首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecosystem processes are important determinants of the biogeochemistry of the ocean, and they can be profoundly affected by changes in climate. Ocean models currently express ecosystem processes through empirically derived parameterizations that tightly link key geochemical tracers to ocean physics. The explicit inclusion of ecosystem processes in models will permit ecological changes to be taken into account, and will allow us to address several important questions, including the causes of observed glacial–interglacial changes in atmospheric trace gases and aerosols, and how the oceanic uptake of CO2 is likely to change in the future. There is an urgent need to assess our mechanistic understanding of the environmental factors that exert control over marine ecosystems, and to represent their natural complexity based on theoretical understanding. We present a prototype design for a Dynamic Green Ocean Model (DGOM) based on the identification of (a) key plankton functional types that need to be simulated explicitly to capture important biogeochemical processes in the ocean; (b) key processes controlling the growth and mortality of these functional types and hence their interactions; and (c) sources of information necessary to parameterize each of these processes within a modeling framework. We also develop a strategy for model evaluation, based on simulation of both past and present mean state and variability, and identify potential sources of validation data for each. Finally, we present a DGOM-based strategy for addressing key questions in ocean biogeochemistry. This paper thus presents ongoing work in ocean biogeochemical modeling, which, it is hoped will motivate international collaborations to improve our understanding of the role of the ocean in the climate system.  相似文献   

2.
The relationship between vertical migration, estuarine retention and species-specific patterns of longitudinal distribution of the pelagic larvae of rainbow smelt, Osmerus mordax , and tomcod, Microgadus tomcod , was investigated in the upper section of the St Lawrence Middle Estuary. We hypothesized that the species-specific use of the vertical pattern of current exhibited by the two species results in the partitioning of the estuarine habitat in the longitudinal plane while assuring retention. Important differences in the longitudinal distribution of tomcod and smelt larvae were related to the ontogeny of their vertical distribution in the water column. In June, small tomcod and smelt larvae are generally associated with waters of salinities less than 5%o. As the larvae grow, their vertical distribution patterns change, leading to a horizontal separation of the two species. Tomcod juveniles migrate downstream into colder, more saline waters, whereas larger smelt larvae migrate upstream into warmer, tidal fresh waters. Ontogenetic changes in vertical distribution serve to concentrate larvae in specific conditions that may optimize physiological conditions and also permit population persistence.  相似文献   

3.
In a flooded Fenland brickpit 3 metres deep a 24-hr study (supplemented by other observations in the field and in the laboratory) revealed marked changes with depth and time in oxygen concentration, pH, total carbon dioxide, ammonium, oxidised nitrogen, phosphate and silica; as well as changes in the rate of cell-division and the vertical distribution of phytoplankton (Dinobryon and Peridinium), and the feeding and vertical movement of zooplankton (copepods, Bosmina, Ceriodaphnia, Polyarthra and Keratella). Directional trapping of zooplankton revealed relationships between population density and the intensity of locomotory activity (a relationship subsequently supported by laboratory experiments), and between the rate of change of light intensity and the direction of swimming. Significant temporal segregation of the occupancy of a given level by zooplankters implies interspecific competition. Transient peaks in the concentrations of some nutrients near the surface are tentatively attributed to nutrient release by zooplankters that have fed at depth. Small-scale temporal and spatial heterogeneity of the type described here may help to explain the paradox of the plankton.These marked diel changes in water chemistry suggest that conclusions based on the analysis of single water samples should be viewed with caution.[/p]  相似文献   

4.
Like most benthic marine organisms, coral reef fishes produce larvae that traverse open ocean waters before settling and metamorphosing into juveniles. Where larvae are transported and how they survive is a central question in marine and fisheries ecology. While there is increasing success in modelling potential larval trajectories, our knowledge of the physical and biological processes contributing to larval survivorship during dispersal remains relatively poor. Mesoscale eddies (MEs) are ubiquitous throughout the world''s oceans and their propagation is often accompanied by upwelling and increased productivity. Enhanced production suggests that eddies may serve as important habitat for the larval stages of marine organisms, yet there is a lack of empirical data on the growth rates of larvae associated with these eddies. During three cruises in the Straits of Florida, we sampled larval fishes inside and outside five cyclonic MEs. Otolith microstructure analysis revealed that four of five species of reef fish examined had consistently faster growth inside these eddies. Because increased larval growth often leads to higher survivorship, larvae that encounter MEs during transit are more likely to contribute to reef populations. Successful dispersal in oligotrophic waters may rely on larval encounter with such oceanographic features.  相似文献   

5.
Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3‐D coupled physical‐biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate‐change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom‐up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels.  相似文献   

6.
1. Invasion of tropical zooplankton into temperate lakes provides an interesting opportunity to explore habitat segregation in a thermal gradient. 2. We explored differing vertical positioning of native and exotic Daphnia (Daphnia mendotae and Daphnia lumholtzi) in a large indoor mesocosm system (Plön plankton towers) during 2 month‐long experiments. The two towers were manipulated to provide gradients of both temperature (15–29 °C) and algal food (0.05–0.58 mg C L?1) and a day–night cycle. 3. Both juvenile and adult D. lumholtzi showed a ‘typical’ vertical migration pattern, with higher densities in the epilimnion at night than during the day. They avoided the food‐poor middle layer. In contrast, D. mendotae adults showed little tendency to migrate into the epilimnion at night, remaining in the cooler hypolimnion while juveniles migrated. The vertical distribution of D. mendotae appeared unaffected by the presence of D. lumholtzi. 4. The strong migration behaviour of D. lumholtzi in the absence of fish cues suggests that this behaviour may be a constitutive trait. Habitat partitioning of the two species is probably the result of different thermal tolerances, with D. mendotae constrained to remaining in deeper water by high temperatures in the epilimnion and the tropical D. lumholtzi able to use the warm epilimnion at night.  相似文献   

7.
深远海浮游动物生态学研究进展   总被引:5,自引:0,他引:5  
孙栋  王春生 《生态学报》2017,37(10):3219-3231
深远海浮游生态系统依据水深的差别可以被划分为几个子系统,包括上层、中层、深层和深渊层等。目前大量的研究结果表明在海洋上层,由于光照、温度、海冰和营养盐补充等因素的影响,浮游生物群落往往呈现出显著的时空变化。但在海洋中层及更深的区域,传统观点认为随着水深的增加,海洋的理化环境趋向于稳定,在这一区域生态系统的时空变化要弱于海洋上层。同时受调查技术和经费的限制,人们对于这一广阔区域内浮游生态系统时空变化规律的认识要局限的多。随着我国海洋科学的发展和海洋强国战略的实施,海洋科学研究也逐渐由过去的以近海研究为主发展到当前的近海、边缘海和深远海研究协同发展。但与我国近海浮游生态学过去数十年间积累的大量研究成果相比,我国科学家对深远海,特别是中层、深层和深渊层浮游生态学方面的研究极为缺乏。从大洋浮游动物群落的垂直分布及其变化、种间关系与生态位分化、深海浮游动物群落在碳沉降和生物地球化学循环中的作用等多个角度全面总结了当前国内外深海浮游生态学的研究进展,同时介绍过去十余年来深海浮游生态学研究技术手段上的巨大进步,以期为今后国内同行的研究提供参考和借鉴。  相似文献   

8.
J. Easton  M. Gophen 《Hydrobiologia》2003,491(1-3):91-100
Diel vertical migration (DVM) behaviour is a predator avoidance mechanism observed within many zooplankton species in the presence of zooplanktivorous fish. A 24-h survey was carried out in June 1998 to investigate diel variation in the vertical distribution of fish, zooplankton and phytoplankton (chlorophyll) in Lake Kinneret, Israel. Fish revealed diel variation in vertical distribution but had no spatial overlap with zooplankton, and consequently no apparent influence on zooplankton dispersal. Zooplankton revealed some diel variation in distribution being affected by thermocline and oxycline position and movement of the internal the internal seiche wave. Cyclopoid species closely follow the movement of the seiche wave implying that, due to their greater motility, they are following conditions that are suitable to them. The Cladocera species and small rotifers only partly, which may be part of their phototaxic behaviour. Physical forces like convection, horizontal and vertical forcing probably have a role in contributing to a homogeneous distribution of the plankton by preventing stratification or interfering with the more motile zooplankton which may be attempting to migrate.  相似文献   

9.
Mesoscale eddies of the ocean (with a characteristic diameter of about 100 km and a life time-span of about several weeks) are habitats of plankton organisms, many of which are bioluminescent. The spatial heterogeneity of bioluminescence of the upper mixed layer associated with the impact of mesoscale eddies is poorly studied. The 45-year historical data set was retrieved, in order to select the bathy-photometric surveys carried out in the form of station grids and transects across eddies. Data from 71 expeditions deployed in 1966–2022 to the Atlantic Ocean, Indian Ocean and Mediterranean Sea basin were analyzed, in order for the spatial heterogeneity of bioluminescent fields to be elucidated across eddy fields. The stimulated bioluminescence intensity was characterized by the bioluminescent potential, which represented the maximal amount of radiant energy emitted in a given volume of water by bioluminescent organisms. The normalized bioluminescent potential over oceanographic station grids exhibited correlation with the eddy kinetic energy and zooplankton biomass (r = 0.8, at P = 0.001 and r = 0.7, at P = 0.05, respectively), in a broad range of energy and bioluminescence units (0.02–0.2 m2 s−2; 0.4–92.0 × 10−8 W cm−2 L−1, respectively). Overall, estimates of bioluminescent potential variability on the mesoscale contribute to the assessment of the multiple-scale variation of the bioluminescent field of the World Ocean.  相似文献   

10.
11.
Vertical migration is a key subject in understanding zooplankton ecology and its influence on aquatic ecosystems. This paper introduces a device for automatically recording vertical plankton migrations to study proximate factors regulating the stimulus, timing and amplitude of these movements under controlled laboratory conditions. The instrument records the light scattered by organisms at their respective depths and processes the signals in real time to a graphic representation of the organisms vertical distribution. Organisms of different taxa from a size of <40 μ, to > 10 000 μm were used for these experiments. Daphnia migrations in response to UV light are used to demonstrate the basic functions of the instrument.  相似文献   

12.
Eleotrid larvae (2.1–16 mm) were collected from surface waters of a billabong in south-eastern Australia. Estimates of larval density in plankton net samples at night averaged 148.3 larvae per m3 and 16.6 larvae per m3 during the day. In contrast, pump samples provided density estimates of 8.3 larvae per m3 at night and 0.9 larvae per m3 during the day. Larval densities did not differ between open water, snag (fallen tree) and Typha habitats, but Typha habitats yielded larger larvae than other habitats. 32.9% of larvae in pump samples were damaged and unmeasurable, creating a bias favouring larger larvae. The modal length of larvae in net samples at night was 5–6 mm, compared with 3–4 mm during the day, reflecting both greater net avoidance by larger larvae during the daytime and dispersal of smaller larvae from the surface at night. Dispersion patterns of larvae suggest that classes of larvae smaller than, and larger than 5.0 mm exhibit reciprocal diel vertical migration behaviour linked to ontogenetic changes in diet. Larvae less than 5 mm fed only during the day and preyed exclusively on rotifers, whereas larger larvae continued to feed at night and consumed mostly planktonic crustaceans.  相似文献   

13.
台湾海峡离岛工业区海域浮游生物丰度之长期变化   总被引:1,自引:0,他引:1  
本研究利用1993-2010年在云林县台西乡沿岸的8个站位所进行的一年四季近岸10 m及离岸20 m水深的浮游生物调查资料及同步的水质资料, 分析了发电厂建成后对浮游生物的影响。本海域18年内浮游生物各类群丰度/密度的各季节平均值, 皆以第四季(10-12月)为最低, 而各个类群的最高平均值出现的季别并不一致。其中浮游动物出现于第一和第二季(1-6月), 浮游植物和虾、蟹幼体在第二季(4-6月), 而鱼卵和仔鱼则是在第一至第三季(1-9月)。自2000年第三季起, 测线5的测站经常有pH值低于7.8的情形。当该海域水体测得pH值低于7.8时, 浮游动物(75±69 ind./m3)﹑浮游植物((1.60±2.28)×103 cell/L)﹑虾幼体(2.4±5.8 ind./m3)﹑蟹幼体(1.9±5.0 ind./m3)及鱼卵(0.88±1.10 ind./m3)和仔鱼(0.16±0.32 ind./m3)的丰度/密度值皆偏低, 仅为历年总平均值的1/2。据此建议将发电厂排入海洋之水体pH值控制在7.8以上, 以降低对浮游生物多样性及丰度的冲击。  相似文献   

14.
《Luminescence》2002,17(6):370-380
The response of the bioluminescent dinoflagellate Pyrocystis fusiformis was investigated for different hydraulic conditions (‘hydromechanical stimulation’). Pipe flow and oscillating shear produced luminescence, whereas changes in hydrostatic pressure were not stimulating. More intense fluid motion led to higher intensity, mainly due to a higher probability of cell response. The organism was also able to emit light in a glucose–salt mixture. The experiments suggest that the cells are effectively stimulated if the flow conditions change in time. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
The plankton flora on the northeastern coast of the Gulf of Persia consists of many diatom species, the coccolithophores Gephyrocapsa oceanica and Coccolithus huxleyi, and the blue-green alga, Trichodesmium thiebautii. These are prevalent throughout the year and always at low concentrations, with an average maximum in January of 14463 cells/liter and minimum in June of 802/liter. Such comparative constancy suggests that the flora has the attribute of stability. The individual species fluctuate in a patternless, uncorrelated manner, so that the flora is characterized by the attribute of unpredictability. The turbidity of the shallow water reduces the light so that light is usually neither limiting nor inhibitory. There is a small amount of nitrate always available and ample phosphate and silicate. Pure culture studies of several species show growth from about 12° to 34°. The water was 34° in August of 1977. The flora's responsiveness to these light, nutrient, and temperature quantities makes possible its recovery to normal after advective disturbance in June 1977.Contribution number 4574 from the Woods Hole Oceanographic Institution.Contribution number 4574 from the Woods Hole Oceanographic Institution.  相似文献   

16.
Deep ocean microbial communities rely on the organic carbon produced in the sunlit ocean, yet it remains unknown whether surface processes determine the assembly and function of bathypelagic prokaryotes to a larger extent than deep‐sea physicochemical conditions. Here, we explored whether variations in surface phytoplankton assemblages across Atlantic, Pacific and Indian ocean stations can explain structural changes in bathypelagic (ca. 4,000 m) free‐living and particle‐attached prokaryotic communities (characterized through 16S rRNA gene sequencing), as well as changes in prokaryotic activity and dissolved organic matter (DOM) quality. We show that the spatial structuring of prokaryotic communities in the bathypelagic strongly followed variations in the abundances of surface dinoflagellates and ciliates, as well as gradients in surface primary productivity, but were less influenced by bathypelagic physicochemical conditions. Amino acid‐like DOM components in the bathypelagic reflected variations of those components in surface waters, and seemed to control bathypelagic prokaryotic activity. The imprint of surface conditions was more evident in bathypelagic than in shallower mesopelagic (200–1,000 m) communities, suggesting a direct connectivity through fast‐sinking particles that escape mesopelagic transformations. Finally, we identified a pool of endemic deep‐sea prokaryotic taxa (including potentially chemoautotrophic groups) that appear less connected to surface processes than those bathypelagic taxa with a widespread vertical distribution. Our results suggest that surface planktonic communities shape the spatial structure of the bathypelagic microbiome to a larger extent than the local physicochemical environment, likely through determining the nature of the sinking particles and the associated prokaryotes reaching bathypelagic waters.  相似文献   

17.
18.
混合营养型浮游生物生态学研究进展   总被引:3,自引:1,他引:3  
目前已知的混合营养型浮游生物集中在甲藻门、黄藻门、裸藻门、隐藻门、金藻门、绿藻门和原生动物界的纤毛虫门,根据营养特性可分为3个生理类群。混合营养型浮游生物分布广泛,从淡水湖泊到开阔海洋,从赤道到两极,无论是寡营养还是富营养环境都发现有它们的存在。混合营养型浮游生物可进行光合营养和吞噬营养,营养策略的采用受控于环境因子。在低光照、寡营养等特殊环境中,混养生物具有重要生态地位。它可以成为主要摄食细菌者,占总生物量和生产力的大部分,比光合营养的浮游植物或吞噬营养的浮游动物更具有竞争优势。20世纪90年代以来对有害赤潮的研究,加深了对混合营养型浮游生物的认识。相信通过实验和模型的结合以及新技术的应用,将进一步推动混合营养型浮游生物生态学研究的深入。  相似文献   

19.
Johnson  M. P. 《Hydrobiologia》2000,440(1-3):145-152
Little is known about the population structure and dynamics of plankton of intertidal rock pools. A numerical model was developed for rock pool plankton with growth limited by both tidal washout and the stress associated with adverse conditions in high-shore pools. This model predicts that a stress tolerant species will tend to have maximum population densities in high-shore pools and that populations will fluctuate in opposite phase to the spring-neap tidal cycle. Conversely, where a species is susceptible to stress in high-shore pools, the maximum population density is likely to occur lower on the shore, and numbers in upper shore pools will cycle in phase with the spring-neap cycle. These two alternative predictions were sufficient to classify the dynamics of the most abundant species in time series taken from rock pools in the Isle of Man. The dinoflagellate Oxyrrhis marina followed the predictions of the stress tolerant model. In comparison, the spatiotemporal patterns of other taxa, including a ciliate, a dinoflagellate and cryptophytes, suggested stress-susceptible life histories.  相似文献   

20.
We sampled 30 lakes in Costa Rica in the wet season (July–August) of 1991 for phytoplankton (with integrated and whole water samples), and 17 for zooplankton (with net tows). Taxa of plankton and community richness were poorly related to geography, morphology, chemistry, and other biota. Neither the zooplankton nor the phytoplankton appeared to influence the composition of the other, and neither were apparently influenced by the presence of fish.Phytoplankton richness reflected primarily sampling method, but also tended to decrease with elevation and with Secchi disk depth, and tended to increase with pH and alkalinity. Chlorophytes were the most abundant division in 14 lakes; these lakes tended to be unstratified, turbid, and located at higher elevation. Diatoms were common in 4 of the 7 lakes with elevated silica (over 30 ppm). Each lake showed at least a 3 : 1 dominance by copepods, cladocera, or insect larvae. Copepods dominated 7 of the 17 lakes, most of which were shallow, turbid, and had low alkalinity. Cladocera dominated 7 lakes that were typically deeper and located at low-to mid-elevations. Insect larvae dominated two small, turbid lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号