首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In Laminaria japonica Aresch breeding practice, two quantitative traits, frond length (FL) and frond width (FW), are the most important phenotypic selection index. In order to increase the breeding efficiency by integrating phenotypic selection and marker-assisted selection, the first set of QTL controlling the two traits were determined in F2 family using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Two prominent L. japonicas inbred lines, one with “broad and thin blade” characteristics and another with “long and narrow blade” characteristics, were applied in the hybridization to yield the F2 mapping population with 92 individuals. A total of 287 AFLP markers and 11 SSR markers were used to construct a L. japonica genetic map. The yielded map was consisted of 28 linkage groups (LG) named LG1 to LG28, spanning 1,811.1 cM with an average interval of 6.7 cM and covering the 82.8% of the estimated genome 2,186.7 cM. While three genome-wide significant QTL were detected on LG1 (two QTL) and LG4 for “FL,” explaining in total 42.36% of the phenotypic variance, two QTL were identified on LG3 and LG5 for the trait “FW,” accounting for the total of 36.39% of the phenotypic variance. The gene action of these QTL was additive and partially dominant. The yielded linkage map and the detected QTL can provide a tool for further genetic analysis of two traits and be potential for maker-assisted selection in L. japonica breeding.  相似文献   

2.
Whilst minor pests of pear, both sawfly larvae (pear slug) and pear blister mite can at times cause sufficient damage in commercial and particularly in organic pear production for treatment to be required. In the course of breeding new pear cultivars, resistance to both pests was identified in an interspecific pear family raised from a cross between ‘PremP003’ and ‘Moonglow’. The replicated seedling family was subjected to uninhibited insect development for both pests in an insect-proof cage, providing ample infestations for resistance segregation. Using an existing genetic map for the family, one major quantitative trait locus (QTL) for resistance to pear blister mite was located to linkage group 13 (LG13) of ‘PremP003’. For pear slug, we mapped three QTLs for oviposition antixenosis, one each on LG7 and LG9 of ‘Moonglow’ and another on LG10 of ‘PremP003’, and one resistance QTL for leaf damage to LG9 of ‘Moonglow’ at a distance of 8.1 cM below the oviposition QTL. Incorporating these resistances into future cultivars could contribute to a reduction in pesticide use in pear production, especially in combination with the resistances for pear psylla (Cacopsylla pyri) and fire blight (Erwinia amylovora) recently mapped in the same population using marker-assisted selection.  相似文献   

3.
To accelerate genomics research and molecular breeding applications in chickpea, a high‐throughput SNP genotyping platform ‘Axiom®CicerSNP Array’ has been designed, developed and validated. Screening of whole‐genome resequencing data from 429 chickpea lines identified 4.9 million SNPs, from which a subset of 70 463 high‐quality nonredundant SNPs was selected using different stringent filter criteria. This was further narrowed down to 61 174 SNPs based on p‐convert score ≥0.3, of which 50 590 SNPs could be tiled on array. Among these tiled SNPs, a total of 11 245 SNPs (22.23%) were from the coding regions of 3673 different genes. The developed Axiom®CicerSNP Array was used for genotyping two recombinant inbred line populations, namely ICCRIL03 (ICC 4958 × ICC 1882) and ICCRIL04 (ICC 283 × ICC 8261). Genotyping data reflected high success and polymorphic rate, with 15 140 (29.93%; ICCRIL03) and 20 018 (39.57%; ICCRIL04) polymorphic SNPs. High‐density genetic maps comprising 13 679 SNPs spanning 1033.67 cM and 7769 SNPs spanning 1076.35 cM were developed for ICCRIL03 and ICCRIL04 populations, respectively. QTL analysis using multilocation, multiseason phenotyping data on these RILs identified 70 (ICCRIL03) and 120 (ICCRIL04) main‐effect QTLs on genetic map. Higher precision and potential of this array is expected to advance chickpea genetics and breeding applications.  相似文献   

4.
A genome‐wide association study of 2098 progeny‐tested Nordic Holstein bulls genotyped for 36 387 SNPs on 29 autosomes was conducted to confirm and fine‐map quantitative trait loci (QTL) for mastitis traits identified earlier using linkage analysis with sparse microsatellite markers in the same population. We used linear mixed model analysis where a polygenic genetic effect was fitted as a random effect and single SNPs were successively included as fixed effects in the model. We detected 143 SNP‐by‐trait significant associations (P < 0.0001) on 20 chromosomes affecting mastitis‐related traits. Among them, 21 SNP‐by‐trait combinations exceeded the genome‐wide significant threshold. For 12 chromosomes, both the present association study and the previous linkage study detected QTL, and of these, six were in the same chromosomal locations. Strong associations of SNPs with mastitis traits were observed on bovine autosomes 6, 13, 14 and 20. Possible candidate genes for these QTL were identified. Identification of SNPs in linkage disequilibrium with QTL will enable marker‐based selection for mastitis resistance. The candidate genes identified should be further studied to detect candidate polymorphisms underlying these QTL.  相似文献   

5.
St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] is a warm-season turfgrass commonly grown in the southern USA. In this study, the first linkage map for all nine haploid chromosomes of the species was constructed for cultivar ‘Raleigh’ and cultivar ‘Seville’ using a pseudo-F2 mapping strategy. A total of 160 simple sequence repeat markers were mapped to nine linkage groups (LGs) covering a total distance of 1176.24 cM. To demonstrate the usefulness of the map, quantitative trait loci (QTL) were mapped controlling field winter survival, laboratory-based freeze tolerance, and turf quality traits. Multiple genomic regions associated with these traits were identified. Moreover, overlapping QTL were found for winterkill and spring green up on LG 3 (99.21 cM); turf quality, turf density, and leaf texture on LG 3 (68.57–69.50 cM); and surviving green tissue and regrowth on LGs 1 (38.31 cM), 3 (77.70 cM), 6 (49.51 cM), and 9 (34.20 cM). Additional regions, where QTL identified in both field and laboratory-based/controlled environment freeze testing co-located, provided strong support that these regions are good candidates for true gene locations. These results present the first complete linkage map produced for St. Augustinegrass, providing a template for further genetic mapping. Additionally, markers linked to the QTL identified may be useful to breeders for transferring these traits into new breeding lines and cultivars.  相似文献   

6.
Melon (Cucumis melo L.) is highly nutritious vegetable species and an important source of β-carotene (Vitamin A), which is an important nutrient in the human diet. A previously developed set of 81 recombinant inbred lines (RIL) derived from Group Cantalupensis US Western Shipper market type germplasm was examined in two locations [Wisconsin (WI) and California (CA), USA] over 2 years to identify quantitative trait loci (QTL) associated with quantity of beta-carotene (QβC) in mature fruit. A moderately saturated 256-point RIL-based map [104 SSR, 7 CAPS, 4 SNP in putative carotenoid candidate genes, 140 dominant markers and one morphological trait (a) spanning 12 linkage groups (LG)] was used for QβC–QTL analysis. Eight QTL were detected in this evaluation that were distributed across four LG that explained a significant portion of the associated phenotypic variation for QβC (R 2 = 8 to 31.0%). Broad sense heritabilities for QβC obtained from RIL grown in WI. and CA were 0.56 and 0.68, respectively, and 0.62 over combined locations. The consistence of QβC in high/low RIL within location across years was confirmed in experiments conducted over 2 years. QTL map positions were not uniformly associated with putative carotenoid genes, although one QTL (β-car6.1) interval was located 10 cM from a β-carotene hydroxylase gene. These results suggest that accumulation of β-carotene in melon is under complex genetic control. This study provides the initial step for defining the genetic control of QβC in melon leading to the development of varieties with enhanced β-carotene content.  相似文献   

7.
Improving biomass yield is a major goal of Miscanthus breeding. We conducted a study on one interspecific Miscanthus sinensis × Miscanthus sacchariflorus F1 population and two intraspecific M. sinensis F1 populations, each of which shared a common parent. A field trial was established at Urbana, IL during spring 2011, and phenotypic data were collected in 2012 and 2013 for fourteen yield traits. Six high‐density parental genetic maps, as well as a consensus genetic map integrating M. sinensis and M. sacchariflorus, were developed via the pseudotestcross strategy for noninbred parents with ≥1214 single‐nucleotide polymorphism markers generated from restriction site‐associated DNA sequencing. We confirmed for the first time a whole‐genome duplication in M. sacchariflorus relative to Sorghum bicolor, similar to that observed previously for M. sinensis. Four quantitative trait locus (QTL) analysis methods for detecting marker‐trait associations were compared: (1) individual parental map composite interval mapping analysis, (2) individual parental map stepwise analysis, (3) consensus map single‐population stepwise analysis and (4) consensus map joint‐population stepwise analysis. These four methods detected 288, 264, 133 and 109 total QTLs, which resolved into 157, 136, 106 and 86 meta‐QTLs based on QTL congruency, respectively, including a set of 59 meta‐QTLs common to all four analysis methods. Composite interval mapping and stepwise analysis co‐identified 118 meta‐QTLs across six parental maps, suggesting high reliability of stepwise regression in QTL detection. Joint‐population stepwise analysis yielded the highest resolution of QTLs compared to the other three methods across all meta‐QTLs. Strong, frequently advantageous transgressive segregation in the three populations indicated a promising future for breeding new higher‐yielding cultivars of Miscanthus.  相似文献   

8.
Improved Catharanthus roseus cultivars are required for high yields of vinblastine, vindoline and catharanthine and/or serpentine and ajmalicine, the pharmaceutical terpenoid indole alkaloids. An approach to derive them is to map QTL for terpenoid indole alkaloids yields, identify DNA markers tightly linked to the QTL and apply marker assisted selection. Towards the end, 197 recombinant inbred lines from a cross were grown over two seasons to characterize variability for seven biomass and 23 terpenoid indole alkaloids content-traits and yield-traits. The recombinant inbred lines were genotyped for 178 DNA markers which formed a framework genetic map of eight linkage groups (LG), spanning 1786.5 cM, with 10.0 cM average intermarker distance. Estimates of correlations between traits allowed selection of seven relatively more important traits for terpenoid indole alkaloids yields. QTL analysis was performed on them using single marker (regression) analysis, simple interval mapping and composite interval mapping procedures. A total of 20 QTL were detected on five of eight LG, 10 for five traits on LG1, five for four traits on LG2, three for one trait on LG3 and one each for different traits on LG three and four. QTL for the same or different traits were found clustered on three LG. Co-location of two QTL for biomass traits was in accord of correlation between them. The QTL were validated for use in marker assisted selection by the recombinant inbred line which transgressively expressed 16 traits contributory to the yield vinblastine, vindoline and catharanthine from leaves and roots that possessed favourable alleles of 13 relevant QTL.  相似文献   

9.
Elucidation of the sex‐determination mechanism in flathead grey mullet (Mugil cephalus) is required to exploit its economic potential by production of genetically determined monosex populations and application of hormonal treatment to parents rather than to the marketed progeny. Our objective was to construct a first‐generation linkage map of the M. cephalus in order to identify the sex‐determining region and sex‐determination system. Deep‐sequencing data of a single male was assembled and aligned to the genome of Nile tilapia (Oreochromis niloticus). A total 245 M. cephalus microsatellite markers were designed, spanning the syntenic tilapia genome assembly at intervals of 10 Mb. In the mapping family of full‐sib progeny, 156 segregating markers were used to construct a first‐generation linkage map of 24 linkage groups (LGs), corresponding to the number of chromosomes. The linkage map spanned approximately 1200 cM with an average inter‐marker distance of 10.6 cM. Markers segregating on LG9 in two independent mapping families showed nearly complete concordance with gender (R2 = 0.95). The sex determining locus was fine mapped within an interval of 8.6 cM on LG9. The sex of offspring was determined only by the alleles transmitted from the father, thus indicating an XY sex‐determination system.  相似文献   

10.
Powdery mildew caused by Podosphaera xanthii has become a major problem in melon since it occurs all year round irrespective of the growing system. The TGR-1551 melon genotype was found to be resistant to several melon diseases, among them powdery mildew. However, the corresponding resistance genes have been never mapped. We constructed an integrated genetic linkage map using an F2 population derived from a cross between the multi-resistant genotype TGR-1551 and the susceptible Spanish cultivar ‘Bola de Oro’. The map spans 1,284.9 cM, with an average distance of 3.6 cM among markers, and consists of 354 loci (188 AFLP, 39 RAPD, 111 SSR, 14 SCAR/CAPS/dCAPS, and two phenotypic traits) distributed in 14 linkage groups. QTL analysis identified one major QTL (Pm-R) on LG V for resistance to races 1, 2, and 5 of powdery mildew. The PM4-CAPS marker is closely linked to the Pm-R QTL at a genetic distance of 1.9 cM, and the PM3-CAPS marker is located within the support interval of this QTL. These codominant markers, together with the map information reported here, could be used for melon breeding, and particularly for genotyping selection of resistance to powdery mildew in this vegetable crop species.  相似文献   

11.
In this study, genome‐wide association study (GWAS) results of porcine F2 crosses were used to map QTL in outcross Piétrain populations. For this purpose, two F2 crosses (Piétrain × Meishan, = 304; Piétrain × Wild Boar, = 291) were genotyped with the PorcineSNP60v2 BeadChip and phenotyped for the dressing yield, carcass length, daily gain and drip loss traits. GWASs were conducted in the pooled F2 cross applying single marker mixed linear models. For the investigated traits, between two and five (in total 15) QTL core regions, spanning 250 segregating SNPs around a significant trait‐associated peak SNP, were identified. The SNPs within the QTL core regions were subsequently tested for trait association in two outcross Piétrain populations consisting of 771 progeny‐tested boars and 210 sows with their own performance records. In the sow (boar) dataset, five (eight) of the 15 mapped QTL were validated. Hence, many QTL mapped in the F2 crosses (with Piétrain as a common founder breed) are still segregating in the current Piétrain breed. This confirms the usefulness of existing F2 crosses for mapping QTL that are still segregating in the recent founder breed generation. The approach utilizes the high power of an F2 cross to map QTL in a breeding population for which it is not guaranteed that they would be found using a GWAS in this population.  相似文献   

12.
A mapping population was created to detect quantitative trait loci (QTL) for resistance to stem rust caused by Puccinia graminis subsp. graminicola in Lolium perenne. A susceptible and a resistant plant were crossed to produce a pseudo-testcross population of 193 F1 individuals. Markers were produced by the restriction-site associated DNA (RAD) process, which uses massively parallel and multiplexed sequencing of reduced-representation libraries. Additional simple sequence repeat (SSR) and sequence-tagged site (STS) markers were combined with the RAD markers to produce maps for the female (738 cM) and male (721 cM) parents. Stem rust phenotypes (number of pustules per plant) were determined in replicated greenhouse trials by inoculation with a field-collected, genetically heterogeneous population of urediniospores. The F1 progeny displayed continuous distribution of phenotypes and transgressive segregation. We detected three resistance QTL. The most prominent QTL (qLpPg1) is located near 41 cM on linkage group (LG) 7 with a 2-LOD interval of 8 cM, and accounts for 30–38% of the stem rust phenotypic variance. QTL were detected also on LG1 (qLpPg2) and LG6 (qLpPg3), each accounting for approximately 10% of phenotypic variance. Alleles of loci closely linked to these QTL originated from the resistant parent for qLpPg1 and from both parents for qLpPg2 and qLpPg3. Observed quantitative nature of the resistance may be due to partial-resistance effects against all pathogen genotypes, or qualitative effects completely preventing infection by only some genotypes in the genetically mixed inoculum. RAD markers facilitated rapid construction of new genetic maps in this outcrossing species and will enable development of sequence-based markers linked to stem rust resistance in L. perenne.  相似文献   

13.
Flax (Linum usitatissimum L.) seeds contain nearly 50% oil which is high in linolenic acid (an omega-3 fatty acid). In this study, a genetic linkage map was constructed based on 114 expressed sequence tag-derived simple sequence repeat (SSR) markers in addition to five single nucleotide polymorphism markers, five genes (fad2A, fad2B, fad3A, fad3B and dgat1) and one phenotypic trait (seed coat color), using a doubled haploid (DH) population of 78 individuals generated from a cross between SP2047 (a yellow-seeded Solin™ line with 2–4% linolenic acid) and UGG5-5 (a brown-seeded flax line with 63–66% linolenic acid). This map consists of 24 linkage groups with 113 markers spanning ~833.8 cM. Quantitative trait locus (QTL) analysis detected two major QTLs each for linoleic acid (LIO, QLio.crc-LG7, QLio.crc-LG16), linolenic acid (LIN, QLin.crc-LG7, QLin.crc-LG16) and iodine value (IOD, QIod.crc-LG7, QIod.crc-LG16), and one major QTL for palmitic acid (PAL, QPal.crc-LG9). The mutant allele of fad3A, mapped to the chromosomal segment inherited from the parent SP2047, underlies the QTL on linkage group 7 and was positively associated with high LIO content but negatively associated with LIN and IOD. This fad3A locus accounted for approximately 34, 25 and 29% of the phenotypic variation observed in this DH population for these three traits, respectively. The QTL localized on linkage group 16 explained approximately 20, 25 and 13% of the phenotypic variation for these same traits, respectively. For palmitic acid, QPal.crc-LG9 accounted for ~42% of the phenotypic variation. This first SSR-based linkage map in flax will serve as a resource for mapping additional markers, genes and traits, in map-based cloning and in marker-assisted selection.  相似文献   

14.
In this study, totally 54 selected polymorphic SSR loci of Chinese shrimp (Fenneropenaeus chinensis), in addition with the previous linkage map of AFLP and RAPD markers, were used in consolidated linkage maps that composed of SSR, AFLP and RAPD markers of female and male construction, respectively. The female linkage map contained 236 segregating markers, which were linked in 44 linkage groups, and the genome coverage was 63.98%. The male linkage map contained 255 segregating markers, which were linked in 50 linkage groups, covering 63.40% of F. chinensis genome. There were nine economically important traits and phenotype characters of F. chinensis were involved in QTL mapping using multiple-QTL mapping strategy. Five potential QTLs associated with standard length (q-standardl-01), with cephalothorax length (q-cephal-01), with cephaloghorax width (q-cephaw-01), with the first segment length (q-firsel-01) and with anti-WSSV (q-antiWSSV-01) were detected on female LG1 and male LG44 respectively with LOD > 2.5. The QTL q-firsel-01 was at 73.603 cM of female LG1. Q-antiWSSV-01 was at 0 cM of male LG44. The variance explained of these five QTLs was from 19.7–33.5% and additive value was from −15.9175 to 7.3675. The closest markers to these QTL were all SSR, which suggested SSR marker was superior to AFLP and RAPD in the QTL mapping.  相似文献   

15.
Powdery mildew caused by Podosphaera xanthii is an important foliar disease in melon. To find molecular markers for marker-assisted selection, we constructed a genetic linkage map of melon based on a population of 93 recombinant inbred lines derived from crosses between highly resistant AR 5 and susceptible ‘Earl’s Favourite (Harukei 3)’. The map spans 877 cM and consists of 167 markers, comprising 157 simple sequence repeats (SSRs), 7 sequence characterized amplified region/cleavage amplified polymorphic sequence markers and 3 phenotypic markers segregating into 20 linkage groups. Among them, 37 SSRs and 6 other markers were common to previous maps. Quantitative trait locus (QTL) analysis identified two loci for resistance to powdery mildew. The effects of these QTLs varied depending on strain and plant stage. The percentage of phenotypic variance explained for resistance to the pxA strain was similar between QTLs (R 2 = 22–28%). For resistance to pxB strain, the QTL on linkage group (LG) XII was responsible for much more of the variance (41–46%) than that on LG IIA (12–13%). The QTL on LG IIA was located between two SSR markers. Using an independent population, we demonstrated the effectiveness of these markers. This is the first report of universal and effective markers linked to a gene for powdery mildew resistance in melon.  相似文献   

16.
17.
Switchgrass (Panicum virgatum L.), a native warm‐season perennial grass, is being considered as a feedstock for biofuel production in the United States. To expedite its genetic improvement and enhance genetic gain per selection cycle, application of marker‐assisted selection is indispensable. A high‐density linkage map was constructed in a pseudo‐F1 testcross mapping population of AP13×VS16, consisting of 349 progenies. A total of 8,757 single nucleotide polymorphism (SNP) markers generated through genotype‐by‐sequencing (GBS) were used to construct the linkage map. The total map length spans up to 2,540.2 cM with the marker density of one marker in every 0.25–0.34 cM. Spring green‐up (SG), days to flowering (FL), and the vegetative growth period (VP) data were analyzed and used for quantitative trait loci (QTL) mapping. The population showed significant variations and exhibited transgressive segregation for SG, FL, and VP. QTL analyses were performed using trait mean of each year and location along with BLUP (best linear unbiased prediction) values of the traits. A total of 35, 37, and 34 QTL for SG, FL, and VP, respectively, were identified. Phenotypic variability explained by each QTL ranged from 11.29% to 27.85%. The additive genetic effects of individual QTL ranged from ?1.81 to 2.40, ?6.12 to 7.58, and ?16.01 to 6.38 for SG, FL, and VP, respectively. Comparing major QTL regions in the switchgrass genome, 20 candidate genes were identified which were reported to be involved in growth‐, development‐, and flowering‐related traits in switchgrass.  相似文献   

18.
Quantitative traits important to organismal function and fitness, such as brain size, are presumably controlled by many small‐effect loci. Deciphering the genetic architecture of such traits with traditional quantitative trait locus (QTL) mapping methods is challenging. Here, we investigated the genetic architecture of brain size (and the size of five different brain parts) in nine‐spined sticklebacks (Pungitius pungitius) with the aid of novel multilocus QTL‐mapping approaches based on a de‐biased LASSO method. Apart from having more statistical power to detect QTL and reduced rate of false positives than conventional QTL‐mapping approaches, the developed methods can handle large marker panels and provide estimates of genomic heritability. Single‐locus analyses of an F2 interpopulation cross with 239 individuals and 15 198, fully informative single nucleotide polymorphisms (SNPs) uncovered 79 QTL associated with variation in stickleback brain size traits. Many of these loci were in strong linkage disequilibrium (LD) with each other, and consequently, a multilocus mapping of individual SNPs, accounting for LD structure in the data, recovered only four significant QTL. However, a multilocus mapping of SNPs grouped by linkage group (LG) identified 14 LGs (1–6 depending on the trait) that influence variation in brain traits. For instance, 17.6% of the variation in relative brain size was explainable by cumulative effects of SNPs distributed over six LGs, whereas 42% of the variation was accounted for by all 21 LGs. Hence, the results suggest that variation in stickleback brain traits is influenced by many small‐effect loci. Apart from suggesting moderately heritable (h2 ≈ 0.15–0.42) multifactorial genetic architecture of brain traits, the results highlight the challenges in identifying the loci contributing to variation in quantitative traits. Nevertheless, the results demonstrate that the novel QTL‐mapping approach developed here has distinctive advantages over the traditional QTL‐mapping methods in analyses of dense marker panels.  相似文献   

19.
The ‘fruity’ attributes of ripe apples (Malus × domestica) arise from our perception of a combination of volatile ester compounds. Phenotypic variability in ester production was investigated using a segregating population from a ‘Royal Gala’ (RG; high ester production) × ‘Granny Smith’ (GS; low ester production) cross, as well as in transgenic RG plants in which expression of the alcohol acyl transferase 1 (AAT1) gene was reduced. In the RG × GS population, 46 quantitative trait loci (QTLs) for the production of esters and alcohols were identified on 15 linkage groups (LGs). The major QTL for 35 individual compounds was positioned on LG2 and co‐located with AAT1. Multiple AAT1 gene variants were identified in RG and GS, but only two (AAT1‐RGa and AAT1‐GSa) were functional. AAT1‐RGa and AAT1‐GSa were both highly expressed in the cortex and skin of ripe fruit, but AAT1 protein was observed mainly in the skin. Transgenic RG specifically reduced in AAT1 expression showed reduced levels of most key esters in ripe fruit. Differences in the ripe fruit aroma could be perceived by sensory analysis. The transgenic lines also showed altered ratios of biosynthetic precursor alcohols and aldehydes, and expression of a number of ester biosynthetic genes increased, presumably in response to the increased substrate pool. These results indicate that the AAT1 locus is critical for the biosynthesis of esters contributing to a ‘ripe apple’ flavour.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号