首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effects of climate change and forest management scenarios on net climate impacts (radiative forcing) of production and utilization of energy biomass, in a Norway spruce forest area over an 80‐year simulation period in Finnish boreal conditions. A stable age‐class distribution was used in model‐based analyses to identify purely the management effects under the current and changing climate (SRES B1 and A2 scenarios). The radiative forcing was calculated based on an integrated use of forest ecosystem model simulations and a life cycle assessment (LCA) tool. In this work, forest‐based energy was used to substitute coal, and current forest management (baseline management) was used as a reference management. In alternative management scenarios, the stocking was maintained 20% higher in thinning compared to the baseline management, and nitrogen fertilization was applied. Intensity of energy biomass harvest (e.g. logging residues, coarse roots and stumps) was varied in the final felling of the stands at the age of 80 years. Also, the economic profitability (NPV, 3% interest rate) of integrated production of timber and energy biomass was calculated for each management scenario. Our results showed that compared to the baseline management, climate benefits could be increased by maintaining higher stocking in thinning over rotation, using nitrogen fertilization and harvesting logging residues, stumps and coarse roots in the final felling. Under the gradually changing climate (in both SRES B1 and A2), the climate benefits were lower compared to the current climate. Trade‐offs between NPV and net climate impacts also existed.  相似文献   

2.
Radiative forcing of natural forest disturbances   总被引:1,自引:0,他引:1  
Forest disturbances are major sources of carbon dioxide to the atmosphere, and therefore impact global climate. Biogeophysical attributes, such as surface albedo (reflectivity), further control the climate‐regulating properties of forests. Using both tower‐based and remotely sensed data sets, we show that natural disturbances from wildfire, beetle outbreaks, and hurricane wind throw can significantly alter surface albedo, and the associated radiative forcing either offsets or enhances the CO2 forcing caused by reducing ecosystem carbon sequestration over multiple years. In the examined cases, the radiative forcing from albedo change is on the same order of magnitude as the CO2 forcing. The net radiative forcing resulting from these two factors leads to a local heating effect in a hurricane‐damaged mangrove forest in the subtropics, and a cooling effect following wildfire and mountain pine beetle attack in boreal forests with winter snow. Although natural forest disturbances currently represent less than half of gross forest cover loss, that area will probably increase in the future under climate change, making it imperative to represent these processes accurately in global climate models.  相似文献   

3.
We investigated how the initial age structure of a managed, middle boreal (62°N), Norway spruce-dominated (Picea abies L. Karst.) forest area affects the net climate impact of using forest biomass for energy. The model-based analysis used a gap-type forest ecosystem model linked to a life cycle assessment (LCA) tool. The net climate impact of energy biomass refers to the difference in annual net CO2 exchange between the biosystem using forest biomass (logging residues from final felling) and the fossil (reference) system using coal. In the simulations over the 80-year period, the alternative initial age structures of the forest areas were (i) skewed to the right (dominated by young stands), (ii) normally distributed (dominated by middle-aged stands), (iii) skewed to the left (dominated by mature stands), and (iv) evenly distributed (same share of different age classes). The effects of management on net climate impacts were studied using current recommendations as a baseline with a fixed rotation period of 80 years. In alternative management scenarios, the volume of the growing stock was maintained 20% higher over the rotation compared to the baseline, and/or nitrogen fertilization was used to enhance carbon sequestration. According to the results, the initial age structure of the forest area affected largely the net climate impact of using energy biomass over time. An initially right-skewed age structure produced the highest climate benefits over the 80-year simulation period, in contrast to the left-skewed age structure. Furthermore, management that enhanced carbon sequestration increased the potential of energy biomass to replace coal, reducing CO2 emissions and enhancing climate change mitigation.  相似文献   

4.
Boreal forests are important global carbon (C) sinks and, therefore, considered as a key element in climate change mitigation policies. However, their actual C sink strength is uncertain and under debate, particularly for the actively managed forests in the boreal regions of Fennoscandia. In this study, we use an extensive set of biometric- and chamber-based C flux data collected in 50 forest stands (ranging from 5 to 211 years) over 3 years (2016–2018) with the aim to explore the variations of the annual net ecosystem production (NEP; i.e., the ecosystem C balance) across a 68 km2 managed boreal forest landscape in northern Sweden. Our results demonstrate that net primary production rather than heterotrophic respiration regulated the spatio-temporal variations of NEP across the heterogeneous mosaic of the managed boreal forest landscape. We further find divergent successional patterns of NEP in our managed forests relative to naturally regenerating boreal forests, including (i) a fast recovery of the C sink function within the first decade after harvest due to the rapid establishment of a productive understory layer and (ii) a sustained C sink in old stands (131–211 years). We estimate that the rotation period for optimum C sequestration extends to 138 years, which over multiple rotations results in a long-term C sequestration rate of 86.5 t C ha−1 per rotation. Our study highlights the potential of forest management to maximize C sequestration of boreal forest landscapes and associate climate change mitigation effects by developing strategies that optimize tree biomass production rather than heterotrophic soil C emissions.  相似文献   

5.
Wood harvesting in boreal forests typically consists of sequential harvesting operations within a rotation: a few thinnings and a final felling. The aim of this paper is to model differentiated relative global warming potential (GWP) coefficients for stemwood use from different thinnings and final fellings, and correction factors for long‐lived wood products, potentially applicable in life cycle assessment studies. All thinnings and final fellings influence the development of forest carbon stocks. The climate impact of a single harvesting operation is generated in comparison with no harvesting, thus encountering a methodological problem on how to handle the subsequent operations. The dynamic forest stand simulator MOTTI was applied in the modelling of evolution of forest carbon stocks at landscape level in Southern Finland. The landscape‐level approach for climate impact assessment gave results similar to some stand‐level approaches presented in previous literature that included the same forest C pools and also studied the impacts relative to the no‐harvest situation. The climate impacts of stemwood use decreased over time. For energy use, the impacts were higher or similar in the short term and 0–50% lower in the midterm in comparison with an identical amount of fossil CO2. The impacts were to some extent (approximately 20–40%) lower for wood from intermediate thinnings than for wood from final fellings or first thinnings. However, the study reveals that product lifetime has higher relative influence on the climate impacts of wood‐based value chains than whether the stemwood originates from thinnings or final fellings. Although the evolution of future C stocks in unmanaged boreal forests is uncertain, a sensitivity analysis suggests that landscape‐level model results for climate impacts would not be sensitive to the assumptions made on the future evolution of C stocks in unmanaged forest. Energy use of boreal stemwood seems to be far from climate neutral.  相似文献   

6.
Bioenergy from forest residues can be used to avoid fossil carbon emissions, but removing biomass from forests reduces carbon stock sizes and carbon input to litter and soil. The magnitude and longevity of these carbon stock changes determine how effective measures to utilize bioenergy from forest residues are to reduce greenhouse gas (GHG) emissions from the energy sector and to mitigate climate change. In this study, we estimate the variability of GHG emissions and consequent climate impacts resulting from producing bioenergy from stumps, branches and residual biomass of forest thinning operations in Finland, and the contribution of the variability in key factors, i.e. forest residue diameter, tree species, geographical location of the forest biomass removal site and harvesting method, to the emissions and their climate impact. The GHG emissions and the consequent climate impacts estimated as changes in radiative forcing were comparable to fossil fuels when bioenergy production from forest residues was initiated. The emissions and climate impacts decreased over time because forest residues were predicted to decompose releasing CO2 even if left in the forest. Both were mainly affected by forest residue diameter and climatic conditions of the forest residue collection site. Tree species and the harvest method of thinning wood (whole tree or stem‐only) had a smaller effect on the magnitude of emissions. The largest reduction in the energy production climate impacts after 20 years, up to 62%, was achieved when coal was replaced by the branches collected from Southern Finland, whereas the smallest reduction 7% was gained by using stumps from Northern Finland instead of natural gas. After 100 years the corresponding values were 77% and 21%. The choice of forest residue biomass collected affects significantly the emissions and climate impacts of forest bioenergy.  相似文献   

7.
Climate change will drive significant changes in vegetation cover and also impact efforts to restore ecosystems that have been disturbed by human activities. Bitumen mining in the Alberta oil sands region of western Canada requires reclamation to “equivalent land capability,” implying establishment of vegetation similar to undisturbed boreal ecosystems. However, there is consensus that this region will be exposed to relatively severe climate warming, causing increased occurrence of drought and wildfire, which threaten the persistence of both natural and reclaimed ecosystems. We used a landscape model, LANDIS‐II, to simulate plant responses to climate change and disturbances, forecasting changes to boreal forests within the oil sands region. Under the most severe climate forcing scenarios (representative concentration pathway [RCP] 8.5) the model projected substantial decreases in forest biomass, with the future forest being dominated by drought‐ and fire‐tolerant species characteristic of parkland or prairie ecosystems. In contrast, less extreme climate forcing scenarios (RCPs 2.6 and 4.5) had relatively minor effects on forest composition and biomass with boreal conifers continuing to dominate the landscape. If the climate continues to change along a trajectory similar to those simulated by climate models for the RCP 8.5 forcing scenario, current reclamation goals to reestablish spruce‐dominated boreal forest will likely be difficult to achieve. Results from scenario modeling studies such as ours, and continued monitoring of change in the boreal forest, will help inform reclamation practices, which could include establishment of species better adapted to warmer and drier conditions.  相似文献   

8.
Expanding high‐elevation and high‐latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south‐central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land‐use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow‐covered tundra areas. The positive climate feedback of high‐latitude and high‐elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts.  相似文献   

9.
The Northern Hemisphere's boreal forests, particularly the Siberian boreal forest, may have a strong effect on Earth's climate through changes in dominant vegetation and associated regional surface albedo. We show that warmer climate will likely convert Siberia's deciduous larch (Larix spp.) to evergreen conifer forests, and thus decrease regional surface albedo. The dynamic vegetation model, FAREAST, simulates Russian boreal forest composition and was used to explore the feedback between climate change and forest composition at continental, regional, and local scales. FAREAST was used to simulate the impact of changes in temperature and precipitation on total and genus‐level biomass at sites across Siberia and the Russian Far East (RFE), and for six high‐ and low‐diversity regions. Model runs with and without European Larch (Larix decidua) included in the available species pool were compared to assess the potential for this species, which is adapted to warmer climate conditions, to mitigate the effects of climate change, especially the shift to evergreen dominance. At the continental scale, when temperature is increased, larch‐dominated sites become vulnerable to early replacement by evergreen conifers. At the regional and local scales, the diverse Amur region of the RFE does not show a strong response to climate change, but the low‐diversity regions in central and southern Siberia have an abrupt vegetation shift from larch‐dominated forest to evergreen‐conifer forest in response to increased temperatures. The introduction of L. decidua prevents the collapse of larch in these low‐diversity areas and thus mitigates the response to warming. Using contemporary MODIS albedo measurements, we determined that a conversion from larch to evergreen stands in low‐diversity regions of southern Siberia would generate a local positive radiative forcing of 5.1±2.6 W m?2. This radiative heating would reinforce the warming projected to occur in the area under climate change.  相似文献   

10.
Empirical models alongside remotely sensed and station measured meteorological observations are employed to investigate both the local and global direct climate change impacts of alternative forest management strategies within a boreal ecosystem of eastern Norway. Stand‐level analysis is firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across conifer, deciduous, and clear‐cut sites. Relative to a conifer site, a slight local cooling of ?0.13 °C at a deciduous site and ?0.25 °C at a clear‐cut site were observed over a 6‐year period, which were mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes – despite predicted long‐term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies jointly promoted an enhanced material supply over business‐as‐usual levels. Expressed in terms of an equivalent CO2 emission pulse at the start of the simulation, the net climate response at the end of the 21st century spanned ?8 to ?159 Tg‐CO2‐eq., depending on whether near‐term harvest levels increased or followed current trends, respectively. This magnitude equates to approximately ?20 to ?300% of Norway's annual domestic (production) emission impact. Our analysis supports the assertion that a carbon‐only focus in the design and implementation of forest management policy in boreal and other climatically similar regions can be counterproductive – and at best – suboptimal if boreal forests are to be used as a tool to mitigate global warming.  相似文献   

11.
Carbon stocks in managed forests of Ontario, Canada, and in harvested wood products originated from these forests were estimated for 2010–2100. Simulations included four future forest harvesting scenarios based on historical harvesting levels (low, average, high, and maximum available) and a no‐harvest scenario. In four harvesting scenarios, forest carbon stocks in Ontario's managed forest were estimated to range from 6202 to 6227 Mt C (millions of tons of carbon) in 2010, and from 6121 to 6428 Mt C by 2100. Inclusion of carbon stored in harvested wood products in use and in landfills changed the projected range in 2100 to 6710–6742 Mt C. For the no‐harvest scenario, forest carbon stocks were projected to change from 6246 Mt C in 2010 to 6680 Mt C in 2100. Spatial variation in projected forest carbon stocks was strongly related to changes in forest age (r = 0.603), but had weak correlation with harvesting rates. For all managed forests in Ontario combined, projected carbon stocks in combined forest and harvested wood products converged to within 2% difference by 2100. The results suggest that harvesting in the boreal forest, if applied within limits of sustainable forest management, will eventually have a relatively small effect on long‐term combined forest and wood products carbon stocks. However, there was a large time lag to approach carbon equality, with more than 90 years with a net reduction in stored carbon in harvested forests plus wood products compared to nonharvested boreal forest which also has low rates of natural disturbance. The eventual near equivalency of carbon stocks in nonharvested forest and forest that is harvested and protected from natural disturbance reflects both the accumulation of carbon in harvested wood products and the relatively young age at which boreal forest stands undergo natural succession in the absence of disturbance.  相似文献   

12.
The study describes an integrated impact assessment tool for the net carbon dioxide (CO2) exchange in forest production. The components of the net carbon exchange include the uptake of carbon into biomass, the decomposition of litter and humus, emissions from forest management operations and carbon released from the combustion of biomass and degradation of wood‐based products. The tool enables the allocation of the total carbon emissions to the timber and energy biomass and to the energy produced on the basis of biomass. In example computations, ecosystem model simulations were utilized as an input to the tool. We present results for traditional timber production (pulpwood and saw logs) and integrated timber and bioenergy production (logging residues, stumps and roots) for Norway spruce, in boreal conditions in Finland, with two climate scenarios over one rotation period. The results showed that the magnitude of management related emissions on net carbon exchange was smaller when compared with the total ecosystem fluxes; decomposition being the largest emission contributor. In addition, the effects of management and climate were higher on the decomposition of new humus compared with old humus. The results also showed that probable increased biomass growth, obtained under the changing climate (CC), could not compensate for decomposition and biomass combustion related carbon loss in southern Finland. In our examples, the emissions allocated for the energy from biomass in southern Finland were 172 and 188 kg CO2 MW h?1 in the current climate and in a CC, respectively, and 199 and 157 kg CO2 MW h?1 in northern Finland. This study concludes that the tool is suitable for estimating the net carbon exchange of forest production. The tool also enables the allocation of direct and indirect carbon emissions, related to forest production over its life cycle, in different environmental conditions and for alternative time periods and land uses. Simulations of forest management regimes together with the CC give new insights into ecologically sustainable forest bioenergy and timber production, as well as climate change mitigation options in boreal forests.  相似文献   

13.
Drought‐induced, regional‐scale dieback of forests has emerged as a global concern that is expected to escalate under model projections of climate change. Since 2000, drought of unusual severity, extent, and duration has affected large areas of western North America, leading to regional‐scale dieback of forests in the southwestern US. We report on drought impacts on forests in a region farther north, encompassing the transition between boreal forest and prairie in western Canada. A central question is the significance of drought as an agent of large‐scale tree mortality and its potential future impact on carbon cycling in this cold region. We used a combination of plot‐based, meteorological, and remote sensing measures to map and quantify aboveground, dead biomass of trembling aspen (Populus tremuloides Michx.) across an 11.5 Mha survey area where drought was exceptionally severe during 2001–2002. Within this area, a satellite‐based land cover map showed that aspen‐dominated broadleaf forests occupied 2.3 Mha. Aerial surveys revealed extensive patches of severe mortality (>55%) resembling the impacts of fire. Dead aboveground biomass was estimated at 45 Mt, representing 20% of the total aboveground biomass, based on a spatial interpolation of plot‐based measurements. Spatial variation in percentage dead biomass showed a moderately strong correlation with drought severity. In the prairie‐like, southern half of the study area where the drought was most severe, 35% of aspen biomass was dead, compared with an estimated 7% dead biomass in the absence of drought. Drought led to an estimated 29 Mt increase in dead biomass across the survey area, corresponding to 14 Mt of potential future carbon emissions following decomposition. Many recent, comparable episodes of drought‐induced forest dieback have been reported from around the world, which points to an emerging need for multiscale monitoring approaches to quantify drought effects on woody biomass and carbon cycling across large areas.  相似文献   

14.
The net CO2 exchange of forests was investigated to study net atmospheric impact of forest bioenergy production (BP) and utilization in Finnish boreal conditions. Net CO2 exchange was simulated with a life cycle assessment tool over a 90‐year period and over the whole Finland based on National Forest Inventory data. The difference in the net exchanges between the traditional timber production (TP) and BP regime was considered the net atmospheric impact of forest bioenergy utilization. According to the results, forests became net sources of CO2 after about 20 years of simulation, and the net exchange was higher in the BP regime than in the TP regime until the middle of the simulation period. From 2040 onwards, the net exchange started to decrease in both regimes and became higher in the TP regime, excluding the last decade of the simulation. The shift of forests to becoming a CO2 source reflected the decrease in CO2 sequestration due to the increasing share of recently harvested and seedling stands that are acting as sources of CO2, and an increase of emissions from degradation of wood products. When expressed in terms of radiative forcing, the net atmospheric impact was on average 19% less for bioenergy compared with that for coal energy over the whole simulation period. The results show the importance of time dependence when considering dynamic forest ecosystems in BP and climate change mitigation. Furthermore, the results emphasize the dualistic role and possibilities of forest management in controlling the build and release of carbon into and from the stocks and in controlling the rate of the build speed, i.e. growth. This information is needed in identifying the capability and possibilities of ecosystems to produce biomass for energy, alongside other products and ecosystem services (e.g. pulp wood and timber), and simultaneously to mitigate climate change.  相似文献   

15.
罗旭  梁宇  贺红士  黄超  张庆龙 《生态学报》2019,39(20):7656-7669
气候变化及相应火干扰在不同尺度上影响着我国大兴安岭地区森林动态,且在未来的影响可能继续加剧。为了提高森林生态功能和应对气候变暖,国家在分类经营基础上全面实施抚育采伐和补植造林,效果较好,但抚育采伐对森林主要树种的长期影响知之甚少,其在未来气候下的可持续性也有待进一步评估,同时,探讨造林措施对未来森林的影响也显得尤为重要。本文运用森林景观模型LANDIS PRO,模拟气候变化及火干扰、采伐和造林对大兴安岭地区主要树种的长期影响。结果表明:1)模型初始化、短期和长期模拟结果均得到了有效验证,模拟结果与森林调查数据之间无显著性差异(P0.05),基于火烧迹地数据的林火干扰验证亦能够反映当前火干扰的效果,模型模拟结果的可信度较高;2)与当前气候相比,气候变暖及火干扰明显改变了树种组成、年龄结构和地上生物量,B1气候下研究区森林基本上以针叶树种为主要树种,A2气候下优势树种向阔叶树转变;3)与无采伐预案相比,当前气候下,抚育采伐使落叶松的林分密度和地上生物量分别降低了(165±94.9)株/hm~2和(8.5±5.1) Mg/hm~2,增加了樟子松、白桦和云杉等树木株数和地上生物量(3.3—753.4株/hm~2和0.2—4.0 Mg/hm~2),而对山杨的影响较小;B1和A2气候下抚育采伐显著改变林分密度,降低景观尺度地上生物量,进而表现为不可持续;4)B1气候下,推荐实施中低强度造林预案(10%和20%强度),在A2气候下,各强度造林均可在模拟后期增加树种地上生物量。  相似文献   

16.
Conventional cost‐effectiveness calculations ignore the implications of greenhouse gas (GHG) emissions timing and thus may not properly inform decision‐makers in the efficient allocation of resources to mitigate climate change. To begin to address this disconnect with climate change science, we modify the conventional cost‐effectiveness approach to account for emissions timing. GHG emissions flows occurring over time are translated into an ‘Equivalent Present Emission’ based on radiative forcing, enabling a comparison of system costs and emissions on a consistent present time basis. We apply this ‘Present Cost‐Effectiveness’ method to case studies of biomass‐based electricity generation (biomass co‐firing with coal, biomass cogeneration) to evaluate implications of forest carbon trade‐offs on the cost‐effectiveness of emission reductions. Bioenergy production from forest biomass can reduce forest carbon stocks, an immediate emissions source that contributes to atmospheric greenhouse gases. Forest carbon impacts thereby lessen emission reductions in the near‐term relative to the assumption of biomass ‘carbon neutrality’, resulting in higher costs of emission reductions when emissions timing is considered. In contrast, conventional cost‐effectiveness approaches implicitly evaluate strategies over an infinite analytical time horizon, underestimating nearer term emissions reduction costs and failing to identify pathways that can most efficiently contribute to climate change mitigation objectives over shorter time spans (e.g. up to 100 years). While providing only a simple representation of the climate change implications of emissions timing, the Present Cost‐Effectiveness method provides a straightforward approach to assessing the cost‐effectiveness of emission reductions associated with any climate change mitigation strategy where future GHG reductions require significant initial capital investment or increase near‐term emissions. Timing is a critical factor in determining the attractiveness of any investment; accounting for emissions timing can better inform decisions related to the merit of alternative resource uses to meet near‐, mid‐, and long‐term climate change mitigation objectives.  相似文献   

17.
Aim An understanding of the relationship between forest biomass and climate is needed to predict the impacts of climate change on carbon stores. Biomass patterns have been characterized at geographically or climatically restricted scales, making it unclear if biomass is limited by climate in any general way at continental to global scales. Using a dataset spanning multiple climatic regions we evaluate the generality of published biomass–climate correlations. We also combine metabolic theory and hydraulic limits to plant growth to first derive and then test predictions for how forest biomass should vary with maximum individual tree biomass and the ecosystem water deficit. Location Temperate forests and dry, moist and wet tropical forests across North, Central and South America. Methods A forest biomass model was derived from allometric functions and power‐law size distributions. Biomass and climate were correlated using extensive forest plot (276 0.1‐ha plots), wood density and climate datasets. Climate variables included mean annual temperature, annual precipitation, their ratio, precipitation of the driest quarter, potential and actual evapotranspiration, and the ecosystem water deficit. The water deficit uniquely summarizes water balance by integrating water inputs from precipitation with water losses due to solar energy. Results Climate generally explained little variation in forest biomass, and mixed support was found for published biomass–climate relationships. Our theory indicated that maximum individual biomass governs forest biomass and is constrained by water deficit. Indeed, forest biomass was tightly coupled to maximum individual biomass and the upper bound of maximum individual biomass declined steeply with water deficit. Water deficit similarly constrained the upper bound of forest biomass, with most forests below the constraint. Main conclusions The results suggest that: (1) biomass–climate models developed at restricted geographic/climatic scales may not hold at broader scales; (2) maximum individual biomass is strongly related to forest biomass, suggesting that process‐based models should focus on maximum individual biomass; (3) the ecosystem water deficit constrains biomass, but realized biomass often falls below the constraint; such that (4) biomass is not strongly limited by climate in most forests so that forest biomass may not predictably respond to changes in mean climate.  相似文献   

18.
Here we analyse the radiative forcing implications of forest fertilization and biomass substitution, with explicit consideration of the temporal patterns of greenhouse gas (GHG) emissions to and removals from the atmosphere (net emissions). We model and compare the production and use of biomass from a hectare of fertilized and non-fertilized forest land in northern Sweden. We calculate the annual net emissions of CO2, N2O and CH4 for each system, over a 225-year period with 1-year time steps. We calculate the annual atmospheric concentration decay of each of these emissions, and calculate the resulting annual changes in instantaneous and cumulative radiative forcing. We find that forest fertilization can significantly increase biomass production, which increases the potential for material and energy substitution. The average carbon stock in tree biomass, forest soils and wood products all increase when fertilization is used. The additional GHG emissions due to fertilizer production and application are small compared to increases in substitution benefits and carbon stock. The radiative forcing of the 2 stands is identical for the first 15?years, followed by 2?years during which the fertilized stand produces slightly more radiative forcing. After year 18 the instantaneous and cumulative radiative forcing are consistently lower for the fertilized forest system. Both stands result in long-term negative radiative forcing, or cooling of the earth system. By the end of the 225-year simulation period, the cumulative radiative forcing reduction of the fertilized stand is over twice that of the non-fertilized stand. This suggests that forest fertilization and biomass substitution are effective options for climate change mitigation, as climate change is a long term issue.  相似文献   

19.
Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha?1 year?1, 95% Bayesian confidence interval (CI), 1.22–1.68) and early‐successional coniferous forests (ESC) (1.42, CI, 1.30–1.56) than mixed forests (MIX) (0.80, CI, 0.50–1.11) and late‐successional coniferous (LSC) forests (0.62, CI, 0.39–0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha?1 year?1 per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha?1 year?1 in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha?1 year?1 in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late‐successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass.  相似文献   

20.
This study investigated the sensitivity of managed boreal forests to climate change, with consequent needs to adapt the management to climate change. Model simulations representing the Finnish territory between 60 and 70 degrees N showed that climate change may substantially change the dynamics of managed boreal forests in northern Europe. This is especially probable at the northern and southern edges of this forest zone. In the north, forest growth may increase, but the special features of northern forests may be diminished. In the south, climate change may create a suboptimal environment for Norway spruce. Dominance of Scots pine may increase on less fertile sites currently occupied by Norway spruce. Birches may compete with Scots pine even in these sites and the dominance of birches may increase. These changes may reduce the total forest growth locally but, over the whole of Finland, total forest growth may increase by 44%, with an increase of 82% in the potential cutting drain. The choice of appropriate species and reduced rotation length may sustain the productivity of forest land under climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号