patients and the disease genes for cardiomyopathy overlap in part with that for limb-girdle muscular dystrophy (LGMD). In this study, we examined an LGMD gene encoding caveolin-3 (CAV3) for mutation in the patients with HCM or DCM. A Thr63Ser mutation was identified in a sibling case of HCM. Because the mutation was found at the residue that is involved in the LGMD-causing mutations, we investigate the functional change due to the Thr63Ser mutation as compared with the LGMD mutations by examining the distribution of GFP-tagged CAV3 proteins. It was observed that the Thr63Ser mutation reduced the cell surface expression of caveolin-3, albeit the change was mild as compared with the LGMD mutations. These observations suggest that HCM is a clinical spectrum of CAV3 mutations.  相似文献   

15.
Cardiomyopathy is a major cause of heart failure and sudden cardiac death; several mutations in sarcomeric protein genes have been associated with this disease. Our aim in the present study is to investigate the genetic variations in Troponin T (cTnT) gene and its association with dilated cardiomyopathy (DCM) in south-Indian patients. Analyses of all the exons and exon-intron boundaries of cTnT in 147 DCM and in 207 healthy controls had revealed a total of 15 SNPs and a 5 bp INDEL; of which, polymorphic SNPs were compared with the HapMap population data. Interestingly, a novel R144W mutation, that substitutes polar-neutral tryptophan for a highly conserved basic arginine in cTnT, altering the charge drastically, was identified in a DCM, with a family history of sudden-cardiac death (SCD). This mutation was found within the tropomyosin (TPM1) binding domain, and was evolutionarily conserved across species, therefore it is expected to have a significant impact on the structure and function of the protein. Family studies had revealed that the R144W is co-segregating with disease in the family as an autosomal dominant trait, but it was completely absent in 207 healthy controls and in 162 previously studied HCM patients. Further screening of the proband and three of his family members (positive for R144W mutant) with eight other genes β-MYH7, MYBPC3, TPM1, TNNI3, TTN, ACTC, MYL2 and MYL3, did not reveal any disease causing mutation, proposing the absence of compound heterozygosity. Therefore, we strongly suggest that the novel R144W unique/private mutant identified in this study is associated with FDCM. This is furthermore signifying the unique genetic architecture of Indian population.  相似文献   

16.
Hypertrophic cardiomyopathy (HCM) is a genetically transmitted cardiac disease characterized by unexplained myocardial hypertrophy and diverse clinical spectrum. Currently, more than 250 HCM-related mutations in 10 genes encoding contractile sarcomeric proteins have been identified. Phospholamban (PLN) is a modest modulator of intracellular Ca2+ homeostasis and may be a candidate gene responsible for cardiomyopathy. In this study 53 consecutive patients with HCM, coming from Northern Greece, were screened for mutations of PLN gene. The patients were evaluated by clinical history, physical examination, electrocardiogram and echocardiography. All PCR products were analyzed for mutation by both restriction analysis and sequencing. The systematic mutation screening did not reveal any mutation in exons 1 and 2 or in the promoter region of phospholamban gene. Additionally, no polymorphisms were detected in all patients. Therefore, PLN gene mutations were not found to be associated with HCM in a Northern Greece population.  相似文献   

17.
The molecular interactions of the sarcomeric proteins are essential in the regulation of various cardiac functions. Mutations in the gene MYBPC3 coding for cardiac myosin-binding protein-C (cMyBP-C), a multi-domain protein, are the most common cause of hypertrophic cardiomyopathy (HCM). The N-terminal complex, C1-motif-C2 is a central region in cMyBP-C for the regulation of cardiac muscle contraction. However, the mechanism of binding/unbinding of this complex during health and disease is unknown. Here, we study possible mechanisms of unbinding using steered molecular dynamics simulations for the complex in the wild type, in single mutations (E258K in C1, E441K in C2), as well as in a double mutation (E258K in C1 + E441K in C2), which are associated with severe HCM. The observed molecular events and the calculation of force utilized for the unbinding suggest the following: (i) double mutation can encourage the formation of rigid complex that required large amount of force and long-time to unbind, (ii) C1 appears to start to unbind ahead of C2 regardless of the mutation, and (iii) unbinding of C2 requires larger amount of force than C1. This molecular insight suggests that key HCM-causing mutations might significantly modify the native affinity required for the assembly of the domains in cMyBP-C, which is essential for normal cardiac function.  相似文献   

18.
目的:研究中国汉族肥厚型心肌病人群中α-Galactosidase A突变的患病率及其临床表现。方法:对439名肥厚型心肌病患者及156名健康对照GLA基因进行全外显子测序,及基因型及临床表型进行关联分析。结果:确定了2个致病性突变,包括1个错义突变E66Q和1个剪接位点的突变c.547+1GC。2个突变在156名健康人群未发现,在1000人基因组计划中未报道。确定中国汉族肥厚型心肌病人群中α-Galactosidase A突变0.45%的患病率。结论:Fabry病在中国汉族肥厚型心肌病人群中α-Galactosidase A突变的患病率较低。基因检测有助于Fabry病与肥厚型心肌病的鉴别诊断。  相似文献   

19.
Familial Hypertrophic Cardiomyopathy (FHC) is an autosomal dominant disorder affecting the cardiac muscle and exhibits varied clinical symptoms because of genetic heterogeneity. Several disease causing genes have been identified and most code for sarcomere proteins. In the current study, we have carried out clinical and molecular analysis of FHC patients from India. FHC was detected using echocardiography and by analysis of clinical symptoms and family history. Disease causing mutations in the β-cardiac myosin heavy chain (MYH7) and Myosin binding protein C3 (MYBPC3) genes were identified using Polymerase Chain Reaction-Deoxyribose Nucleic Acid (PCR-DNA) sequencing. Of the 55 patient samples screened, mutations were detected in only nineteen in the two genes; MYBPC3 mutations were identified in 12 patients while MYH7 mutations were identified in five, two patients exhibited double heterozygosity. All four MYH7 mutations were missense mutations, whereas only 3/9 MYPBC3 mutations were missense mutations. Four novel mutations in MYBPC3 viz. c.456delC, c.2128G>A (p.E710K), c.3641G>A (p.W1214X), and c.3656T>C (p.L1219P) and one in MYH7 viz. c.965C>T (p.S322F) were identified. A majority of missense mutations affected conserved amino acid residues and were predicted to alter the structure of the corresponding mutant proteins. The study has revealed a greater frequency of occurrence of MYBPC3 mutations when compared to MYH7 mutations.  相似文献   

20.

Background  

In Maine Coon (MC) cats the c.91G > C mutation in the gene MYBPC3, coding for cardiac myosin binding protein C (cMyBP-C), is associated with feline hypertrophic cardiomyopathy (fHCM). The mutation causes a substitution of an alanine for a proline at residue 31 (p.A31P) of cMyBP-C. The pattern of inheritance has been considered autosomal dominant based on a single pedigree. However, larger studies are needed to establish the significance of cats being heterozygous or homozygous for the mutation with respect to echocardiographic indices and the probability of developing fHCM. The objective of the present study was to establish the clinical significance of being homozygous or heterozygous for the p.A31P cMyBP-C mutation in young to middle-aged cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号